
A new way to see mathematical
patterns

Author : Maher Ali Rusho

--------------Dedicated to ------------

 Sowrav Mozumder

Abstract =>

Src: https://quotefancy.com/quote/1507763/Ian-Stewart-Mathematics-is-the-

science-of-patterns-and-nature-exploits-just-about-every

Pattern is voice of Math -Math is the voice of science-Science is the

voice of God

Pattern is the beauty in Mathematics . Even a newborn-baby can also

detect patterns in nature . But not all pattern can easily be detected by

our brain . We need to generalize this into a new frame of mathematics

. So I I have invented a new method called EULER STOCHASTIC

PROCESS . To prove these lemma we will use basic euler-identity

method. I am grateful to Sowrav Mozumder to give me this wonderful

problem . I am going to prove this by the help of my computer program .

Introduction =>

The main theme of this research paper to find this solution of this

question :

What will be the next number in this series :

92-16-32-42-74-81-25-41-91-50-54-57-61-42-8-55-
73-96-91-31-42-74-31-67-68-47-96-30-17-32-53...

.From looking at first it seems hard . But if we
use POE method or process of elimination
method by the help of gomputer program ,we
can easily solve this problem . Let’s assume the

Numbers are evenly distributed in sample space
and called this numbers a point topological space ,
We also assume that this pattern is in poisson
distribution . because here the number system
can be large enough ,it can be infinity also
(assume!) ,but this probability is so little or vice
versa . We know from poisson distribution the
probabitly id =>

P(x)= (lambda^x/x!)*e^-
lambda

Here lambda indicates the mean of this
stochastic process . We assume that the next
number is X ,and write the PDF using
varience of X . we know Var(x)=X^2(P(X)-
P(X^2) . Then new equation form

P(X)=(np)^var(x)/P(x)-
P(x)^2
Write it into this program :
%BPATH1 Brownian path simulation randn(’state’,100) % set the state of randn T = 1; N =

5 00; dt = T/N; dW = zeros(1,N); % preallocate arrays ... W = zeros(1,N); % for efficiency

dW(1) = sqrt(dt)*randn; % first approximation outside the loop ... W(1) = dW(1); % since

W(0) = 0 is not allowed for j = 2:N dW(j) = sqrt(dt)*randn; % general increment W(j) =

W(j-1) + dW(j); end plot([0:dt:T],[0,W],’r-’) % plot W against t

xlabel(’t’,’FontSize’,16) ylabel(’W(t)’,’FontSize’,16,’Rotation’,0)plot %BPATH1

Brownian path simulation randn(’state’,100) % set the state of randn T = 1; N = 5 00; dt

= T/N; dW = zeros(1,N); % preallocate arrays ... W = zeros(1,N); % for efficiency dW(1) =

sqrt(dt)*randn; % first approximation outside the loop ... W(1) = dW(1); % since W(0) = 0

is not allowed for j = 2:N dW(j) = sqrt(dt)*randn; % general increment W(j) = W(j-1) +

dW(j); end plot([0:dt:T],[0,W],’r-’) % plot W against t xlabel(’t’,’FontSize’,16)

ylabel(’W(t)’,’FontSize’,16,’Rotation’,0) randon output to P9x) finding

P(x)=(np)^var(x)?p(x)-p(x)2---Labds^np (redirected to .

probability 1, and conditions 2 and 3 tell us that (2.1) Wj = Wj−1 + dWj , j = 1, 2,...,N, where each dWj is
an independent random variable of the form √ δtN(0, 1). The MATLAB M-file bpath1.m in Listing 1
performs one simulation of discretized Brownian motion over [0, 1] with N = 500. Here, the random
number generator randn is used—each call to randn produces an independent “pseudorandom” number
from the N(0, 1) distribution. In order to make experiments repeatable, MATLAB allows the initial state of
the random number generator to be set. We set the state, arbitrarily, to be 100 with the command
randn(’state’,100). Subsequent runs of bpath1.m would then produce the same output. Different simulations
can be performed by resetting the state, e.g., to randn(’state’,200). The numbers from randn are scaled by √
δt and used as increments in the for loop that creates the 1-by-N array W. There is a minor inconvenience:
MATLAB starts arrays from index 1 and not index 0. Hence, we compute W as W(1),W(2),...,W(N) and
then use plot([0:dt:T],[0,W]) in order to include the initial value W(0) = 0 in the picture. Figure 1 shows
the result; note that for the purpose of visualization, the discrete data has been joined by straight lines. We
will refer to an array W created by the algorithm in bpath1 as a discretized Brownian path. We can
perform the same computation more elegantly and efficiently by replacing the for loop with higher level
“vectorized” commands, as shown in bpath2.m in Listing 2. Here, we have supplied two arguments to the
random number generator: randn(1,N) creates a 1-by-N array of independent N(0, 1) samples. The function
cumsum computes the cumulative sum of its argument, so the jth element of the 1- by-N array W is dW(1)
+ dW(2) + ··· + dW(j), as required. Avoiding for loops and thereby computing directly with arrays rather
than individual components is the key to writing efficient MATLAB code [3, Chapter 20]. Some of the M-
files in this article would be several orders of magnitude slower if written in nonvectorized form. The M-file
bpath3.m in Listing 3 produces Figure 2. Here, we evaluate the function u(W(t)) = exp(t + 1 2W(t)) along

1000 discretized Brownian paths. The average of u(W(t)) over these paths is plotted with

a solid blue line. Five individual paths are also plotted using a dashed red line. The M-

file bpath3.m is vectorized across paths;

The	out	put	of	this	program	in	diagramitcially	you	get	

	

	

	

	

	 It	is	seemed	to	be	totally	randomized	
number	pattern	.But	wait	for	a	second		If	we	see	small	
phase	iteration	we	wil	se	there	is	a	some	periodic	evnt	
,	if	we	find	the	probability	,	we	will	get	the	next	
pattern	

The	vector	diagram	gauranted	that		the	number	will	
not	exceed	100	.And	here	is	the	probality	series	of	the	
next	pattern		We	have	to	consider	here	the	stochastic	
probability	since	it	is	a	randomized	series	but	it	has	
some	pattern	.	Here	is	the	list	below	:	

	

	

	

	

We	are	seeing	here	the	best	fit	possible	is	68	,	But	wait	
this	is	not	the	correct	answer	,	scince	it	don’t	start	
from	number	1	,it	starts	number	92	,	then	again	
iterate	the	program	again	and	find	the	chart	

Numbers		 Probability	

	

	

We	see	from	the	chart	the	best	fit	line	or	probability	is	
92	which	has	56%	chance	the	highest	probability	to	
occur	.Thank	you	

	

