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What

.. 1S a user journey?
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Can we predict a user’s path?

A user journey is a sequence of actions



Retail Rocket User Journeys
T view

.~ ADDTO CART

B cHEckouT

TIME Kaggle Ecommerce Dataset



https://www.kaggle.com/retailrocket/ecommerce-dataset

Why

...do we care about user journeys?



User journeys can help
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HOW

...can we predict a user’s journey?



Embeddings

queen

Male-Female

walked

o

walking

Verb tense

Spain \
Italy \Haaxid

Germany \ o
Berlin
'rurkey \
Ankara

Russia .
Canada ——— Ottawa

Japan

Tokyo
Vietnam ~—————————oo"__ Hanoi
China - Beijing

Country-Capital

Word2Vec: words are mapped to an n-dimensional vector space

(Mikolov et al., 2013)



Neural Networks
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A neural network is composed of many perceptrons



Recurrent

Neural Networks
(RNN)
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Source: Adventures in Machine Learning: Keras LSTM Tutorial

RNNs are able to “remember” information from the past to
predict the future



https://adventuresinmachinelearning.com/keras-lstm-tutorial/
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Source: RNNs LSTMs GRUs

The different gates of a LSTM help to solve for the vanishing
gradient problem by deciding which inputs to keep



https://towardsdatascience.com/animated-rnn-lstm-and-gru-ef124d06cf45

Modelling approach
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Modelling approach

)

1. Fixed length RNN

N _ 2. Multistep prediction RNN

3. Multiclass classification using a NN
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Anatomy of a Keras model: RNN

THE CODE

def rnn_model(input length, num units, num_actions):
# sequence of actions
A = Input(shape=(input length,), name="actions™) #length of sequence

L

#create embedding for actions

a = Embedding(input dim=num_actions, output dim=num units, name="action embedding")(A)

L

#add LSTM Layer S
(: L = LSTM(num_units,return_sequences=False)(a) ::7

———

#add regular NN Tayer -
predictions = Dense(num actions, activation='softmax')(L) :7

return Model(inputs=A, outputs=predictions, name="RNN_model")



Anatomy of a Keras model: RNN

THE CODE

def rnn_model(input length, num units, num_actions):
# sequence of actions
A = Input(shape= 1nput_length4), name="actions") #length of sequence

#create embedding for actions
a = Embedding(input dim=num_actions, |output dim=num units} name="action embedding")(A)

#add LSTM Layer
L = LSTM(num_units,eturn_sequences=False)(a)

#add regular NN layer
predictions = Dense(num actions, activation='softmax')(L)

return Model(inputs=A, outputs=predictions, name="RNN_model")



Anatomy of a Keras model: RNN

THE LAYERS

actions: InputLayer

input:

(None, @4

output:

| Number of input
actions

(None, 10)
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action_embedding: Embedding

input:

(None, 10)

output:

(None, 10[5)}}— Embedded vector

'

dimension

input: | (None, 10, 5)
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output: | (None,|64) |«
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dense 3: Dense
output: (Nonel 3)
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Anatomy of a Keras model: Seq2Seq

THE CODE

def multistep rnn model(input length, forecast length, num units, num actions):
# sequence of actions
A = Input(shape=(input length,), name="actions") #length of sequence

#create embedding for actions
a = Embedding(input dim=num actions, output dim=num units, input length=input length, name='action embedding")(A)

# return seguences = false to onlv produce the last output
encoder = LSTM(num_units,feturn_sequences=False)(a)

# repeat the output of the encoder for each output of the target
temp = RepeatVector(forecast length)(encoder)

decoder = LSTM(num_units, |return_sequences=True (tempp

# Apply a NN for each timestep output
predictions = TimeDistributed(Dense(num_actions, activation='softmax'))(decoder)

return Model (inputs=A, outputs=predictions, name="Multi-step Prediction")



Anatomy of a Keras model: Seq2Seq

THE LAYERS

mput: | (None, 1U)
output: | (None, 10)
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actions: InputLayer
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Anatomy of a Keras model: NN

THE CODE

def nn_model(input length, num units, num_actions):

# Input sequence of actions
A = Input(shape=(input length,), name="actions") #length of sequence, size of vocab

#create embedding for actions
X = Embedding(input dim=num_actions, output dim=num units, input length=input length, name='action_embedding')(A)

# create the hidden layers
X = Dense(num units, activation='relu’)(x)

# split the tensors tor each time step
split = Lambda(my split(input length-1))(x)

averaged = Average()(split)
squeezed = Lambda(squeeze(axis=1))(averaged)

predictions = Dense(num _actions, activation='softmax')(squeezed)

return Model(inputs=A, outputs=predictions, name='Plain NN')



Anatomy of a Keras model: NN

TH E LAYE RS actions: InputLayer input: | (None, 5)

output: | (None, 5)

Y
action_embedding: Embedding

'

input: | (None, 5, 64)
output: | (None, 5, 64)

l

input: (None, 5, 64) I

input: (None, 5)
output: | (None, 5, 64)

dense_9: Dense

lambda_7: Lambd I
A A I tput: | [(None, 1, 64), (None, 1, 64), (None, 1, 64), (None, 1, 64), (None, 1, 64)] Split tensor
\ J
input: | [(None, 1, 64), (None, 1, 64), (None, 1, 64), (None, 1, 64), (None, 1, 64)]
“ average 4: Average . < Avera ge tensors
output: (None, 1, 64)
Y

input: | (None, 1, 64)
oupur | one, 64) | [ Reshape tensor

lambda_8: Lambda

input: | (None, 64)

dense_10: Dense
output: | (None, 3)




Model performance

Hidden Dimensions Multi-class NN Fixed Length RNN Multistep Prediction

0.48 0.62 0.38
64 0.51 0.60 0.45
128 0.51 0.55 0.38

Weighted accuracy trained using n=10 timesteps
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Key takeaways

1. Many possible architectures to solve the problem

2. Make sure layers are compatible

3. Higher dimensions requires more data



Resources

Jupyter Notebook with Code - bit.ly/2Q4IrR8

Adventures in Machine Learning: Keras LSTM Tutorial - bit.ly/2X3176F
Keras Functional API for Deep Learning - bit.ly/2CASv]y

GitHub for Doc2Vec Implementation - bit.ly/2Q8sf1h

Kaggle Ecommerce Dataset - bit.ly/2rsD2ca
RNNs LSTMs GRUs - bit.ly/36UIFk]



https://bit.ly/2Q4IrR8
https://adventuresinmachinelearning.com/keras-lstm-tutorial/
https://machinelearningmastery.com/keras-functional-api-deep-learning/
https://github.com/samueljamesbell/doc2vec/blob/master/doc2vec/model/dm.py
https://www.kaggle.com/retailrocket/ecommerce-dataset
https://towardsdatascience.com/animated-rnn-lstm-and-gru-ef124d06cf45

Questions



