
TASK 

It is well-known that the dynamics of many financial time series exhibit discontinuities. Relationships between 

the key factors which are true today may not be true tomorrow. The moments when the key relationships 

change are called the times of “structural change”. Apply the Hidden Markov Model methodology to identify 

the structural change moments for the USD/EUR exchange rate. The analysis must be exploratory and 

robust. As such, it should not employ very complicated models relying on too many assumptions. 

 

SOLUTION 

 

APPLICATION OF A HIDDEN MARKOV MODEL TO LOG-RETURNS OF THE 

USD/EUR EXCHANGE RATE: AN ORIGINAL IMPLEMENTATION IN MATLAB 

 

INTRODUCTION 

This study analyzes a particular financial time series within the framework of Hidden Markov Models 

(HMM). An HMM is a model of a stochastic process which states the following: the distribution of the 

process tomorrow given its value today depends on the current state of the world, which is not observed. 

There are at least two distinct states of the world. The world jumps from one state to another according to a 

continuous-time or discrete-time Markov chain. The conditional distribution of the process may be a simple 

function of the state of the world. It may be a Normal or Poisson distribution. However, the hidden nature of 

the state makes the model complicated. The model can be estimated using an iterative version of the 

maximum likelihood method (like EM algorithm) or Bayesian methods.  

For our study, we choose daily log-returns of the USD/EUR exchange rate observed during the period May 

17, 1991 – May 16, 2011. We prefer to focus on log-returns instead of prices because they have a much 

better chance of being stationary processes, amenable to HMM modeling. Focusing on daily observations 

allows us to gather enough data to estimate complex models, with more than a dozen of parameters 

sometimes. The USD/EUR exchange rate is defined as the amount of dollars per one euro. 

We feel the need to develop a reasonably complex model for USD/EUR for risk management purposes. 

Most likely, the distribution of USD/EUR changes over time. Understanding its current expectation and 

current volatility allows to hedge short-term derivatives on USD/EUR more efficiently. By short-term 

derivatives we mean those with tenors up to 6 months. Such derivatives are very sensitive to fluctuations in 

the volatility, typically... Sticking to traditional autoregressive models is likely to make hedging less accurate. 

Oftentimes the distribution of the exchange rate changes abruptly because of the news in the market. A 

traditional model would not pick up a change quickly enough, which would lead to miscalculating the 

probabilities of various scenarios of the profit & loss on the derivative. For example an AR-GARCH model 

would quickly pick an upward jump in the volatility of the exchange rate but it would fail to capture a 

downward jump in the volatility quickly enough. 

Risk management is an important part of market making and proprietary trading. To the best of our 

knowledge, more and more hedge funds are currently experimenting with regime switching models for that 

purpose. 

Now let us get back to the modeling issues. We know that USD/EUR must exhibit slightly different types of 

behavior under different global conditions. So the global conditions could be the hidden state in our model. 

However, the exact nature of variation of log-returns with the state is not clear. And we need to figure it out 



before we build the model. To develop intuition, we settle for the obvious. We plot the time series of the 

log-returns, hoping to see something. The plot is placed below (all the plots in this study are also attached in 

good quality). 

0 1000 2000 3000 4000 5000 6000
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Days

Daily log-return on Euro

 

Log-returns appear to have a relatively stable conditional mean. This characteristic may be invariant with the 

state. On the other hand, the volatility of log-returns exhibits random behavior, jumping to relatively high 

levels during certain historic periods and dropping back on some other days. The volatility is to become the 

only characteristic changing from one state to another in our model.  

We define the model in the following way. Let R_t be the log-return at time t. There are K different states of 

the world, numbered 1, 2, ..., K. The state on day 1 is distributed according to probabilities Pi = (pi_1, pi_2, 

..., pi_K ). These probabilities are called the initial distribution. The state of the world follows a discrete-time 

Markov chain with the transition matrix A = (a_ij), where all a_ij can be positive, generally speaking. If at 

time t the Markov chain is in state k, then 

R_t = Beta_0 + Beta_1 * R_{t-1} + ... + Beta_p * R_{t-p} + sigma_k * eps_t, 

where eps_t is a standard normal variable, which is independent of everything else. It is important that the 

conditional volatility strictly increases with the state: 

sigma_1 < sigma_2 < ... < sigma_K. 

