TASK

If you break a stick uniformly in two places, you will be left with three segments. Write an algorithm for computing the probability that the three segments form a triangle. This algorithm is supposed to employ Metropolis-Hastings ideas and serve as an independent verification of our theoretical calculations.

SOLUTION

First, we note that the probability can be calculated quite easily on a piece of paper...

Let A and B be the two break points falling on a stick of length L. To distinguish between the break points, we will order them chronologically, A being the older one. Two cases are to be considered:

CASE 1: $0 \leq A \leq B \leq L$

and

CASE 2: $0 \leq A < B \leq L$.

The three pieces will form a triangle if none is longer than the sum of the others. In terms of A and B, the conditions are the following.

CASE 1:

\[
A < L - A \quad \text{<=======>} \quad A < L/2;
\]

\[
L - B < B \quad \text{<=======>} \quad B > L/2;
\]

\[
B - A < A + (L - A) \quad \text{<=======>} \quad B < A + L/2.
\]

CASE 2: $B < L/2$, $A > L/2$ and $A < B + L/2$.

Now we are capable of plotting the acceptable region on the plane. We see that it consists of two small triangles: one triangle corresponds to case 1 and the other triangle corresponds to case 2. The area of the acceptable region can be calculated as

\[
\frac{1}{2} \times (L/2)^2 + \frac{1}{2} \times (L/2)^2.
\]

The space of all elementary possibilities is the square $[0,L] \times [0,L]$. It has the area of L^2. Since (A,B) are uniformly distributed on $[0,L] \times [0,L]$, the probability of the three segments forming a triangle equals

\[
\frac{\text{the area of the acceptable region}}{\text{the area of the space of all elementary possibilities}} = \frac{1/2 \times (L/2)^2 + 1/2 \times (L/2)^2}{L^2} = 1/4.
\]

Next, we are going to build an algorithm to verify our theoretical result...

Now let $LF = \min(A,B)$ be the left break point and $RT = \max(A,B)$ be the right breakpoint. It is a straightforward exercise to determine conditional and marginal distributions of LF and RT. First we focus on marginal distributions:

\[
\text{Fm}_{LF}(x) = P(LF \leq x) = 1 - P(LF > x) = 1 - P(\min(A,B) > x) = 1 - P(A>x,B>x) = \]
\[= 1 - P(A > x)^*P(B > x) = 1 - (1-x)/L)^2. \]

\[Fm_{RT}(y) = P(RT \leq y) = P(\max(A,B) \leq y) = P(A \leq y, B \leq y) = P(A \leq y) * P(B \leq y) = \]

\[= (y/L)^2. \]

And now we are ready to calculate conditional distributions. For any \(x \leq y, \)

\[Fc_{LF}(x | y) = P(LF \leq x \mid RT = y) = P(\min(A,B) \leq x \mid \max(A,B) = y) = \]

\[= 1/2 \times P(\min(A,B) \leq x \mid \max(A,B) = y, A < B) + 1/2 \times P(\min(A,B) \leq x \mid \max(A,B) = y, A \leq B) = \]

\[= 1/2 \times P(A \leq x \mid A < y) + 1/2 \times P(B \leq x \mid B \leq y) = x/y. \]

Similarly, for any \(x \leq y, \)

\[Fc_{RT}(y | x) = P(RT \leq y \mid LF = x) = 1 - P(RT > y \mid LF = x) = 1 - (1-y)/(1-x). \]

Using functions \(Fc_{LF}() \) and \(Fc_{RT}() \), random variables \(LF \) and \(RT \) can be simulated one from the other. Here we employ the rule:

\[\text{if } F(x) \text{ is a cumulative distribution function (cdf) of a given distribution, then random variable } F_{-1}(U) \text{ has this distribution, where } U \text{ is uniformly distributed on } [0,1]. \] (***)

NOTE: of course, we did not have to derive conditional distributions of TF and RT to simulate the three random segments of the line. We could have easily simulated the marginals of \(A \) and \(B \) and seen if the three segments form a triangle. Focusing on \(LF \) and \(RT \) was necessitated by the requirement to use Metropolis algorithm.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The algorithm below employs Gibbs sampling, which says: to simulate a joint distribution of \((LF,RT)\), we can simulate \( LF \) given \( RT \) and \( RT \) given \( LF \) long enough.

\%
\% INITIALIZATION
\% Counter = 0
\% Random.Seed(0)

\% for(S = 1:Sample_Number)
\% \% SIMULATING INITIAL VALUES OF Z AND W
\% U = Simulated_Uniform(0,1)
\% LF = Fm^{-1}_{LF}(U) \% Using the marginal cdf of LF and rule (***) to simulate LF.
\% U = Simulated_Uniform(0,1)
\% RT = Fm^{-1}_{RT}(U) \% Using the marginal cdf of RT and rule (***) to simulate RT.

\% for(iter = 1:(Burn.In+1))
\% \% THE MAGIC OF GIBBS SAMPLING.

\% \% Randomly selecting LF or RT.
\% U = Simulated_Uniform(0,1)
\% if( U <= 1/2 )
\% \% LF = Fc^{-1}_{LF}(U \mid RT) \% Simulating LF using its conditional cdf
\% \% and the current value of RT.
\% \% else
\% \%
U = Simulated_Uniform(0,1)
RT = Fc^{-1}_RT(U | LF) \% Simulating RT using its conditional cdf
% and the current value of LF.

% CHECKING IF ONE CAN MAKE A TRIANGLE
% OUT OF THE SIMULATED SEGMENTS
if(LF < L/2 & RT > L/2 & RT < LF + L/2)
    Counter = Counter + 1
end

Prob_Of_Triangle = Counter / Sample_Number.

The proposed computational algorithm uses Gibbs sampling. So how is our work related to the ideas of
Metropolis?... It turns out that the employed version of Gibbs sampling is a particular case of the
Metropolis-Hastings algorithm. Let us denote W = (LF,RT).

- Gibbs sampling simulates a Markov chain of different realizations of W in multiple steps (just like
  in the Metropolis-Hastings algorithm).
- At each step we have a current value of W and propose a new value W' [just like in Metropolis].
- We propose the new value W' with the proposal density Q(w' | w), which is based on the following
two-stage procedure. First, a single dimension i of W is chosen randomly. Second, the proposed
value W' is identical to W, except for its value along the i-dimension W_i (which is either LF or
RT). W_i is sampled from the conditional distribution P(W_i | W_{-i}), where W_{-i} is the other
dimension (if W_i = LF, then W_{-i} = RT, and the other way around). Therefore

Q(W' | W) = P(W'_i | W_{-i}).

- The new value is accepted with probability

( P(W') * Q(W | W') ) / ( P(W) * Q(W' | W) )

(just like in the Metropolis-Hastings algorithm). We note that, due to the specific
construction of Q(w,w'), the acceptance probability equals

( P(W') * Q(W | W') ) / ( P(W) * Q(W' | W) ) =
= ( P(W) * P(W_i | W_{-i}) ) / ( P(W) * P(W_i | W_{-i}) ) =
= ( P(W_{-i}) * P(W_i | W_{-i}) ) / P(W_{-i}) = 1.

So we always accept the new realization W'.

Statistical & Financial Consulting by Stanford PhD
consulting@stanfordphd.com