

How New CHPs Passed the Exam

Insights from recently successful candidates (2024–2025)

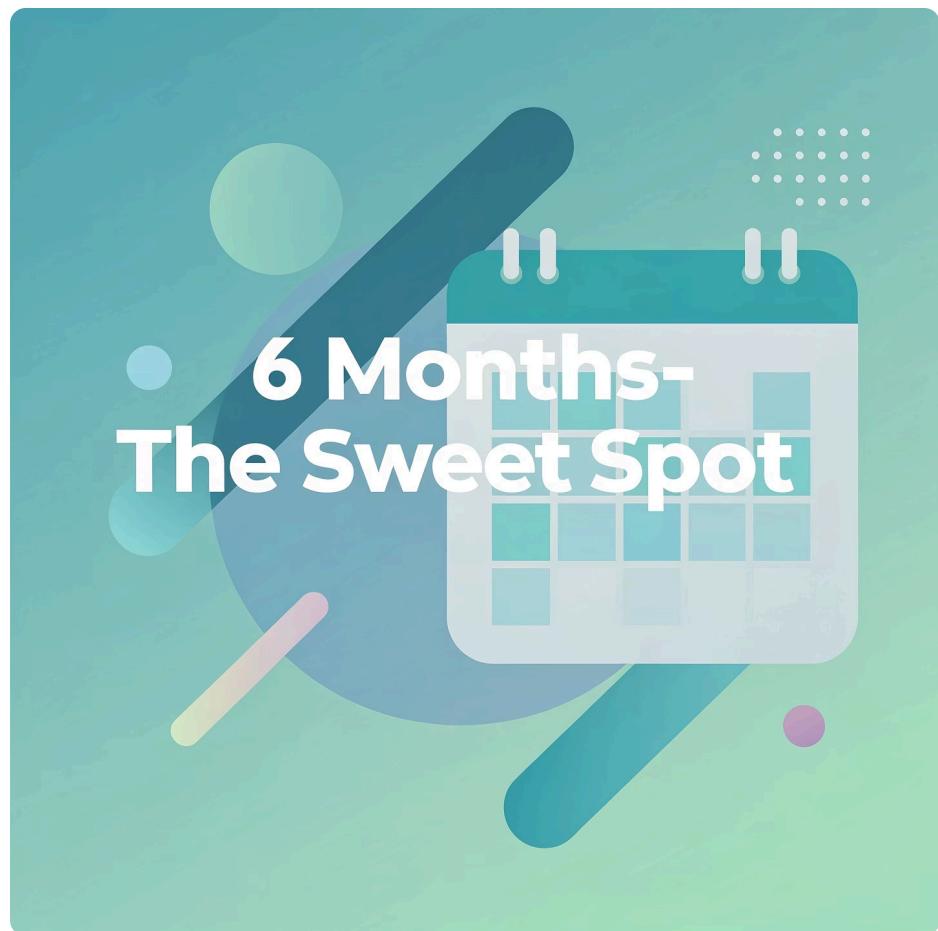
How New CHPs Passed the Exam

Real Experience

Based on actual study journeys from 2024-2025 exam cycles

Proven Methods

What worked for newly certified health physicists


Your Roadmap

Learn from their successes and avoid their mistakes

The journey to becoming a Certified Health Physicist is demanding, but you don't have to figure it out alone. This document compiles insights from professionals who recently passed the ABHP certification exam, sharing their strategies, tools, and hard-won lessons. Whether you're just starting your preparation or refining your approach, these real-world experiences will help you study smarter and more effectively.

The data comes from candid discussions with new CHPs who successfully navigated both Part I and Part II of the exam. They've shared what genuinely made a difference in their preparation—not just what they *planned* to do, but what actually *worked* when test day arrived. Their collective wisdom reveals patterns that can transform your preparation from guesswork into a strategic, confidence-building process.

Study Duration: What Worked

Most successful candidates studied for approximately **six months** before their exam date. This wasn't about cramming—it was about building a sustainable routine that allowed concepts to sink in gradually. The consistent thread among passing candidates wasn't the total hours logged, but rather the *regularity* of their study sessions.

