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ABSTRACT 

 
This research focuses on addressing optimal control problems (OCP) constrained by nonlinear or- 

dinary differential equations. The Variational Iteration Method (VIM) addresses these problems 

since it allows for determining extreme circumstances obtained from Pontryagin’s Maximum Prin- 

ciple (PMP). Consequently, this results in formulating a nonlinear problem involving two boundary 

points. Unlike standard numerical approaches, VIM does not need to be discretized, linearized, or 

perturbed. Moreover, the method has gained widespread application for solving nonlinear problems, 

and various enhancements have been suggested to overcome potential limitations in the solution 

process. Furthermore, one significant area in VIM that has proven valuable is solving Riccati equa- 

tions, making it an indispensable tool within control theory. The method can reduce computational 

dimensions and effectively overcome challenges associated with perturbation techniques. Therefore, 
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∫ 

this research presents examples and highlights the strong capabilities of the VIM approach to demon- 

strate its effectiveness. Thus, by these examples, the study illustrates the potential and efficacy of 

the VIM technique. 

 

1. INTRODUCTION 

 
A subfield of mathematical optimization known 

as optimal control theory is concerned with 

determining a dynamic system’s time-varying 

control so as as to optimize an objective func- 

tion. Furthermore, an optimal control problem 

is typically characterized as a type of optimiza- 

tion problem. There is a significant distinction 

between the two concepts. In optimal control 

theory, the optimizer is a function rather than 

just a value. This function responsible for op- 

timizing is known as the optimal control. The 

goal of mathematical optimization is to locate 

extreme points of functions involving real vari- 

ables. On the other hand, the goal of optimal 

control theory is to find a control rule that sat- 

isfies a certain optimality condition for a given 

dynamical system.. In addition to its ability to 

formulate real-world problems mathematically, 

optimal control theory is valuable because it 

has opened up long-term research prospects in 

a variety of humanities fields. In recent years, 

the increasing use of this technology in multiple 

fields has captured the attention of numerous 

researchers. A variety of practical issues in our 

everyday lives can be described as optimal con- 

trol problems. 

 
In mathematics, a representation that exists in a 

number of states and undergoes constant change 

is called a dynamical system. Different struc- 

tural forms, such as ordinary differential equa- 

tions, partial differential equations, stochastic 

differential equations, integro-difference equa- 

tions, and discrete-difference equations, can be 

adopted by such systems. A measurable in- 

dicator of system performance is known as an 

objective function. A desirable control that 

maximizes system performance is referred to as 

optimal control. In business and economics, a 

typical objective function provides a relevant 

measure of variables like profits or revenue. If 

minimizing costs is the aim, then the inverse of 

cost should be the target function to maximize. 

. Mathematically, let: 

 
T 

J = F (x(t), u(t), t)dt + S(x(t), T )dt(1) 
0 

denote the cost function, where the functions 

F :ℜn x ℜm x ℜ1 → ℜ1 and S: ℜn x ℜ1 → ℜ1 

are assumed to be continuously differentiable. 

S(x, T ) can stand for the value derived from 

having x is the final state of the system at time 

T  , while F (x, u, t) might stand for the im- 
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mediate rate of return in a typical commercial 

scenario. 

 
Solving optimal control issues can be difficult, 

especially if they don’t lend themselves to nu- 

merical or programming techniques. Only sim- 

ple and fundamental optimal control problems 

could be addressed until the 1950s, when digi- 

tal computers were introduced. The advent of 

digital computers has made it possible to ap- 

ply optimal control theory and methods to solve 

challenging problems. Even with the advance- 

ments in software, solving optimum control is- 

sues using a typical package like MATLAB is 

still a difficult process. In addition to having 

a solid understanding of the overall structure 

of the solution method and the different solvers 

needed to implement it, one has to be proficient 

in programming. 

 
Generally, an optimum control problem that 

is constrained and dynamic can be defined as 

 

 
∫ t

f 

dependent time variable. . The state variable 

vector is x(t) ∈ ℜn, while the control variable 

vector is u(t) ∈ ℜm which are going to be opti- 

mized. f : ℜ × ℜn × ℜm → ℜ is the functional 

and h : ℜ × ℜn × ℜm → ℜp is a smooth vector 

field. $f$ and $h$ are functions that can be con- 

tinuously differentiated, that is, f ∈ C2[t0, tf ] 

and h ∈ C1[t0, tf ]. The known beginning state 

and end state are denoted by x0 and x(tf ) re- 

spectively. x(tf ) could be free (unrestricted) or 

fixed (x(tf ) = xf ). 

