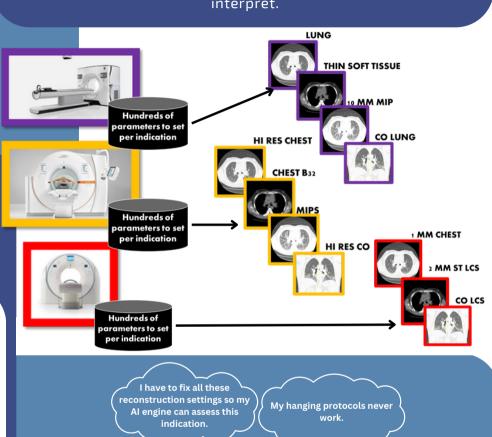

The Problem

The image below shows two scans of **one** patient's lungs created on the **same day.** Erroneous differences in the measured nodule size in this case were caused by non-uniformity in Computer Tomography (CT) scanner reconstruction parameters.

RadUnity's solution


RadUnity addresses the problem of inconsistency in medical imaging by centralizing the management of image creation, ² enabling a site to create a standardized image presentation for any study.

¹ Szczykutowicz, T. P., Rubert, N., Belden, D., Ciano, A., Duplissis, A., Hermanns, A., ... & Saldivar, E. J. (2016). A wiki-based solution to managing your institution's imaging protocols. Journal of the American College of Radiology, 13(7), 822-824.

Current Practice

Currently, images are created by modality units supplied by various vendors, reconstructed based on a variety of imaging protocols. These diverse images are then sent to radiologists to hang and interpret.

I hate when techs rotate to a new scanner, they always have issues creating formats the way I like.

The ED is so busy, I wish someone else could help the ED tech make their reformats.

Did that nodule actually grow or is it just reconstructed differently?

This is frustrating, all these OEM protocol management solutions are scanner specific.

² Szczykutowicz, T. P. (20'9) System for Harmonizing Medical Imaging Presentation (US10964074B2). USTPO Patent. https://patents.google.com/patent/US10964074B2/en? 0a=10964074

The RadUnity™ Workflow

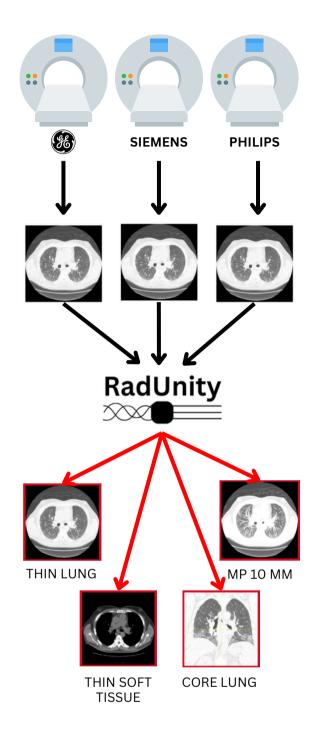
SCAN

User performs the necessary protocoling, prepping and scanning of the patient based on the order received, acquiring raw data.

CENTRALIZED MANAGEMENT

Reconstructed DICOM data is sent through RadUnity's gateway to a secure environment for centralized reformatting based on an indication specific profile.

REFORMAT


User launches RadUnity's web-based platform. Users then select the appropriate order, and then choose from predefined profiles. The profiles are indication specific, and define image plane, name, image type, etc., for radiologist interpretation and post processing needs.

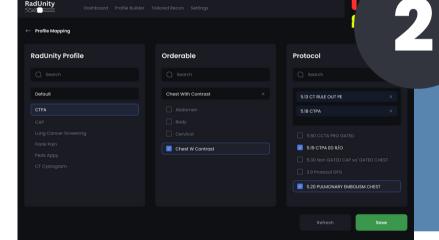
PACS

Images reformatted on the cloud will then populate in a site's respective PACS server for viewing.

INTERPRETATION

Radiologists now can view images on PACS with the same look and feel coming from all the scanners they read from.

Our Software-as-a-Service (SaaS) solution enables a site to tailor image reformatting in a customized manner from any location. Therefore, RadUnity's solution can be applied to images from outside one's institution, as well as on images previously acquired.


Szczykutowicz, T. P. (20`9) System for Harmonizing Medical Imaging Presentation (US10964074B2). USTPO Patent. https://patents.google.com/patent/US10964074B2/en? oq=10964074

RadUnity™

how it works

Create an indication specific profile to define the "look and feel" (i.e., the names, planes, kernels, slice thicknesses, etc.) for the image volumes wanted per indication.

Link a RadUnity ™ profile to study description and protocol names so RadUnity™ can associate the correct image reformat profile with the correct exam.

At scan time, scanning (i.e., data acquisition) is unchanged with the RadUnity solution. Only a thin high resolution (i.e., a bone or lung kernel) image volume is reconstructed on your CT scanner and sent to RadUnity for processing.

