Bringing the "App Store" to Embedded Computing Systems

How SOSA is defining the software framework for deployed applications to make this a reality.

David Tetley Director, Embedded Solutions

Embedded Tech Trends, January 2025

Module D

Aodule C

Container Platform

Embedded Computer Systems Built on Open Standards

Historical Timeline of VME and VPX

Your Solution Partner

www.elma.com

3

The Advent of SOSA

Defining the HW Infrastructure for the "Plug and Play" Concept

Hardware

- Plug-In Card (PIC):
 - Limiting slot profiles
 - Standardizing mechanicals, cooling and power distribution
 - Standardizing maintenance ports
 - Tightly defining RF and optical connectors
 - Tightly defining interconnect protocols
- Chassis / Backplane:
 - Tightly defining backplane requirements
 - Defining clock topology
 - Tightly defining connector types
 - Chassis management definition

www.elma.com

4

The Advent of SOSA

Defining the SW Infrastructure for Interoperability and Portability

RTE (Run-Time Environment) profiles:

- FACE OSS (Operating System Segment)
- Container
- Virtual Machine

System and Task Management:

- System Manager: Responsible for management of SOSA Modules and Infrastructure.
- Task Manager: Responsible for coordinating all mission operations

Inter-module Interactions:

• E.g.: MORA (Modular Open Radio Architecture): Adopted for RF Signal Layer Modules

SOSA Run-Time Environment

Defining the SW Infrastructure for interoperability and portability

These RTE profiles define constraints and dictate the interfaces that application developers must adhere to in the creation highly portable SOSA modules.

Hypervisor shown)

Defined Run-time Environments lay foundation for the "App Store" concept.

www.elma.com

Your Solution Partne

www.elma.com

SOSA System Management

Overview

Standardizes the management of the health, operation and configuration of the platform and its security.

System Manager Function Groups SOSA Table 6.1.1-1

SOSA Functional Group 3

SOSA System Management

Landscape of Interactions as Defined by SOSA Rules as per Section 6.2

SOSA System Manager Defined Interactions per Element

SOSA Element	Number of In-Band Interactions
Generic Module	24
System Manager	56
Chassis Manager	35
Security Services	47
PIC	51
RTE	63
TOTAL	276

System Manager In-Band System Management Interactions Snapshot 2 SOSA Rules 6.2.5-1 and 6.2.5-2

Manage Sensor Health		Manage Sensor Operations	Manage Sensor Configuration	Manage Sensor Security Health	Manage Sensor Security Configuration
Monitor Sensor Health	Manage Sensor Diagnostics	Manage Sensor State	Manage Sensor Composition	Monitor Sensor Security	Access Sensor Security Authentication
↓	↓	V		V	•
getHealth	getBitConfig*	getState	getSensorFirmwareInfo	getSecurityStatus*	getAuthenticationService
getFaults	updateBitConfig*	restartSensorComponent	updateSensorFirmware	getSecurityStatusParamet ers*	update AuthenticationService
getHealthParameters	executeBIT	shutdownSensorComponent	verifySensorFirmware*	updateSecurityStatusPara meters*	
updateHealthParameters	getBITResults	getSensorState	getResources*	getSensorSecurityStatus*	
getSensorHealth	getSensorBitConfig*	restartSensor	reserve Resources*	getSensorSecurityStatusPa	
getSensorFaults	updateSensorBitConfig*	shutdownSensor	release Resources*	updateSensorSecurityStat usParameters*	
getSensorHealthParameters	executeSensorBIT		Manager Sensor		
updateSensorHealthParameters*	getSensorBITResults		Parameterization		
Sensor Debug		Manage Sensor Mode	updateConfig*	* Denotes fut	ure support
		•	verifyConfig*		
createFaultDebug		getMode	getSystemManagerConfig	Number of Inte	eractions = 56
resolveFaultDebug		updateMode	getSensorConfig		
pingServceDebug		Zeroize	updateSensorConfig*		
updateConfigDebug		Sanitize	verifySensorConfig*		
restartServiceDebug		getSensorMode			
		updateSensorMode	Manage Sensor Inventory		
		ZeroizeSensor	↓	,	
		6 . HL 6			

www.elma.com

Opportunity for Modularized Software

Building Blocks for SOSA Compliance

		System Manager				
Health Agent]•	Health Manager	•	Health Agent]•	Health Manager
Operations Agent]+	Operations Manager	H	Operations Agent]+	Operations Manager
Configuration Agent	•	Configuration Manager	•,	Configuration Agent	4	Configuration Manager
Security Health Agent]+,	Security Health Manager	 	Security Health Agent]++	Security Health Manager
Security Operations Agent] * ,	Security Operations Manager	=	Security Operations Agent	•	Security Operations Manager
	٠,	Security Configuration Manager	٠,		4	Security Configuration Manager

System Manager Components:

Agents (Servers):

Performs system management service for managed sensor or sensor component

• Managers and User Interfaces (Clients): Management of one or more subfunction agents.