 
One cannot emphasize enough the significance 

of the mathematical theory of optimal control in 

applied mathematics. The key findings of this 

theory serve as essential instruments in the field 

of applied mathematics. Research in these fields 

is increasing rapidly. due to their numerous ap- 

plications in various disciplines. Optimal control 

is utilized in various sectors including science, 

engineering, operations research, economics, fi- 

nance, and management science, and remains a 

valuable area of study in control theory. 

Numerous nonlinear problems have been solved 

using the variational iteration approach.  Fur- 
Minimize J(t, x(t), u(t)) = f (t, x(t), u(t))dt 

t0 

(2) 
thermore, its adaptability and capacity for pre- 

cise and simple solution of nonlinear equations 
Subject to ẋ(t) = h(t, x(t), u(t)) (3) 

are its salient features. The present study deals 

x(t0) = x0,  t0 ≤ t ≤ tf (4) 
 

where the beginning and final times are denoted 

by t0 and tf , respectively, and $t$ is the in- 

with a system of nonlinear equations associated 

with the Two Point Boundary Value problem, 

which stems from Pontryagin’s Maximum Prin- 
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ciple using the variational iteration approach. 

Both linear and nonlinear equations may be di- 

rectly handled by this approach with effective- 

ness. It is clear that this approach yields rapidly 

converging continuous approximations without 

necessitating any restricted transformations or 

presumptions that could alter the physical na- 

ture of the original problem. The method’s 

efficiency is demonstrated by the satisfactory 

approximations achieved with a minimal num- 

ber of iterations. 

 
Control theory is one of the most interdisci- 

plinary areas of research and has received great 

practical applications in different areas of study. 

It has been a discipline where many mathe- 

matical ideas and methods are used. Many re- 

searchers have examined optimal control prob- 

lems and different authors have suggested vari- 

ous solution methods. 

The He’s variational iteration approach was ex- 

tended by [7] to offer close solution for non-linear 

differential-difference equations. The extended 

variational iteration approach’s effectiveness and 

significant potential in resolving nonlinear differ- 

ential equations were demonstrated using sim- 

ple but illustrative examples. Consequently, the 

outcomes of the approach suggest that the pro- 

cess is effective and uncomplicated.  Moreover, 

[22] introduced a technique for addressing non- 

linear boundary value problems, which uses He’s 

polynomials to combine the shooting technique 

with the variational iteration approach. 

[17] reviewed that the VIM method has 

been witnessing noteworthy advancements and 

emerging trends in its application. In several 

technical disciplines, nonlinear wave equation, 

nonlinear challenges, nonlinear fluctuations, and 

nonlinear fractional differential equations were 

all extensively studied in this work. The re- 

searcher also explained the fundamental concep- 

tual basis of the variational iteration technique 

when applied to nonlinear problems. The ap- 

plicability and drawbacks of this method were 

examined in particular with regard to approx- 

imating nonlinear equation solutions. A new 

iteration approach was proposed to address the 

shortcomings. Additionally, a practical method 

for estimating the period of a nonlinear oscilla- 

tor was recommended. Instances were provided 

to demonstrate how the solution process works. 

 
A framework for precisely solving diffusion equa- 

tions, both linear and nonlinear, was provided 

by [1]. For several diffusion systems with power 

law diffusivities, he developed precise solutions. 

The variational iteration technique that He de- 

veloped was utilized to derive exact solutions for 

these equations. This robust VIM method was 

effective in directly solving both linear and non- 

linear equations effortlessly. [21] investigated 

the use of the  Variational  Iteration  Method 
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(VIM) in the numerical solution of the non- 

linear Burgers equation. The technique changed 

several factors that influenced the quantity of 

mistakes in order to examine the convergence 

of Burgers equation solutions. Variational It- 

eration technique was used to do experimental 

calculations on the Burgers equation. The solu- 

tion found showed that with each iteration, the 

rate of convergence falls as the parameter val- 

ues grow. However, the approximation solution 

converged to the analytical answer more quickly 

when the number of iterations increased. 

 

2. MATERIALS AND 

METHODS 

An optimal control problem’s generic form is 

provided as : 

M ax 
n

J = 
∫ T 

f (t, x(t), u(t))dt
, 

tablished the basic ideas of optimal control 

theory. These requirements are satisfied if 

(u∗(t), n; x∗(t)) indicates an ideal combination. 

In order to integrate the differential equations 

into the cost function, Pontryagin invented the 

idea of adjoint functions. These adjoint func- 

tions help constrain the function with many 

variables for optimization, much like calculus’s 

Lagrange multipliers do. We will use two dis- 

tinct situations to analyze optimum control is- 

sues in this analysis. 