The conditional volatility is the only thing that distinguishes the states (of the world).  

We consider 9 different specifications of the model, corresponding to different combinations of the number 

of lags p and the number of states K: 

 

     model 1: p = 0, K = 2, 

     model 2: p = 1, K = 2, 

     model 3: p = 2, K = 2, 



     model 4: p = 0, K = 3, 

     model 5: p = 1, K = 3, 

     model 6: p = 2, K = 3, 

     model 7: p = 0, K = 4, 

     model 8: p = 1, K = 4, 

     model 9: p = 2, K = 4. 

 

Model 9 is most flexible but requiring the most data to estimate. Model 1 is most parsimonious. We will 

have to use model selection tools to identify the optimal performer among the 9 candidates. One of the 

most popular model selection tools are cross-validation and Akaike information criterion (AIC). We will base 

our decisions on cross-validation but will keep an eye on the AIC statistics as a sanity check. 

 

CROSS-VALIDATION & ESTIMATION 

The period of May 17, 1991 – May 16, 2011 presents 5217 data points of daily log-returns on euro. We split 

those data points into two periods: the estimation-validation period and the testing period. Due to the 

slowness of the estimation procedure, the estimation-validation period is chosen to be days 3 through 2002, 

which amounts to the total of 2000 data points. We need the first two days to get the values of lags R_{t-1} 

and R_{t-2} in models 2, 3, 5, 6, 8 and 9. Therefore, they do not count towards the training-validation period. 

The remaining data, corresponding to days 2003 through 5217, is the testing period. These data are used to 

study the predictive performance of the models estimated earlier. Both estimation-validation and testing 

periods are big enough to make the results of estimation, optimal model identification and predictive 

diagnostics accurate.  

Implicit in our analysis is the assumption that the dynamics of the exchange rate is the same on any 

subinterval of the estimation-validation and testing periods. Loosely speaking, if a model is adequate for one 

relatively large subinterval, it is adequate for any other relatively large subinterval. 

Our analysis has been done with the help of Matlab functions HMM_Analysis(), HMM_Estimation(), 
HMM_Estimation_OneIniGuess(), HMM_VolatilityPrediction() and HMM_Viterbi(), build 
specifically for this study. The functions contain numerous comments, explaining every step and 
mathematical manipulation. The scripts are attached. Also, their body is placed in appendix B. The key 
Matlab commands required to leverage the scripts are placed in appendix A, whereas the complete Matlab 
session with all the output is placed in appendix C.  
 

The first stage of our analysis is 2-fold cross-validation. We split the estimation-validation set into two 

equally-sized blocks. Block 2 follows block 1 chronologically. We estimate each of the 9 models on block 1. 

As an estimation method we use the EM-algorithm. We extend the version of the EM-algorithm described in 

chapter “Sequential Data” of Bishop’s “Pattern Recognition and Machine Learning” for our case. Our model 

is slightly more general than the framework treated by Bishop because of the auto-regressive coefficients 

Beta_1, ... , Beta_p.  

 

The EM-algorithm is an efficient tool. However, it has the flaw of converging to a wrong solution if the 

starting values of the parameters are close to a local maximum of the likelihood function. Therefore, at each 

estimation step, we run the EM-algorithm with 4 different sets of starting values. How those starting values 

are chosen can be seen on lines 27 – 44 of script HMM_Estimation_OneIniGuess(). We then choose the 

parameter estimates that maximize the likelihood function, ignoring the other 3 sets of the parameter 

estimates. We would have preferred to use 10 different starting values instead of 4. However, that would 



have made the whole analysis quite slow... The EM estimation over different starting values is implemented 

in scripts HMM_Estimation() and HMM_Estimation_OneIniGuess(). 