Starting earlier gave people time to identify weak areas, revisit challenging topics multiple times, and build genuine confidence rather than surface-level familiarity. Those who attempted shorter preparation periods often reported feeling rushed and underprepared, particularly for Part II's application-focused questions.

Key insight: Consistency beats intensity.

Daily or near-daily study sessions of 1-2 hours proved more effective than marathon weekend cram sessions. The brain needs time to consolidate complex health physics concepts, and six months provides that runway while maintaining momentum.

Practice Makes the Pass

Daily Problem-Solving

The single most-cited success factor across all interviews was **active problem-solving practice**—not passive reading, not just reviewing notes, but actually working through calculations and scenarios every single day.

- Builds computational fluency and speed
- Reveals gaps in understanding quickly
- Develops intuition for order-of-magnitude checks
- Strengthens recall under pressure

Why Reading Wasn't Enough

Many candidates initially spent weeks reading textbooks cover-to-cover, only to discover during practice problems that they couldn't actually *apply* what they'd read. Recognition is not the same as recall, and passive consumption doesn't prepare you for active problem-solving.

The turning point for most successful candidates came when they flipped their approach: spend 20% of study time on reading/review and 80% on problem-solving. This ratio forced them to engage with material actively and identify concepts they thought they knew but actually didn't.

Successful candidates described a typical study session as: quick review of relevant formulas or concepts (10-15 minutes), followed by working through 5-10 problems of increasing difficulty (45-60 minutes), then reviewing solutions and noting common mistakes. This cycle, repeated daily, built both competence and confidence in ways that reading alone never could.

The Biggest Regret

Critical Gap in Preparation

The most common regret among new CHPs? **Not taking enough full-length, timed practice exams under realistic conditions.**

What They Didn't Do

- Most candidates skipped full timed mock exams
- Many practiced problems in isolation without time pressure
- Few simulated actual exam conditions (no notes, strict timing)
- Almost no one practiced both parts back-to-back

The consequence? On exam day, many felt blindsided by the *pacing demands* rather than the technical content. They knew the material but struggled to deploy it efficiently under time constraints.

What Worked for Those Who Did

The minority who completed 2-3 full timed practice exams reported **dramatically higher confidence and better performance**. They learned:

- Which problems to tackle first vs. skip temporarily
- How to budget time across sections
- When to move on from a challenging problem
- Their actual working speed vs. imagined speed

Timed practice reveals **pacing weaknesses** that studying never will. It's uncomfortable, but it's the single most predictive indicator of exam readiness.

Tools They Actually Used (Ranked)

Not all study resources are created equal. Here's what successful candidates relied on most heavily, ranked by frequency and perceived impact:

O1

ABHP Past Exams

The gold standard. Nothing replicates actual exam difficulty and question style better than official practice materials. Candidates who worked through multiple years of past exams reported feeling much more prepared for the real thing.

O2

DataChem Problem Sets

Highly practical, well-organized problem collections that mirror exam-style calculations. Particularly strong for dose calculations, shielding, and contamination scenarios. Many candidates used these as their primary daily practice tool.

O3

Review Courses

Structured review programs that provided systematic coverage and guidance. Most valuable for establishing study frameworks and identifying priority topics, though candidates emphasized these worked best when combined with independent practice.

O4

Core HP Textbooks

Bevelacqua, Cember & Johnson, Turner, and Shleien served as essential references for deepening understanding and clarifying concepts. Used more for targeted review than cover-to-cover reading.

O5

Self-Made Study Aids

Custom flashcards for regulations and key values, personalized formula sheets, and summary notes. The act of creating these materials reinforced learning as much as reviewing them later.

"No one passed by relying on courses alone. The people who succeeded combined structured resources with massive amounts of independent practice."