 
 
 

 

Case 1:  Quadratic Opti- 

mal Control Problem Con- 

strained by Non-Linear Ordi- 

nary Differential Equation 
0 

subject to  
(5) 

 
The general form of the problem is given as 

x′(t) = g(t, x(t), u(t)) 

x(0) = x0 

u∗(t) represents the control that maximizes (or 

 
Min J(t, x, u) = 

 

 

tf 

(ax2(t) + bu2(t))dt (6) 
t0 

reduces) the objective functional. When u∗(t) 

is substituted in the state differential equation, 

x∗(t), the associated optimal state, is obtained. 

As a result, the optimum set is (u∗(t), x∗(t)). . 

 
In the 1950s, Lev Pontryagin and others es- 

subject to the nonlinear system , 

 

ẋ(t) = cf (t, x(t)) + dg(t, x(t))u(t), t ∈ [t0, tf ] 

x(t0) = x0, x(tf ) = xf 

(7) 

 

a, b, c, d ∈ R; a, b > 0 

∫ 
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where u(t) is the control variable that sets the 

system’s direction and x(t) is the state variable 

that characterizes the system. 

 

 

Case   2: Generalized 

Quadratic Optimal Control 

Problem Constrained by Non 

Linear Ordinary Differential 

Equation 

∫ t
f 

respect to their arguments, then Pontryagin’s 

Maximum Principle may be used to express the 

first order required conditions in their most ba- 

sic form. 

Theorem: (Pontryagin’s Maximum Princi- 

ple). For problem (6)-(7), if u∗(t) and x∗(t) are 

optimum, then there exists a piecewise differen- 

tiable adjoint variable λ(t) such that 

 

 

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)), 

(10) 

Min J[t, x, u] = (xT (t)Qx(t) + uT (t)Ru(t))dt 
t0 

(8) 

 

for all u ∈ U at each time t, where the Hamil- 

subject to the nonlinear system , 

 

ẋ(t) = f (t, x(t)) + g(t, x(t))u(t), t ∈ [t0, tf ] 

x(t0) = x0, x(tf ) = xf 

(9) 

tonian, H, is 
 
 

 
H = f (t, x(t), u(t) + λ(t)g(t, x(t), u(t)) (11) 

 

Where t is independent variable, x(t) ∈ Rn is 

the state variable, u(t) ∈ Rm is the control vari- 

able, x0 is the initial state at t0, xf is the final 

state at tf , Q∈ Rnxn is a positive semi-definite 

matrix, R∈ Rmxm is a positive definite matrix. 

f (t, x(t))ϵ Rn and g(t, x(t)) ∈ Rn×m are two 

continuously differentiable functions in all argu- 

and  
 

 

λ′(t) = − 

 

 
∂H(t, x∗(t), u(t), λ(t)) 

(12) 
∂x 

 
 

 
λ(T ) = 0 (13) 

ments. 

 
Pontryagin’s Maximum Principle 

If f and g are continuously differentiable with 

The transversality requirement represents 

the last temporal restriction on the adjoint vari- 

able. The process of determining the optimal 

control that optimizes the functional objective 
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 ̇

while accounting for the state ODE and initial 

condition is transformed into maximizing the 

Hamiltonian at each point with the use of Pon- 

tryagin’s Maximum Principle. A different view- 

point about the Hamiltonian is 

 
 

 
H = f (t, x(t), u(t) + λ(t)g(t, x(t), u(t)) 

 
The necessary conditions can be derived by dif- 

ferentiating H with respect to u(t) at u∗(t), 

which are as follows. 

ables. This is demonstrated by the utilization of 

n-variables, 

 
x˙1(t) = g1(t, x1(t), ..., xn(t), u(t)) 

 
. 

 
x˙n(t) = gn(t, x1(t), ..., xn(t), u(t)) 

 
and matching starting points, then introduce 

adjoint functions,λ1(t), ..., λn(t). Thus the ob- 

jective functional becomes, 

 

 

∂H 
= 0 =⇒ fu 

∂u 
+λgu = 0 (optimality equation) 

(3.13a) 

 
max 

T 

f (t, x1(t), ..., xn(t), u(t)) 
0 

∂H 
λ = − 

∂x 
=⇒ λ̇ = −(fx +gx ) (adjoint equation), and 

(3.13b) 

λ(tf ) = 0 (transversality condition) 

 
The sufficiency condition, for a maximiza- 

tion(concave) problem is given by 

and, the Hamiltonian is 

 
H =f (t, x1(t), ..., xn(t), u(t)) 

+ λ1(t)g1(t, x1(t), ..., xn(t), u(t)) + ... 

