THEORY OF GEARS

NILESH PANCHOLI

B.E. (Mech.), M.E. (Mech.), Ph. D.

Email: <u>nhpancholi@gmail.com</u> www.nileshpancholi.com

Outline

- Gear Theory
 - > Fundamental Law of Gearing
 - ➤Involute profile
- Nomenclature
- Gear Trains
- Loading
- Stresses

Fundamental Law of Gearing

functionally, a gear set is a device to exchange torque for velocity

the angular velocity ratio of the gears of a gear set must remain constant throughout the mesh

What gear tooth shape can do this?

click here!

$$m_V = \frac{\omega_{out}}{\omega_{in}} = \frac{r_{out}}{r_{in}}$$

pitch circle, pitch diameter d, pitch point

Towards the Involute Profile

A belt connecting the two cylinders

line of action, pressure angle φ

The Involute Profile

FIGURE 11-3

Profile of the Involute Profile

pressure angle, line of action, length of action, addendum

Involute in Action

Nomenclature

$$p_c = \frac{\pi d}{N}$$

Pitches, Etc.

circular pitch (mm, in.)
$$p_c = \frac{\pi d}{N}$$
 base pitch (mm, in.)
$$p_b = p_c \cos \phi$$
 diametral pitch (teeth/in.)
$$p_d = \frac{N}{d}$$
 module (mm/teeth)
$$m = \frac{d}{N}$$

Velocity Ratio

pitches must be equal for mating gears, therefore

$$m_V = \pm \frac{r_{out}}{r_{in}} = \pm \frac{N_{out}}{N_{in}}$$

Contact Ratio

average number of teeth in contact at any one time

length of action divided by the base pitch, or,

$$m_p = \frac{p_d Z}{\pi \cos \phi}$$

$$Z = \sqrt{(r_p + a_p)^2 - (r_p \cos \phi)^2} + \sqrt{(r_g + a_g)^2 - (r_g \cos \phi)^2} - C \sin \phi$$

where C=center distance= $(N_g+N_p)*1/p_d*1/2$

Minimum # of Teeth

minimum # of teeth to avoid undercutting with gear and rack

FIGURE 11-11

ref for the fride to be and

Outline

- Gear Theory
 - > Fundamental Law of Gearing
 - >Involute profile
- Nomenclature
- Gear Trains
- Loading
- * Stresses

Simple Gear Trains

Simple Gear Train

$$m_{v} = \left(-\frac{N_{B}}{N_{Y}}\right)\left(-\frac{N_{Y}}{N_{Black}}\right)\left(-\frac{N_{Black}}{N_{P}}\right)\left(-\frac{N_{P}}{N_{G}}\right)\left(-\frac{N_{G}}{N_{R}}\right) = -\frac{N_{B}}{N_{R}}$$

Simple Gear Train

- Fine for transmitting torque between
 - > shafts in close proximity
 - > when m_v does not need to be too large
- Use third gear ("idler") only for directional reasons (not for gear reduction)

Reverse on a Car Gear Selector Fork From Engine Differential Idler gear Layshaft ©2001 HowStuffWorks

Actual Manual Transmission

Outline

- Gear Theory
 - > Fundamental Law of Gearing
 - >Involute profile
- Nomenclature
- Gear Trains
- Loading
- Stresses

Loading of Gears

W_t= tangential (transmitted) load

Wr= radial load

W= total load

$$W_t = \frac{T_p}{r_p} = \frac{2T_p}{d_p}$$

$$W_r = W_t \tan \phi$$

$$W = \frac{W_t}{\cos \phi}$$

Because T_p is constant, should W_t be static for a tooth?

(see board for figure or page 711 in book)

Gear vs. Idler

Loading Example

Given:

- pinion is driving gear with 50hp at 1500 rpm
- $N_p = 20$
- $m_v=2$ (a.k.a., $m_g=2$)
- $p_d=4 / in$.

Find:

Loading and effects of inputs on loading

Outline

- Gear Theory
 - >Fundamental Law of Gearing
 - >Involute profile
- Nomenclature
- Gear Trains
- Loading
- Stresses

Gear Failure

Fatigue Loading

from bending of teeth

- infinite life possible
- failure can be sudden

Surface Failure

from contact b/n of teeth

- infinite life not possible
- failure is gradual

Lewis, 1892, first formulation of gear tooth fatigue failure

$$\sigma_b = \frac{W_t \cdot p_d}{F \cdot Y}$$

AGMA Gear Stress Formula

many assumptions: see page 714...