Topics People Didn't Study Much

Laser Safety

Limited coverage in most study plans due to its niche status and infrequent appearance on past exams

Radio-frequency & Microwaves

Often deprioritized in favor of ionizing radiation topics, despite occasional exam questions

DOT Shipping Regulations

Studied only at a surface level—labels, placards, basic requirements—without deep regulatory detail

The common theme among these neglected topics? They represent **low-frequency, high-variability content** where the return on study time investment seems modest. Most candidates made a calculated decision to focus on high-yield topics like dose calculations, shielding, and contamination control instead.

However, several new CHPs ruefully noted that exam questions on these "low-priority" topics *did* appear on their exam—sometimes in ways they weren't prepared for. **The lesson isn't to ignore these areas entirely, but to at least familiarize yourself with fundamentals so you're not caught completely off-guard.** A few hours reviewing basic laser classifications, RF exposure limits, and DOT packaging requirements can prevent needless point loss.

The strategic approach: ensure comprehensive coverage of core topics first, then allocate remaining study time to these peripheral areas at a level proportional to their exam frequency. You don't need mastery, but you do need basic competency to avoid easy points slipping away.

The Skills That Made the Difference

When asked what problem-solving skills proved most valuable on exam day, successful candidates pointed to four core competency areas that appeared repeatedly and carried significant point weight:

Dose Calculations (Internal & External)

Far and away the most critical skill set. External dose from point sources, line sources, and distributed sources. Internal dose from intakes via inhalation and ingestion. Committed effective dose equivalent calculations. These problems appeared across both parts of the exam and represented substantial point opportunities.

Candidates who could confidently navigate ICRP/NCRP dose models, apply appropriate dose coefficients, and handle multi-pathway scenarios had a significant advantage. **This is where daily practice pays the highest dividends.**

Activation & Decay Chains

Understanding activation cross-sections, decay chain equilibria, and multi-step decay scenarios proved essential. Problems involving secular equilibrium, transient equilibrium, and no equilibrium appeared frequently, as did questions about activation of materials in radiation environments.

The complexity here often involves tracking multiple isotopes through branching decay paths while applying appropriate time dependencies. Strong foundational knowledge of the Bateman equations and common simplifications is crucial.

Shielding Design & Analysis

Gamma and neutron shielding calculations, buildup factors, broad-beam and narrow-beam geometry, and multilayer shield optimization. These problems test both calculation accuracy and conceptual understanding of attenuation principles.

Successful candidates emphasized the importance of practicing with various source geometries and shield configurations, not just memorizing formulas. Understanding *why* certain materials work better for specific applications helps when facing novel shielding scenarios.

Regulatory Application Scenarios

Real-world situations requiring knowledge of 10 CFR Part 20, DOT regulations, license conditions, and ALARA principles. These problems often appeared in Part II and tested your ability to apply regulatory requirements to practical situations.

Rather than pure memorization, these questions reward understanding of regulatory *intent* and the ability to translate rules into operational procedures and compliance strategies.

Top Mistakes (Ranked)

Learning from failure is faster than discovering success independently. Here are the most common preparation and exam-taking mistakes, as identified by people who wished they'd known better:

1

Skipping Timed Practice

Already discussed but worth repeating: the absence of full-length timed practice exams was the single biggest preparation gap. You can't learn pacing through untimed practice any more than you can learn to swim by reading about it.

2

Writing Too Much

Particularly on Part II, many candidates wrote lengthy, detailed responses that buried their key points and wasted precious time. Graders are looking for specific elements—provide those clearly and concisely, then move on. Over-explanation doesn't earn extra credit and may actually obscure what you know.

3

Deep Dives into Niche Topics

Spending weeks mastering low-yield topics while leaving high-frequency areas under-practiced. The exam rewards broad competency across core topics far more than deep expertise in narrow specializations.

4

No Explicit Pacing Strategy

Walking into the exam without predetermined time budgets for each section or question type. This led to candidates spending too long on early problems and rushing through later ones, leaving points on the table in areas where they were actually well-prepared.

5

Theory Over Application

Treating preparation like studying for a physics PhD qualifier rather than a professional certification exam. The CHP exam tests practical application of health physics principles, not theoretical derivations or academic mastery. Understanding concepts deeply is valuable, but you must also translate that understanding into problem-solving efficiency.