+ λn(t)(gn(t, xn(t), ..., xn(t), u(t))) 

∂2H ∗ 

∂u2  ≤ 0  at u (t) for all t ∈ [0, T ]  (3.13c) 

while a minimization(convex) problem is given 

by 

As a result, the adjoint equations, transversality 

conditions, and pertinent optimality equations 

are obtained. The i-th adjoint ordinary differ- 

ential equation serves as an illustration of this 
∂2H ∗ 

∂u2  ≥ 0  at u (t) for all t ∈ [0, T ] (3.13d) 

In addition, the PMP approach can be applied 

to a variety of states and controls, which requires 

(ODE).  

 
∂H 

λi = − 
∂x 

i 

the introduction of corresponding adjoint vari- 

∫ 



141 

International Research and Innovation Journal Volume 1, Issue 1, 134-152. 

 

 

Essentially, add an adjoint variable, λ(t), to 

the simplest case with two unknowns, u∗(t) and 

x∗(t). Consequently, we must find the opti- 

(TPBVP) in 3.13a changes to: 

 
x˙ = ϕ(t, x, λ), 

mality equation by setting three unknowns and λ̇ = ψ(t, x, λ) (15) 

solving for them. 

 
∂H 

= 0 
∂u 

 

 
and determining u∗(t); this will be described in 

terms of λ(t) and x∗(t). Note that limits on the 

controls are necessary for many real-world ap- 

plication situations, like 

 

a ≤ u(t) ≤ b 

 
and that PMP still holds. 

The state equations, adjoint differential equa- 

tions, and control characteristics make up the 

optimality system. Although it is frequently 

impossible to solve optimality system solutions 

explicitly, numerical approximation techniques 

can be applied. 

 
To keep things simple, describe the sides of the 

right hand of 3.13a as follows: 

 
ϕ(t, x, λ) := f (t, x(t)) + g(t, x(t))u(t), 

x(t0) = x0, x(tf ) = xf 
 

 
Unfortunately, there is no exact analytical so- 

lution available for the nonlinear TPBVP men- 

tioned above. Finding analytic approximation 

solutions for it is therefore essential. Various 

approximation methods, both analytical and 

numerical, have been presented recently to solve 

such ordinary differential equation problems. 

The goal of research has been to develop trust- 

worthy techniques that, without limiting the 

variables, can handle a broad variety of linear 

and nonlinear differential and integral equations. 

Beyond the limits of conventional methods, in- 

novative approaches that can handle both linear 

and nonlinear equations have made substan- 

tial development in recent years. Two of these 

more modern approaches are the variational it- 

eration approach and the Adomian decomposi- 

tion method. The Variational Iteration Method 

(VIM) will be used in this work to provide nu- 

merical solutions for the TPBVP. 

∂H 
ψ(t, x, λ) := − =⇒ 

∂x 
λ̇ = −(fx + gx) 

(14)  
Variation Iteration Method(VIM) 

Since its introduction by Ji-Huan He in 1999, the 
Thus the Two-Point Boundary Value Problem 

variational iteration approach has been widely 

used in several research to solve both linear and 
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∫ 

nonlinear models. This method is known for its 

reliability and its ability to offer analytical solu- 

tions to a wide range of problems, whether they 

are homogeneous or non-homogeneous. One key 

benefit of the VIM method is its capacity to 

reduce the complexity of calculations without 

compromising the accuracy of the results. Sev- 

eral researchers have attested to the effectiveness 

and efficiency of this approach across different 

scientific disciplines. Additionally, it has been 

demonstrated to outperform other established 

techniques like the Adomian method and per- 

turbation method. In cases where an exact 

solution is available, the VIM method generates 

successive approximations that quickly converge 

to the true solution. 

 
Many researchers are presently using the vari- 

ational iteration technique (VIM), it effectively 

resolves a range of differential equations, both 

linear and nonlinear. The method’s flexibil- 

ity and adaptability allow it to be applied to 

situations where the solution is not known in 

advance, which is common in fields like applied 

sciences and engineering. The VIM provides 

a dependable technique for performing numer- 

ical simulations for practical scientific applica- 

tions and locating analytic approximation solu- 

tions. In contrast to the Adomian decomposi- 

tion method, which typically requires computa- 

tional algorithms to handle nonlinear terms, the 

VIM does not rely on restrictive assumptions 

for these terms, thus simplifying the analytic 

calculations. The VIM addresses both linear 

and nonlinear problems without differentiation 

in its approach. To demonstrate the fundamen- 

tal idea behind the approach, consider a general 

nonlinear system: 

 
L(u(t)) + N (u(t)) = g(t), 

 
N is a nonlinear operator, L is a linear opera- 

tor and the specified continuous function is g(t). 