Recall that each model is estimated on data bock 1. If model i is correct and its parameter estimates are 

accurate, then model i must predict volatility in block 2 relatively accurately. We measure the discrepancy 

between the true and predicted volatilities in the following fashion. For each day in block 2, we predict the 

volatility using the data from the previous days in block 2 and the parameter estimates from block 1. We use 

the forward algorithm, described in chapter “Sequential Data” of Bishop’s “Pattern Recognition and 

Machine Learning” and section 2.1 of Fraser’s “Hidden Markov Models and Dynamical Systems”. Suppose 

that sigma_hat_t is the predicted volatility on day t and Beta_hat_0, ... , Beta_hat_p are the parameter 

estimates. Then we standardize the log return with the following transformation: 

R_stand_t = (R_t - Beta_hat_0 + Beta_ hat_1 * R_{t-1} + ... + Beta_ hat_p * R_{t-p}) / sigma_hat_t. 

Essentially, we are building the estimate of residual eps_t. 

If our model is correct, than the variance of the standardized residuals on block 2 must be approximately 1. 

However, the model may not be that great. On average, it may predict the variance to be M times bigger 

than the truth or M times smaller than the truth. In both those cases, we want the measure of prediction 

error to be the same, for symmetry reasons. Therefore we define the prediction error as 

PE = abs(log(VAR[R_stand_t])). 

We see that if the prediction of variance is M times bigger than the truth, on average, then PE = log(M). And 

we see that if the prediction of variance is M times smaller than the truth, on average, then PE = abs( -

log(M) ) = log(M). The smaller PE is the better the model is. We calculate PE for each of the 9 models, 

recording the numbers as important information about the goodness of the models. 

All the calculations above correspond to only a half of the cross-validation procedure. Now we perform their 

symmetric counterpart. We estimate each of the 9 candidate models on block 2 and calculate their PE on 

block 1. Now we have two PE numbers for each candidate model. We average those numbers. This is the 

final cross-validation estimate of the prediction error for each model. That model is considered best which 

has the smallest cross-validation error. Below are displayed the cross-validation errors, the aggregate ones 

and the errors for each block. 

CV_Errors = 
 
    0.3038 
    0.3037 
    0.3023 
    0.1905 
    0.1922 
    0.1914 
    0.3213 
    0.3354 
    0.3211 
 
CV_Errors_For_Blocks = 
 
    0.5950    0.0126 
    0.5953    0.0120 
    0.5925    0.0122 
    0.3612    0.0199 
    0.3611    0.0233 
    0.3596    0.0233 
    0.6112    0.0313 
    0.6141    0.0567 
    0.6090    0.0331 
 



We see that model 4 performs better than the others, according to cross-validation. Lets us remind you 

that the model equation is: 

R_t = Beta_0 + sigma_k * eps_t, 

where sigma_k takes three values: sigma_1 < sigma_2 < sigma_3. Here it seems that 3 states of the world 

perform much better than 2 or 4 states of the world. We will see shortly if the cross-validation choice of the 

best model is consistent with the AIC choice of the best model. 

As the second stage of our analysis, we estimate each of the 9 candidate models on the whole estimation-

validation data set. Of course, we are most keen to learn the parameter estimates of the optimal model 

(model 4). But we also need the estimates of other models to get the AIC scores as by-products of 

estimation and to perform various other diagnostics. The estimation is done using the EM-algorithm. The 

estimates of model 4 are displayed below.   

Beta_0 = -1.1700e-005, 

sigma_1 = 0.0037,  

sigma_2 = 0.0057, 

sigma_3 = 0.0126, 

Pi = (0, 1, 0), 

A = 0.9864    0.0059    0.0077 

0.0031    0.9735    0.0234 

0.0180    0.1774    0.8046 

The estimate of Beta_0 is insignificant, as manifested by its standard error of 1.3943e-004. This leads us to 

look more carefully into why more flexible models 5 and 6 have not performed as well as model 4. As we 

know, the only difference between model 4 and the other two models is the presence of autoregressive 

coefficients. We discover that autoregressive coefficients are statistically insignificant for models 5 and 6. 