"I spent a month deriving dose equations from first principles when I should have been drilling fifty practice problems. I knew the theory cold but couldn't execute fast enough on exam day."

What They Wish Prep Courses Offered

While review courses and commercial preparation materials helped many candidates pass, new CHPs identified several gaps in current offerings that, if addressed, would significantly improve preparation quality:

More Realistic Problems

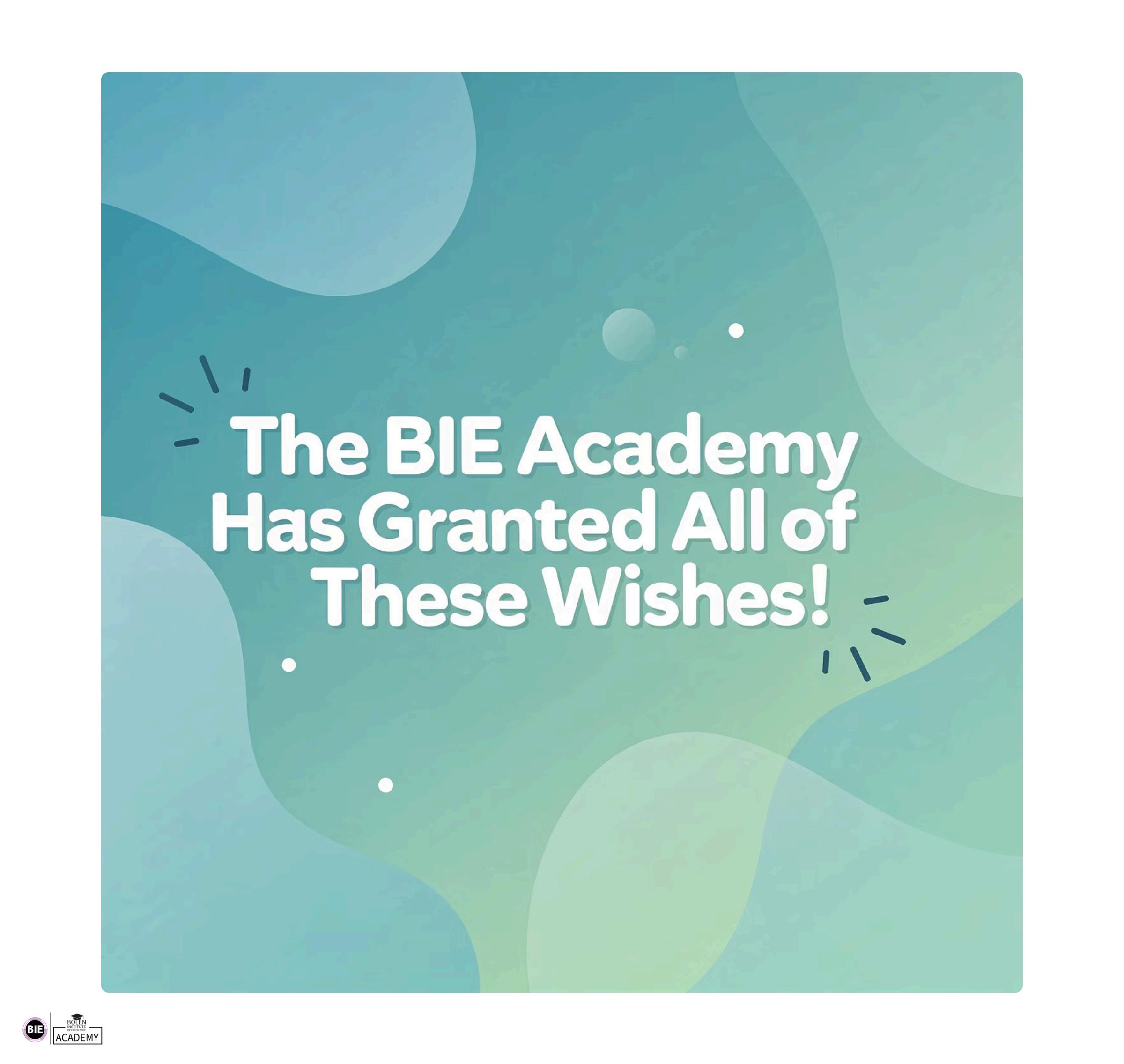
Candidates wanted problem sets that truly matched exam difficulty and style, not simplified versions or overly complex academic exercises. The gap between practice material difficulty and actual exam questions caught many off-guard.