The fundamental nature of the method involves 

the creation of a correction function: 

t 

un+1(t) = un(t)+ λ[Lun(s) + N ũn(s) − g(s)]ds 
t0 

 

where un represents the nth approximation solu- 

tion, ũ n  indicates a confined variation, and the 

generic Lagrange multiplier λ may be properly 

determined by the use of variational theory. , 

i.e., δ ũ  = 0. When solving a linear problem, the 

Lagrange multiplier may be precisely calculated, 

allowing for the exact solution to be reached in 

just one iteration step. To begin with, it is nec- 

essary to determine the optimal identification of 

the Lagrangian multiplier (λ) through integra- 

tion by parts. By utilizing the obtained La- 

grangian multiplier and selecting an appropri- 

ate function u0, the successive approximations 

un+1(x, t), where n ≥ 0, can be easily obtained to 

approximate the solution u(x, t). Generally, the 
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∫ 

∫ 

∫ 

selective zeroth approximation u0 is used with 

starting values u(x, 0) and ut(x, 0). After deter- 

mining λ, it is possible to find many approxima- 

tions, uj(x, t), where j ≤ 0. Consequently, the 

following offers the solution: 
 
 

 
u = lim un 

n→∞ 

employed for numerical purposes. When tack- 

ling an initial value problem like equation (16), 

a correction functional can be constructed in the 

following manner: 

 
xn+1(t) =xn(t) 

t 

+ Λ1(s)[ẋn(s) − ϕ(s, xn(s), λn(s))]ds 
t0 

Solving TPBVP Based On VIM 

Within this section, we employ a technique sim- 

ilar to the shooting method combined with the 

Variational  Iteration  Method  (VIM)  to  solve 

λn+1(t) =λn(t) 
t 

+ 
t0 

 

Λ2(s)[λ̇n(s) − ψ(s, xn(s), λn(s))]ds 

(17) 

the Two-Point Boundary Value Problem (TP- 

BVP) stated in equation (15). Hence, our initial 

step involves solving the subsequent initial value 

problem utilizing the VIM. 

 
x˙ = ϕ(t, x, λ), 

with n≥0, and the initial values x0(t)=x(t0)=x0 

and λ0(t) = λ(t0) = α. By calculating the 

variation with respect to both xn and λn and 

considering the constrained variations 

 

δϕ(s, x˜n, λ̃n) = δψ(s, x˜n, λ̃n) = 0 we get 

λ̇ = ψ(t, x, λ) (16) 
δxn+1(t) = δxn(t) + Λ1(s)δxn(s)|s=t 

x(t0) = x0, λ(t0) = α 
 

 
The parameter α, which belongs to the set of 

real numbers, is an unknown quantity. After a 

satisfactory number of iterations of VIM, the pa- 

rameter will be identified, as stated hereinafter 

 

The Variational Iteration Method (VIM) is 

renowned for its ability to generate successively 

t 

— Λ˙
1(s)δxn(s)ds = 0, 

t0 

δλn+1(t) = δλn(t) + Λ2(s)δλn(s)|s=t 
t 

— Λ˙
2(s)δλn(s)ds = 0, 

t0 
 

 

 

which leads to the following stationary condi- 

tions: 

convergent approximations of the exact solu- 

tion. This holds true when an exact solution 

exists; otherwise, the approximations can be 

1 + Λ1(s)|s=t = 0, 

1 + Λ2(s)|s=t = 0, 

Λ̇ 
1(s) = 0 

Λ̇ 
2(s) = 0 

∫ 
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∗ 

J 

t0 

∗   

0 

∫ 

 
 J − J∗ 

 

 
It is easily recognizable that Λ1(s)=Λ2(s)=- 

1. Consequently, the VIM equation transforms 

into: 

∫ t 

N N−1  < ϵ1, ||x(tf ) − xf || < ϵ2 
N 

 

 

Theorem:  Assume that {xn(t)} and {λn(t)} 

are the sequences of solutions generated by 

the VIM formula (18) converge individually 

xn+1(t) = xn(t) − 

λn+1(t) = λn(t) − 

{ẋn(s) − ϕ(s, xn(s), λn(s))}ds to  x∗(t, α)  and  λ∗(t, α)  as  n → ∞ then 
t0 

t x∗(t, α),λ∗(t, α) are the exact solutions of (15) 
{λ̇n(s) − ψ(s, xn(s), λn(s))}ds 

t when α∗ is the real root of x∗(tf ) − xf = 0. 