...including that the contact ratio $1 < m_p < 2$

$$\sigma_b = \frac{W_t \cdot p_d}{F \cdot J} \cdot \frac{K_a K_m}{K_v} K_s K_B K_I$$

 $J K_v K_m K_a K_s K_B K_I$

Bending Strength Geometry Factor

- from tables on pgs. 716-718
- Inputs
 - ➤ pinion or gear
 - > number of teeth
 - >pressure angle
 - ➤ long-addendum or full-depth
 - ➤ tip loading or HPSTC

$$J$$
 K_v K_m K_a K_s K_B K_I

Tip vs. HPSCT Loading

Finding J for the Example

•
$$N_p=20, N_g=40$$

- $p_d=4 / in$.
- $W_t = 420 \text{ lb.}$

 $J_p = 0.34, J_g = 0.38$

Table 11-9 AGMA Bending Geometry Factor J for 20°, Full-Depth Teet

		Pin <mark>on teeth</mark>									
Gear	1	2	1	4	1	7	2	1	2	16	
teeth	P	G	P	G	Р	G	P	Ġ	P	G	P
12	U	U									
14	U	U	U	U							
17	U	U	U	U	U	U					
21	U	U	U	U	U	U	0.33	0.33			
26	U	U	U	U	U	U	0.33	0.35	0.35	0.35	
35	U	U	U	U	U	U	0.34	0.37	0.36	0.38	0.3
55	U	U	U	U	U	U	0.34	0.40	0.37	0.41	0.4
135	U	U	U	U	U	U	0.35	0.43	0.38	0.44	0.4

Dynamic (Velocity) Factor

to account for tooth-tooth impacts and resulting vibration loads

from Figure 11-22 or from Equations 11.16-11.18 (pages 718-719)

Inputs needed:

- Quality Index (Table 11-7)
- Pitch-line Velocity

V₁ = (radius)(angular speed in radians)

Table 11-7

Recommended Gear Quality Numbers for Pitch Line Velocity

Pitch Velocity	Q_{v}
0–800 fpm	6–8
800-2000 fpm	8–10
2000-4000 fpm	10–12
Over 4000 fpm	12–14

$$J \quad K_v \quad K_m \quad K_a \quad K_s \quad K_B \quad K$$

Dynamic Factor

$$B = \frac{(12 - Q_v)^{2/3}}{4} \text{ for } 6 \le Q_v \le 11$$
$$A = 50 + 56(1 - B)$$

$$K_{v} = \left(\frac{A}{A + \sqrt{V_{t}}}\right)^{B} (US)$$
 $K_{v} = \left(\frac{A}{A + \sqrt{200V_{t}}}\right)^{B} (SI)$

$$V_{t,max} = (A + Q_v - 3)^2$$

 $J \quad K_v \quad K_m \quad K_a \quad K_s \quad K_B \quad K$

Determining K_v for the Example

 V_t =(1500rev/min)(2.5 in)(1ft/12in)(2 π rad/1rev)=1964 ft/min

(well below $V_{t,max}$)

therefore, $Q_v=10$

$$B = \frac{(12 - 10)^{2/3}}{4} = 0.397$$

$$A = 50 + 56(1 - 0.397) = 83.8$$

$$K_{\mathcal{V}} = \left(\frac{83.8}{83.8 + \sqrt{1964}}\right)^{0.397} = 0.845$$

Table 11-7

Recommended Gear Quality Numbers for Pitch Line Velocity

Pitch Velocity	Q_{v}
0–800 fpm	6–8
800–2000 fpm	8–10
2000–4000 fpm	10–12
Over 4000 fpm	12–14

Load Distribution Factor K_m

to account for distribution of load across face

Table 11-16

Load Distribution

Factors K_m

Face in	Width (mm)	K _m
<2	(50)	1.6
6	(150)	1.7
9	(250)	1.8
≥20	(500)	2.0

 $8/p_d < F < 16/p_d$ can use $12/p_d$ as a starting point

J

 K_{v}

Kn

K

K

ŀ

K_m for the Example

$$F=12/p_d=3$$
 in.

Table 11-16

Load Distribution Factors *K_m*

,	Face in	Width (mm)	K _m
	<2	(50)	1.6
	6	(150)	1.7
	9	(250)	1.8
	≥20	(500)	2.0

$$K_{\rm m} = 1.63$$

Application Factor, K_a

to account for non-uniform transmitted loads

Table 11-17 Application Factors K_a

	Driven Machine				
Driving Machine	Uniform	Moderate Shock	Heavy Shock		
Uniform (Electric motor, turbine)	1.00	1.25	1.75 or higher		
Light Shock (Multicylinder engine)	1.25	1.50	2.00 or higher		
Medium Shock (Single-cylinder engine)	1.50	1.75	2.25 or higher		

for example, assume that all is uniform

$$J K_v K_m K_a K_s K_B K_I$$

Other Factors

to account for size

K_s=1 unless teeth are very large

K_R to account for gear with a rim and spokes

K_B=1 for solid gears

to account for extra loading on idler

 $K_1=1$ for non-idlers, $K_1=1.42$ for idler gears

 $J K_v K_m K_a K_s K_B K_B$

Back to the Example

$$\sigma_b = \frac{W_t \cdot p_d}{F \cdot J} \cdot \frac{K_a K_m}{K_v} K_s K_B K_I$$

$$\sigma_{b_{gear}} = \frac{(420)(4)}{(3)(0.38)} \cdot \frac{(1)(1.63)}{(0.845)} (1)(1)(1) = 2842 \ psi$$

$$\sigma_{b_{pinion}} = \frac{(420)(4)}{(3)(0.34)} \cdot \frac{(1)(1.63)}{(0.845)} (1)(1)(1) = 3177 \ psi$$

Compared to What??

