

The story of the tomato

Some years ago, Clive Blazely of the Diggers Club published an article titled “**Why supermarket tomatoes come last in every taste test**” and continues to do so..

Well, there was another, related reason: they also come last in every nutrition or nutrient density test!*. (There is, of course, a direct correlation between delicious and nutritious!)

Tomato A looks perfect, costs only \$3.50 / kg, but

- measures a nutrient density (BRIX) of 3.5, via refractometers or spectrometers
- rates as 'poor' on the International BRIX Ratings scale
- it is **tasteless and nutritionless**, due to being
 - mass-produced in depleted, over-fertilized, nutrition-less soils
 - sprayed with herbicides, pesticides, fungicides, etc.
 - picked too early to ripen on the way to the market
 - travelled many food miles, kept in cold storage, etc, and so is not fresh.

But it looks great, having been GMO'd for shape, colour and long shelf life.

Tomato B does not look perfect, costs more @ \$4.00 kg, but

- measures a nutrient density of 12 BRIX
- rates as "excellent" on the International BRIX Ratings scale)
- is delicious and nutritious, due to
 - grown in well composted soils, suitable or appropriate for tomatoes
 - free of chemicals, fertilizers, GMO, etc.
 - picked at the right time of its natural ripeness curve, and
 - is fresh, being locally or home-grown,

'Food Value for Money' indices (VMI):

- **Tomato A = $3.5/\$3.50 = 1$**
- **Tomato B = $12/\$4.00 = 3$**

So, if Tomato B is **3 times** the nutritional or food value for money of Tomato A, and **nearly 4 times** tastier than Tomato A, so **which would you buy?**

* that was until 2023, when they were GMO'd to increase their nutrient density to 6-8, by simply increasing the sugar content (according to food scientists)