(18) 
 

 

with n ≥0, x0(t) = x0, and λ0(t) = α. 

Proof:By taking limits on both sides of the 

equation (18) as n → ∞ since limn→∞ xn(t) = 

limn→∞ xn+1(t) = x∗(t, α) and limn→∞ λn(t) = 

where,  
x∗(t, α) = lim xn(t) 

n→∞ 

limn→∞ λ n+1 (t) = λ∗(t, α) we have 

 

λ∗(t, α) = lim λn 
n→∞ 

(t) 
 

t 

{ẋn(s, α) − ϕ(s, xn(s, α), λn(s, α))}ds 

∫ t 
 ̇

 

 
(19) 

Subsequently, implementing this set of optimal 

control u∗(t) and state (x∗(t, α∗) to the objective 

functional (1), this gives the optimal objective, 

J∗ which is given as; 

{λn(s, α) − ψ(s, xn(s, α), λn(s, α))}ds 
t0 

 

 

Taking the derivative with respect to t on both 

sides results in 

∗ 

∫ tf 
∗ ∗ T ∗ ∗ ∗ ∗ 

J [x, u] = (x (t, α ) 
t0 

Qx (t, α ) + u (t)T Ru (t))dt. 
ẋn(s, α) = ϕ(s, xn(s, α), λn(s, α)) 

λ̇n(s, α) = ψ(s, xn(s, α), λn(s, α) 

 
(20) 

In evaluating the accuracy, the following crite- 

rion should be taken into account. The optimal 

control is considered accurate if, for any given 

positive values of ϵ1 and ϵ2, the following two 

conditions are simultaneously satisfied, 

 
 

 
Furthermore if t = t0 then from (18), xn+1(t0) = 

xn(t0), λn+1(t0) = λn(t0) for every n ≥ 0. Thus 

xn(t0) = x0(t0) = x0 and λn(t0) = λ0(t0) = α 

∫ 
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lim xT (t)Q lim xT 

0 

or equivalently, x∗(t, α) = x0 and λ∗(t, α) = α. 
Hence x∗(t, α) and λ∗(t, α) are the exact solu- 

tion (22), we obtain . 

J∗ := lim Jn = lim 
∫ t

f 
 
(xT (t)Qxn(t) + uT (t)Run(t))dt 

tions of (15). Moreover, these solutions cor- 

respond  to  the  exact  solutions  of  equation 

n→∞ 

∫ t
f 

n→∞  t0 

(16), but only when the final state condition t0  
n→∞ n→∞  n 

+ lim uT (t)R lim un(t)dt 
x(tf ) = xf is fulfilled. Therefore, it is simple to 

select the unidentified variable α ∈ R, such that 

n→∞  n 

∫ t
f 

∗ 

n→∞ 

∗ ∗ ∗ ∗ ∗ 

x∗(tf , α) = xf .  Representing this real root of 

x∗(tf , α) − xf = 0 by α∗ finalizes the proof.. 
 
 

Theorem: Given the assumptions of Theo- 

rem 1, the sequences {un(t)} and {Jn} are de- 

fined as follows, 

= (x (t, α )Qx (t, α ) + u (t)Ru (t))dt 
t0 

 

Consequently, J∗ can be recognized as the op- 

timal objective value, signifying the completion 

of the proof. 

 

 
 

 
Jn = 

un(t) = −R−1gT (t, xn(t))λn(t) (21) 

tf 
(xT (t)Qxn(t) + uT (t)Run(t))dt  (22) 

3. RESULTS 

t n n Example 1. Consider the non-linear optimal 

converge towards the optimal control law and 

achieve the optimal objective value, respectively. 

control problem based on the nonlinear system 

, 

 
Proof: Given that g is a continuous func- 

tion, by considering the limit from (21) and 

putting α = α∗, results in 

 
Minimize J(x, u) = 

 
Subject to 

1 

u2(t) + 4dt (23) 
0 

 
u∗(t) := lim un(t) = −R−1gT (t, lim xn(t), lim λn(t)) 

