DEFECTS IN SOLIDS #### **NILESH PANCHOLI** B.E. (Mech.), M.E. (Mech.), Ph. D. Email: nhpancholi@gmail.com www.nileshpancholi.com #### **DEFECTS IN SOLIDS** 1 mole Fe = 55.85g; V= 7.10 cm^3 (D= $7.87g/\text{cm}^3$); $\sim 6 \times 10^{23} \text{ atoms}$ It would be nearly impossible to arrange so many atoms in exact 3D periodicity. So, formation of defects is not unexpected! #### **ISSUES TO ADDRESS...** - What types of defects arise in solids? - How do defects affect material properties? - Are defects undesirable? ### **Defects in Solids** There is no such thing as a perfect crystal. - What are these imperfections? - Why are they important? Many of the important properties of materials are due to the presence of imperfections. #### **TYPES OF DEFECTS IN SOLIDS** Perfect crystals do not exist **Defect**: imperfection or "mistake" in the regular periodic arrangement of atoms in a crystal Defects, even in very small concentrations, can have a serious effect on the properties of a material. Line Defect Area (Surface) Defect Throughout the whole crystal # **Types of Imperfections** - Vacancy atoms - Interstitial atoms - Substitutional atoms - Dislocations - Grain Boundaries Point defects Line defects Area defects #### **Point defects** Intrinsic defects do not involve changes in the overall composition Extrinsic defects involve changes in the overall composition Why do defects form? The introduction of defects increases entropy ΔS and decreases free energy ΔG $$\Delta G = \Delta H - T \Delta S$$ A minimum value for ΔG is reached for an optimum concentration of defects A structure with defects is more stable # Point Defects (*Intrinsic*) #### Vacancies: -vacant atomic sites in a structure. absence of an atom (ion) from its location in a perfect crystal #### Schottky defects A vacant cation site and a vacant anion site. In NaCl: one Na⁺ and one Cl⁻ missing Charge neutrality is maintained within the crystal and there is no change in the composition #### Frenkel defects an atom (ion) moving into an interstitial site and creating a vacancy Frenkel defects are common in fluorite structures (CaF₂, ZrO₂) and AgCl Schottky defects -200 kJmol⁻¹ creation energy Ag Cl Cl Ag Frenkel defects -130 kJmol⁻¹ creation energy #### **Extrinsic defects** (due to impurities) *Impurities* in a solid are any atom(s) of a type that do not belong in the perfect crystal structure (see 'extrinsic semiconductors') #### **Substitutional** solid solutions **Impurity atoms** occupy the same sites of the **host atoms** Impurities "substitute" for the host atoms #### **Interstitial** solid solutions Impurity atoms occupy interstices in the host crystal structure Impurities usually have a small size compared to the host atoms #### Self-Interstitials: -"extra" atoms positioned between atomic sites. # **Equilibrium Concentration: Point Defects** Equilibrium concentration varies with temperature! Each lattice site is a potential vacancy site Boltzmann's constant Temperature $$(1.38 \times 10^{-23} \text{ J/atom-K})$$ $$(8.62 \times 10^{-5} \text{ eV/atom-K})$$ $$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$ ### **Estimating Vacancy Concentration** - Find the equil. # of vacancies in 1 m³ of Cu at 1000°C. - Given: $$\rho = 8.4 \text{ g/cm}^3$$ $A_{Cu} = 63.5 \text{ g/mol}$ $Q_V = 0.9 \text{ eV/atom}$ $N_A = 6.02 \times 10^{23} \text{ atoms/mol}$ $$\frac{N_{V}}{N} = \exp\left(\frac{-Q_{V}}{\sqrt{\frac{1}{N}}}\right) = 2.7 \times 10^{-4} 2$$ Answer: $N_V = (2.7 \times 10^{-4})(8.0 \times 10^{28})$ sites = 2.2 x 10^{25} vacancies # **Point Defects in Alloys** Two outcomes if impurity (B) added to host (A): Solid solution of B in A (i.e., random dist. of point defects) Solid solution of B in A plus particles of a new phase (usually for a larger amount of B) Second phase particle - --different composition - -- often different structure. ### **Line Defects in Solids** #### Linear Defects (Dislocations) - Are one-dimensional defects around which atoms are misaligned - Edge dislocation: - extra half-plane of atoms inserted in a crystal structure - **b** \perp to dislocation line - Screw dislocation: - spiral planar ramp resulting from shear deformation - b | to dislocation line Burger's vector, **b**: measure of lattice distortion #### **Line Defects in Solids** One dimensional defect in which atoms are mispositioned. #### **Motion of Edge Dislocation** - Dislocation motion requires the successive bumping of a half plane of atoms (from left to right here). - Bonds across the slipping planes are broken and remade in succession. - → materials can be deformed rather easily...... Atomic view of edge dislocation motion from left to right as a crystal is sheared. (Courtesy P.M. Anderson) # **Line Defects in Solids** #### **Screw Dislocation** ### Edge, Screw, and Mixed Dislocations # Imperfections in Solids Dislocations are visible in electron micrographs ### **Planar Defects in Solids** - One case is a twin boundary (plane) - Essentially a reflection of atom positions across the twin plane. - Stacking faults - For FCC metals an error in ABCABC packing sequence Ex: ABCABABC # **Polycrystalline Materials** #### **Grain Boundaries** - regions between crystals - transition from lattice of one region to that of the other - slightly disordered - low density in grain boundaries - high mobility - high diffusivity - high chemical reactivity Adapted from Fig. 4.7, Callister 7e. ## Summary - Point, Line, and Area defects exist in solids. - The number and type of defects can be varied and controlled (e.g., T controls vacancy conc.) - Defects affect material properties (e.g., grain boundaries control crystal slip). - Defects may be desirable or undesirable (e.g., dislocations may be good or bad, depending on whether plastic deformation is desirable or not.)