(Issues requests, acquires responses, publishes information for subscribers, and observing event notifications.)

Other Opportunities:

- Task Manager Module
- Services to Support System Operations
- Other sub-functions in support of modules

Case Study: US Army & CMOSS

Why is This Important?

C5ISR/EW Modular Open Suite of Standards

- **Open**: Vendor & platform agnostic, MOSA conformance
- Standardized: Software, Hardware, Mechanical
- **Harmonized**: Leverage existing and emerging open standards
- Aligned: In concert with ongoing service objectives
- Adaptable: Rapidly responsive to user change requirements
- Cost Effective: Affordable

CMFF (CMOSS Mounted Form Factor Standard)

• Dictates alignment with SOSA and MORA

Example: CMFF Hosted SDR

How the SOSA Software Modules Map to Hardware Infrastructure

www.elma.com

Memo From the Pentagon

December 17th 2024

"Modular Open Systems Approach (MOSA) shall be implemented and promulgated among the Military Services"

Signed by Secretaries of the Navy, Army and Air Force Office of the Secretary of the Navy 1000 Navy Pentagon Washington, DC 20350-1000 Office of the Secretary of the Army 101 Army Pentagon Washington, DC 20310-0101

Office of the Secretary of the Air Force 1670 Air Force Pentagon Washington, DC 20330-1670

December 17, 2024

MEMORANDUM FOR SERVICE ACQUISITION EXECUTIVES AND PROGRAM EXECUTIVE OFFICERS

SUBJECT: Modular Open Systems Approach for Department of Defense Weapon Systems

Department of Defense (DoD) Armed Forces face rapidly evolving threats across the world. The dynamic and rapid change of adversary capabilities observed in current conflicts necessitates a critical warfighting capacity to integrate advanced capabilities to counter and maintain a warfighting advantage. To meet this threat, Modular Open Systems Approach (MOSA) shall be unificant and an unified the Military Services to facilitate rapid transition and sharing of advanced warfighting capability to keep pace with the dynamic warfighting threat.

For several years, the Services have successfully developed, demonstrated, and validated data standards and Open Systems Architecture (OSA) through a cooperative partnership with industry and academa. This work has resulted in the establishment of Open Systems Universal Command and Control Interface (OMSUCI). Sensor Open Systems Architecture (SOSA), Agale Mission Suite Oovenment Reference Architecture (AMS GRA). Weapons Open Systems Architecture (WOSA), Future Airborne Capability Environment (FACE) and Vehicular Integration for CallSRE Winteropendativity (VICTORV), mong other standards.

Congress has made significant changes in Title 10 U.S.C. regarding MOSA, adding three new sections:

- Section 4401 requires MOSA in major defense acquisition programs [MDAPs]
- Section 4402 requires the implementation of MOSA in program capability development and acquisition weapon system design, to include verification of MOSA requirements, and
- Section 4403 relates to ensuring the availability of major system interface standards and support for MOSA in defense acquisition.

The Department needs to review and formalize updated MOSA policy and guidance to remain consistent with the language and spirit of MOSA as mandated in Title 10 U.S.C.

In addition, although DoD guidance focuses on using common standards as a key to implement MOSA, the Department must expand the guidance to ensure it aligns with the evolving statutory language. We direct all DoD acquisition officers commit to all five MOSA pillars: (1) employing a modular design, (2) designating modular interfaces, (3) leveraging consensus-based open standards, (4) establishing enabling environments, and (5) certifying conformance.

MOSA puidance must include the appropriate verification method and timing within the acquisition programs is development to senser MOSA, conformance. Each Service Acquisition KOSA compliance with their MDAPs at Systems Engineering Technical Reverse (SETRa), Gate Reviews, and Program Reviews. For MDAPs, MOSA may be addressed at Milestone Reviews as part of Independent Technical Risk Assessments, as appropriate. These MOSA reviews will address how the program has implemented for will implement the five pallars of MOSA. Wilm 60 days of this memoryandum, each SAE will ealishing at meyor to their one constraints of the second sec

2

Calos Del Solo Carlos Del Toro

Grip S. What

Christine Wormuth Secretary of the Army

Secretary of the Navy

Key Takeaways

SOSA Standard defines the software platform on which applications must run and how they interact. It also defines the framework for system management.

The successful implementation of the standard can provide a platform for truly "plug-and-play" applications hence realizing the "App-Store" concept.

Sensor system developers want to focus their SW resources in development on their IP. They do not want to develop SOSA SW infrastructure from scratch.

For widespread adoption, SW alignment with SOSA needs to be affordable and have minimal impact on schedule.

PIC vendors, system integrators and software vendors can provide building blocks that satisfy key elements of the software aspects of the SOSA standard.

Reducing our customers cost and risk will be the key to adoption.

Thank You! Questions?

David Tetley

Embedded Tech Trends

elma.com