Data Science & the Data Cycle

Girl Geeks Waterloo

May 2015

Jennifer Nguyen

To inform our decisions

Everyday examples

• To decide what to wear in the morning

Everyday examples

• To book a flight

Everyday examples

• To negotiate a salary

User Experience Designer 2013 Total Pay (?)

Data Cycle

How do we create data?

How do we create data?

- Every interaction on any platform is collected
 - Clicks, mouse hovers, scrolls
- User generated data
 - photos, videos, "likes"
 - purchases
- Direct feedback
 - Registration information

Source: DOMO

Data is collected and stored

• Data is collected and stored in large databases to be analyzed

What is it used for?

"Not only are we doing more with data, data is doing more with us" – Jer Thorp, DOMO

Data Analytics Spectrum

Source: Gartner

Business Intelligence

a.k.a. reactive analytics

- Reactive analytics answers questions related to past/current events
- E.g., "How are we doing?", "What went well?"
- Answers are used to inform business decisions

Business Intelligence

a.k.a. reactive analytics

- Measuring web traffic
 - How did the volume of traffic change since yesterday/last week/last month/last year?
 - Where are users coming from?
 - Which topics resonated with readers?

Data Analytics Spectrum

Source: Gartner

Data Mining

Knowledge Discovery

- Used to find patterns, trends, and insights from data
- Techniques include
 - Anomaly detection
 - Association rule learning
 - Clustering

Data Science Technique: Clustering

- How to segment users?
 - <u>K-Means</u> Clustering
- Clustering can be used to discover communities of users
- Other applications:
 - Find similar items, movies

Data Analytics Spectrum

Source: Gartner

Predictive Analytics

- Predictive analytics answers questions related to future events
- E.g.:
 - How likely will this student drop out?
 - What would this reader like to read next?
 - Will a customer churn?

Data Science Technique: Classification

- How to predict customer churn?
 - Logistic Regression
 - Decision Trees
 - Random Forests
- Results can be used to "save" a customer

How to build a decision tree

• Given the following data set:

<2 years of tenure?	Filed Complaint?	Churned?
N	Ν	Ν
Y	Ν	Υ
N	Ν	Ν
Ν	Ν	Ν
N	Y	Υ
Y	Ν	Ν
N	Y	Ν
Ν	Y	Υ
Y	Ν	Ν
Y	Ν	Ν

Example adapted from Michael S. Lewicki, Artificial Intelligence: Learning and Decision Trees, http://www.cs.cmu.edu/afs/cs/academic/class/15381-s07/www/slides/041007decisionTrees1.pdf

How to build a decision tree

- Goal:
 - Split the data in such a way to achieve high classification accuracy
- Requires knowing which attributes to use and in which order
- Use "greedy" algorithm:
 - Choose attribute that gives best split at each level of tree

Recursive Algorithm

- 1. Start with all data
- 2. Find query that gives best split.
- 3. Create child nodes
- 4. Recurse until stopping criterion:
 - Node consists of one dominant class, considered the node's "purity"

Building a Decision Tree

Building a Decision Tree

How to use a decision tree

 Given new data samples, how to predict if the individual will churn?

<2 years of tenure?	Filed complaint?	Churned?
Ν	Ν	?
Y	Ν	?
N	Y	?

 Use recursive tree traversal algorithm to find the corresponding leaf node

Data Analytics Spectrum

Source: Gartner

- Used in simple recommendation engines to recommend items to users
- Items can be news articles, movies, clothing, friends

(a) Known ratings, r_{ui}

- Goal is to fill in the missing empty cells with a prediction
- Items with positive predictions are recommended to users
- Predictions are influenced by ratings from other users
- The more similar two users are with respect to their ratings, the more they will influence the prediction

(a) Known ratings, r_{ui}

(b) Predictions, \hat{r}_{ui}

- Disadvantages of this method:
 - Users do not understand why some recommendations are made by the engine
 - Users may not receive recommendations they like because other users have not liked them
- Advanced recommendation methods exist to address these shortcomings

How do users benefit from data science?

- Users get a more personalized experience that is tailored to their interests
 - E.g., Nest Thermostat, PC Plus
- Users save time from not having to sift through the vast sea of options
 - E.g., Netflix, online retailers, LinkedIn

Key Takeaways

 Data science is part of an iterative process to continually improve the user experience

Key Takeaways

- There are many flavours of data analytics
 - Which one to use depends on the questions you want answered

Questions?