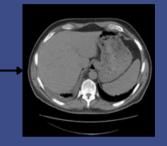

RadUnity

© ©

© 🖆

All descriptions and examples of solutions and technologies presented in this pamphlet represent technology in development and ongoing research efforts. RadUnity Corp. does not currently

offer a product, and the solutions and technologies presented here may never become products. No solutions or technologies described on the RadUnity website are approved or cleared by any regulatory body in the United States of America or globally.



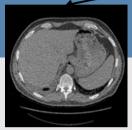
RadUnity™

why it works

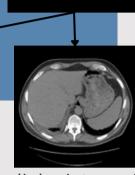
Modern CT scanners can make very high resolution thin images. These images are far too noisy for human interpretation. So historically we "thicken them up" and "blur them" to make images palatable to human interpretation. CT OEMs do this via filtering projection data using kernels.

We don't need a CT scanner to transform a high resolution image into an image suitable for radiologist interpretation. One can quickly and easily filter a high resolution image (i.e., bone or lung) into a lower resolution image (i.e., soft tissue).

A thin image volume can be reformatted into other planes. This is exactly what RadUnity does to make non-axial images and thicker axial image volumes.¹


All descriptions and examples of solutions and technologies presented in this pamphlet represent technology in development and ongoing research efforts. RadUnity Corp. does not currently offer a product, and the solutions and technologies presented here may never become products. No solutions or technologies described on the RadUnity website are approved or cleared by any regulatory body in the United States of America or globally.

¹ Szczykutowicz, T. P. (209) System for Harmonizing Medical Imaging Presentation (US10964074B2). USTPO Patent.


https://patents.google.com/patent/US10964074B2/eno q=10964074

² Schaller, S., Wildberger, J. E., Raupach, R., Niethammer, M., Klingenbeck-Regn, K., & Flohr, T. (2003). Spatial domain filtering for fast modification of the tradeoff between image sharpness and pixel noise in computed tomography. IEEE transactions on medical imaging, 22(7), 846-853.

The scanner can make thin high resolution images like this.

RadUnity


Radiologists prefer thicker lower resolution images for most indications.

Going from a high resolution source image to a lower resolution image is easy, one just has to apply a blurring filter. This is ubiquitous on most 3D processing workstations and PACS systems.

RadUnity™ duplicates CT OEM projection filtering using image space filtering.²

RadUnity is a platform that presents harmonized images from diverse CT data tailored for any radiologist, researcher, or AI tool. Its cloud-based software as a service platform allows centralized specification and management of image reformatting according to predefined user preferences.

Patients

When viewing images created with the assistance of RadUnity, patients can expect a more consistent viewing experience, meaning one less thing to worry about during their healthcare journey.

Technologists

RadUnity allows the user to customize their interaction level, automating repetitive tasks without disrupting the established workflow.

Technologists

RadUnity software provides more consistency in image reconstruction, as well as the flexibility to automate hanging protocols. This software can support technologists so they may focus more on patient care, rather than image organization.

Site Administration

Centralized data management and a consistent viewing experience fosters confidence in providers and patients alike, helping to reduce burnout and mitigate guesswork resulting from nonuniformity.

Radiologists

Same Image Viewing Experience

Centralized Management

Radiologists

RadUnity's platform means providers have access to the same image "look and feel" from any location, reducing guesswork and repetitive tasks so radiologists can do what they trained to do: practice medicine.

Radiologists

RadUnity software assists in load balancing through the real time status dashboard. During busy times, users can support one another through performing manual tasks needed for other's scans, regardless of location.

RadUnity can optimize onboarding protocols with our solution for nonuniformity in image reconstruction, enabling new radiologists and technologists to redirect their attention from machine-specific reconstructions so they can focus more on their patients.

Real Time Reporting


RadUnity's integrated status dashboard may act as a tool that allows providers to maintain control of scan orders, easily prioritize cases, and enhance resource allocation. This software as a service platform has the potential to boost efficiency, reduce turnover, and optimize resource utilization.

Normalized Data

RadUnity fosters uniformity in your image viewing workflow, allowing for easier intra- and intercommunication within and among sites.

The consistency RadUnity offers AI vendors contributes to optimizing their algorithms related to medical imaging.

Radiologists

RadUnity software can normalize data from new and previous scans alike, creating a consistent image viewing experience, no matter the source.

All descriptions and examples of solutions and technologies presented in this pamphlet represent technology in development and ongoing research efforts. RadUnity Corp. does not currently offer a product, and the solutions and technologies presented here may never become products. No solutions or technologies described on the RadUnity website are approved or cleared by any regulatory body in the United States of America or globally.

Trademark Notice. The RadUnity name is a registered trademark of RadUnity Corp.