ẋ(t) = x2(t) + 2u(t), t ∈ [0, 1]  
(24) 

n→∞ n→∞ n→∞ x(0) = 0.5, x(1) = 1 
 

= −R−1gT (t, x∗(t, α∗))λ∗(t, α∗) 
 

the optimal control law, denoted as u∗(t), is 

derived from the exact solutions x∗(t, α∗) and 

λ∗(t, α∗) of the extreme conditions in equation 

(29). Similarly, by considering the limit of equa- 

 
Solution 1. The Hamiltonian, H is given as 

 
H = u2(t) + 4 + λ

 
x2(t) + 2u(t)

 
(25) 

 

 
By employing the necessary and sufficient ex- 

∫ 

∫ 

= 

n n 

n 
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treme conditions, we have, 

 
∂H 

Method explained above. The correctional func- 

tional (18) becomes 

= 0 = 2u(t) + 2λ (26) 
∂u 

 ̇ ∂H 
λ = − = −2x(t)λ(t) (27) 

∂x 

From Equation (26), the optimal control law is 

u(t) = −λ(t). Therefore the state equation (24) 

becomes 

xn+1(t) = xn(t) − 

λn+1(t) = λn(t) − 

t 

{s˙(t) − x2(s) + 2λ(s)}ds 
t0 

t 

{λ̇ + 2x(t)λ(t)}ds 
t0 

(31) 
 

ẋ(t) = x2(t) − 2λ(t), t ∈ [0, 1] 

x(0) = 0, x(1) = 1 

 
(28) 

 

where x0(t) = 0, λ0(t) = α, n ≥ 0. Using Maple 

software we arrive at 

Combining Equation (28) and (27), we have 
 

 x∗(t) ≊ x5(t) = 0.8944320000 t + 

ẋ(t) = x2(t) − 2λ(t), 

λ̇ = −2x(t)λ(t) 

t ∈ [0, 1] 
 

(29) 

1.600000000 × 10−11 t3 − 0.00203178971 t7 

0.07155532945 t5 + 0.0001032818612 t15 

+ 

+ 

x(0) = 0, x(1) = 1 
  0.0002493127749 t13 + 0.0002692663434 t11 + 

   0.006966308040 t9 + 1.527041524 × 10−12 t31  

Solving this TPBVP in equation (29), substitut- 

ing the final state condition. 

 
x(1) = 1 by λ(0) = α 

 
Then, the Two Point Boundary Value Prob- 

lem(TPBVP) in equation (29) becomes 

+7.075455410 × 10−11 t29+0.000000001245245847 t27+ 

0.00000001098273612 t25+0.00000007661909085 t23 

+0.0000006809099985 t21+0.000003972011163 t19+ 

0.00001357334258 t17 

 

ẋ(t) = x2(t) − 2λ(t), t ∈ [0, 1] 
u∗(t) ≊ u5(t) = −λ5(t) = +0.447216 − 0.4000043013 t2 − 

λ̇ = −2x(t)λ(t) (30) 
+ 0.0003267316249 t14 − 0.0003430262869 t 

x(0) = 0, λ(0) = α 
+ 2.366914363 × 10−11 t30 + 0.00000000092 

where α ∈ R is an unknown parameter. To find 

a solution for this problem with given initial con- 

ditions, we make use of the variation Iteration 

+ 0.00000007951333985 t24 + 0.0000004379 

+ 0.00001149833913 t18 + 0.0000136626003 

(32) 

∫ 

∫ 
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2 

To calculate the optimal objective value, substi- 

tute the control function in (32) into (23) then 

integrate i.e 

∫ 1 

 
1 

 
0.9 

 
0.8 

 
0.7 

J∗(x, u) = u2(t) + 4dt 
0 

 
0.6 

0.5 

 
0.4 

 

 
J∗ ≊ 4.34243 

0.3 

 
0.2 

 
0.1 

 
0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

t 

Figure 2: The optimal state, Example 1. 
 

 
Example 2. Consider the non-linear optimal 

control problem based on the nonlinear system 

, 
 

 
Minimize J(x, u) = 1 

∫ 1  
x2(t) + x2(t) + u2(t)dt 

0.45 
 

 
0.4 

 

 
Subject to 

2  0 
1 2 

(33) 

 

0.35 
 

 
0.3 

 

 
0.25 

x˙1(t) = x2 + x1x2 

x˙2(t) = −x1 + x2 + u + x2 

x1(0) = −0.8, x2(0) = 0 

 
(34) 

 

 
0.2 

Solution 2. The Hamiltonian, H is given as 

 

H = 
1
  

x2+x2+u2+λ (x +x x )+λ (−x +x +u+x2)

  

0.15  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

t 

2 1 2 1 2 1  2 2 1 2 2 

(35) 

 