Writing Strategy Guidance

Specific instruction on how to structure Part II responses, maximize partial credit, and communicate efficiently. Most courses focused on technical content but left candidates to figure out effective communication strategies on their own.

Timed Practice & Scoring

Built-in timed exams with realistic grading and feedback. Candidates wanted their practice scored by someone who understood grading standards, helping them calibrate their performance and identify improvement areas before the real exam.


Modern Digital Materials

Updated, searchable digital resources rather than scanned PDFs of decades-old materials. Candidates wanted interactive problem banks, digital flashcards, and materials optimized for modern study workflows and devices.

Affordable Options

High-quality preparation materials at accessible price points. The cost of comprehensive review courses and materials can be prohibitive for early-career health physicists, creating barriers to certification pursuit.

The BIE Academy
Has Granted All of
These Wishes!

How to Pass Like They Did—But Smarter

Synthesizing insights from successful candidates into an actionable preparation framework:

Practice Daily, Not Occasionally

Commit to solving 5-10 problems every single day for at least six months. Consistency builds fluency that cramming never achieves. Treat this like a non-negotiable appointment with your future certification.

Write Concisely and Strategically

For Part II, practice bullet-pointed responses with clear assumptions, logical flow, and explicit reasoning. Less is often more when every word is purposeful. Train yourself to identify what graders need to see and provide exactly that—nothing more, nothing less.

Show Your Assumptions

Explicitly state what you're assuming in every problem. This earns partial credit even when calculations go wrong and demonstrates professional judgment. Graders can't give credit for assumptions they have to infer or guess.

Use Pacing Rules Religiously

Establish time budgets for question types and stick to them ruthlessly during practice. If a problem is eating too much time, mark it and move on. You can't pass by perfecting three questions while leaving ten unanswered.

Train for Real Exam Conditions

Complete at least two full-length timed practice exams under actual testing conditions—no notes, no phone, no breaks beyond what the real exam allows. Simulate the entire experience, including the stress and fatigue of maintaining focus for hours.

The candidates who passed weren't necessarily the most brilliant or the ones who studied longest. They were the ones who studied *strategically*, practiced *actively*, and prepared for the *actual* exam rather than an idealized version of it. Their success came from understanding what the exam truly tests and aligning their preparation accordingly.

Become the Next CHP Success Story

Your Journey Starts Now

You've learned from those who came before you. You know what works and what doesn't. You understand the mistakes to avoid and the strategies to embrace.

Now it's your turn.

The path to certification is challenging but entirely achievable with the right approach. Six months of consistent, strategic preparation can transform you from candidate to Certified Health Physicist. The insights in this document aren't theoretical—they're proven methods from people who recently walked the exact path you're about to begin.

Let the BIE Academy walk that path alongside you!

Set Your Timeline

Choose an exam date and work backward to create your six-month study plan

Gather Your Resources

Acquire past exams, problem sets, and reference materials before starting

Commit to Daily Practice

Make problem-solving a non-negotiable daily habit starting today

Become a CHP

Join the ranks of certified health physicists and advance your career

Every CHP you know was once in exactly your position—preparing, uncertain, but determined to succeed. They made it through, and so will you. Apply what you've learned here, stay consistent, and trust the process. **Six months from now, you could be sharing your own success story with the next generation of aspiring CHPs.**

The certification you're working toward represents more than letters after your name. It's recognition of your expertise, commitment to the profession, and readiness to practice health physics at the highest level. That achievement is within reach—start today.

Let the BIE Academy be your path to success!

In 2026, let's get those letters behind your name and that pin on your lapel!

Visit bieacademy.com for more info.