σ_b is great, but what do I compare it to?

$$S_{fb} = \frac{K_L}{K_T K_R} S_{fb'}$$

similar concept to S_e, but particularized to gears

S_{fb} → Table 11-20 Figure 11-25 for steels

Life Factor K_I

to adjust test data from 1E7 to any number of cycles

Temperature & Reliability Factors

$$K_T=1$$
 if T < 250°F
see Equation 11.24a if T > 250°F

Table 11-19

AGMA Factor K_R

Reliability %	K _R
90	0.85
99	1.00
99.9	1.25
99.99	1.50

Fatigue Bending Strength for Example

Class 40 Cast Iron 450 rpm, 8 hours/day, 10 years T = 80°F Reliability=99%

Table 11-20 \longrightarrow S_{fb}'= 13ksi

N=(450 rev/min)(60 min/hr)(8 hr/dy)(250 dy/yr)(10 yrs)=5.4E8 revs

$$K_L = 1.3558N^{-0.0178} = 0.948$$

$$S_{fb} = (0.948)13$$
ksi = 12.3 ksi

Safety Factor

$$N_b = \frac{S_{fb}}{\sigma_b}$$

 $N_{bpinion} = (12300 \text{ psi})/(3177 \text{psi}) = 3.88$

 $N_{bgear} = (12300 \text{ psi})/(2842 \text{psi}) = 4.33$

Gear Failure

Fatigue Loading

from bending of teeth

- infinite life possible
- failure can be sudden

from contact b/n of teeth

Surface Failure

- infinite life not possible
- failure is gradual

Buckingham pioneered this work

$$\sigma_{c} = C_{p} \sqrt{\frac{W_{t}}{F \cdot I \cdot d}} \frac{C_{a}C_{m}}{C_{v}} C_{s} C_{f}$$
 equal to 1

same as for bending

d= pitch diameter of smaller gear

Geometry Factor I

considers radius of curvature of teeth and pressure angle

$$I = \frac{\cos \phi}{\left(\frac{1}{\rho_p} \pm \frac{1}{\rho_g}\right) d_p}$$

$$\rho_p = \left[\left(r_p + \frac{1 + x_p}{p_d} \right)^2 - \left(r_p \cos \phi \right)^2 \right]^{\frac{1}{2}} - \frac{\pi}{p_d} \cos \phi \qquad \rho_g = C \sin \phi \mp \rho_p$$

top sign is for external gears, bottom for internal

For example: ρ_p =0.691, ρ_g =1.87, I=0.095

Elastic Coefficient

considers differences in materials

Table 11-18 AGMA Elastic Coefficient C_p in Units of $[psi]^{0.5}$ ($[MPa]^{0.5}$)*†

	Ep		Gear Material				
Pinion Material	psi (MPa)	Steel	Malleable Iron	Nodular Iron	Cast Iron	Aluminum Bronze	Tin Bronze
Steel	30E6	2 300	2 180	2 160	2 100	1 950	1 900
	(2E5)	(191)	(181)	(179)	(174)	(162)	(158)
Malleable	25E6	2 180	2 090	2 070	2 020	1 900	1 850
Iron	(1.7E5)	(181)	(174)	(172)	(168)	(158)	(154)
Nodular	24E6	2 160	2 070	2 050	2 000	1 880	1 830
Iron	(1.7E5)	(179)	(172)	(170)	(166)	(156)	(152)
Cast Iron	22 <i>E</i> 6	2 100	2 020	2 000	1 960	1 850	1 800
	(1.5 <i>E</i> 5)	(174)	(168)	(166)	(163)	(154)	(149)
Aluminum	17.5E6	1 950	1 900	1 880	1 850	1 750	1 700
Bronze	(1.2E5)	(162)	(158)	(156)	(154)	(145)	(141)
Tin	16E6	1 900	1 850	1 830	1 800	1 700	1 650
Bronze	(1.1E5)	(158)	(154)	(152)	(149)	(141)	(137)

For example, C_p=1960 psi

Surface-Fatigue Strengths

 σ_c is great, but what do I compare it to?

$$S_{fc} = \frac{C_L C_H}{C_T CR} S_{fc'}$$
 from Table 11-21 same as for bending

Life Factor C₁

to adjust test data fro 1E7 to any number of cycles

FIGURE 11-26*

Hardness Ratio C_H

to account for pitting resistance

when pinion is harder than gear, then gear is cold-worked only apply C_H to the cold-worked gear

when $HB_p=HB_G$, then $C_H=1$

Safety Factor for Loading

stress is based on the square root of loading, therefore:

$$N_c = \left(\frac{S_{fc}}{\sigma_c}\right)^2$$

Gear Design

Gear Design

Same for Pinion and Gear

- p_d (p_c), φ, F
- Power
- W, W_t, W_r
- **V**_t
- N_c

Different for Pinion and Gear

- d, N
- T, ω ,
- N_b

Gear Design Strategy