Figure 1: The optimal control, Example 1. By utilizing the extreme necessary and suffi- 
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∫ 

0 
n 

0 

2 

2 

cient conditions we have, 

 
∂H 

Letting a = x1, b = x2, c = λ1 and d = λ2 

∫ t 

∂u 
= 0 = u + λ2 (36) 

λ˙
1 = −x1 − λ1x2 + λ2 (37) 

  

an+1 = an − 
0 
t 

bn+1 = bn − 

∫ t 

a˙n − bn − anbnds 

b˙
n + an − bn + dn − b2 ds 

λ˙
1 = − x2 + λ1(1 + x1) + λ2(1 + 2x2) (38) cn+1 = cn − c˙n + an + cnbn − dnds 

∫ t 
˙ 

From Equation (36), the optimal control law 

is u(t) = −λ2(t). Therefore the state equation 

(34) becomes, 

dn+1 = dn − dn + bn + cn(1 + an) + dn(1 + 2bn)ds 
0 

(41) 

 

x˙1(t) = x2 + x1x2 

x˙2(t) = −x1 + x2 − λ2 + x2 

 
(39) 

x1(0) = −0.8, x2(0) = 0 

The extreme conditions are, 

 

λ˙
1 = −x1 − λ1x2 + λ2 

λ˙
2 =

  
− x2 + λ1(1 + x1) + λ2(1 + 2x2)

  

x˙1(t) = x2 + x1x2 

x˙2(t) = −x1 + x2 − λ2 + x2 

x1(0) = −0.8, x2(0) = 0 

λ1(1) = λ2(1) = 0 

(40) 

 
In order to address this problem, we utilize the 

variation Iteration Method(VIM) explained in 

the previous chapter. The correctional func- 

tional (18) becomes: 
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4. DISCUSSION OF RE- 

SULTS 
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The results obtained using the Variational Itera- 

tion Method (VIM) and the fourth-order Runge- 

Kutta (RK4) method show a striking similarity, 
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Figure 3: The optimal control, Example 
2. 
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as seen in the overlapping plots.  This strong 

agreement suggests that VIM can achieve results 

comparable to the well-established RK4 method. 

The nearly identical plots confirm that VIM 

is highly accurate in solving nonlinear optimal 

control problems and can replicate the solutions 

produced by RK4, a method renowned for its 

precision in numerical integration. Both meth- 

ods also show rapid convergence, with VIM’s 

iterative approach closely aligning with the re- 

sults from RK4. 

 
-0.8 
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Figure 4: The optimal state x1(t), Example 2. 
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While the outcomes are similar, VIM offers dis- 

tinct advantages over RK4. Unlike RK4, which 

requires discretization of the time domain, VIM 

operates without this constraint, allowing for a 

more continuous and accurate solution. VIM’s 

ability to handle nonlinear terms without need- 

ing linearization or perturbation is a significant 

benefit, especially in solving nonlinear optimal 

control problems where such terms are com- 

mon.  Additionally, VIM simplifies the com- 

0.1 
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Figure 5: The optimal state x2(t), Example 2. 
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putational process by eliminating the need for 

complex polynomial expansions, resulting in a 

more straightforward and less computationally 

demanding procedure. The close agreement be- 

tween VIM and RK4 validates VIM’s effective- 

ness as a legitimate tool for solving nonlinear 

optimal control problems and underscores its 

potential as a reliable alternative, particularly 

in cases where traditional numerical methods 

may be cumbersome or impractical. 

 

 

5. CONCLUSION 

A class of optimal control problems that are 

nonlinear is effectively handled. by the applica- 

tion of the variational iteration technique. Using 

the previously offered explanatory examples as 

a guide, the VIM technique solved the TPBVP, 

which was derived from Pontryagin’s Maximum 

Principle. The VIM method’s effectiveness and 

validity were shown by the explanatory exam- 

ples that were taken into consideration. It is 

evident that the approach produces quick, se- 

quential, and convergent approximations with- 

out limiting conjecture or alteration that may 

take the role of physical behavior of the prob- 

lem. Nonlinear terms do not specifically need to 

be handled in this manner. Numerous nonlinear 

optimal control problems may be resolved with 

this approach. Multiple subsequent estimates 

are generated by iterating the correction func- 

tional and applying the variational iteration ap- 

proach. Furthermore, the VIM makes computa- 

tions simpler, leading to an easy-to-understand 

iteration procedure. Future efforts will focus 

on adapting the VIM methodology to solve the 

Two-Point Boundary Value Problem in an effi- 

cient manner. The VIM approach is very effec- 

tive and legitimate. 
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