In particular, this is how the autoregressive estimates and their standard errors look for model 6: 

Model_6.AutoRegressCoeff = 
 
   -0.0000 
   -0.0262 
    0.0193 
 
Model_6.AutoRegressCoeff_StdErrors = 
 
    0.0001 
    0.0224 
    0.0223 

We conclude that the true autoregressive coefficients must be 0, which is consistent with financial theory. 

The complete estimation results can be found in appendix C. As the last touch, we generate AIC scores for 

the 9 candidate models and see what they suggest. 

AkaikeInfoCriteria = 
 
   -7.4382 
   -7.4389 
   -7.4387 
   -7.4655 
   -7.4667 
   -7.4665 
   -7.4769 
   -7.4782 
   -7.4776 
 



The conclusion of the Akaike criterion is different from that of cross-validation. The Akaike criterion seems 

to favor model 8 (p = 1, K = 4). However, the Akaike scores are so close to one another that the criterion 

seems to be less accurate than cross-validation in our case. 

 

THE MAXIMUM A PRIORI STATE SEQUENCE AND VITERBY ALGORITHM 

Ok. Now that we have found the model to love, we can exploit it fully to get insights into the states of the 

world and the associated volatility dynamics during the estimation-validation period. We do that with the 

help of the Viterbi algorithm. It is described well in section 2.3 of Fraser’s book. The description in Bishop’s 

book is somewhat cryptic. We implemented the Viterbi algorithm in script HMM_Viterbi(), containing 

numerous comments. 

The graph below displays the maximum a posteriori (MAP) sequence of states. In plain English, this is the 

most likely scenario of the states of the world given the data. We note, that if S_t is the component of MAP 

corresponding to day t, this does not mean that S_t is the most likely state on day t, given the data. The 

sequence is most likely but any of its components is not necessarily most likely. This is a consequence of the 

fact that, even if states S_{t-1} and S_t are most likely given the data, the transition from S_{t-1} to S_t may 

not be likely according to the estimate of transition matrix A.  

Identification of the maximum a posteriori state sequence and the corresponding volatilities is the third 

stage of our analysis. 
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The most likely volatility state during the estimation period

We see that the world starts at state 2 and spends quite a bit of time there. From time to time there are 

moves to the other states, where perceptible amount of time is spent. The world spends the least amount of 

time at state 3 (the high-volatility environment). Also we note that there have been moves between each 

pair of states. As the next step, we want to see what this implies for the volatility. On the same graph we 

display 1) the volatility at the current state of the world according to MAP and 2) the expected volatility on 

each separate day given the data. The latter is calculated using conditional probabilities which have been 

generated as a by-product of EM estimation. For details see script HMM_Estimation_OneIniGuess().  



As can be seen above, the expected volatility line reflects the most likely state sequence most of the time, 

but not always. This is an illustration of the property stating that any of the components of the most likely 

state sequence is not necessarily most likely on that day. 

 

PREDICTIVE DIAGNOSTICS 

As the fourth stage of our analysis, we test predictive performance of all 9 models on a fresh data set, which 

corresponds to the testing period. We want to see if exploiting cross-validation has led to the right choice of 

the model. We also want to see how close the predictive performance of runners-up is. The predictive 

performance is measured using the good old PE measure as well the percentage of 1-sigma, 2-sigma and 3-

sigma events that have happened in the testing period according to the predictions of the models. The 

results are displayed below. 

PredictionInterval_AbsLogError (PE) = 
 
    0.1956 
    0.1983 
    0.1950 
    0.2008 
    0.2056 
    0.2003 
    0.2142 
    0.2195 
    0.2182 
 
PredictionInterval_VarOfStandResiduals = 
 
    0.8224 
    0.8201 
    0.8228 
    0.8180 
    0.8142 
    0.8185 
    0.8072 
    0.8029 



    0.8040 
 
PredictionInterval_Perc_Of_1STD_Events = 
 
    0.3066 
    0.3059 
    0.3049 
    0.3076 
    0.3069 
    0.3052 
    0.2876 
    0.2886 
    0.2883 
 
PredictionInterval_Perc_Of_2STD_Events = 
 
    0.0093 
    0.0090 
    0.0093 
    0.0028 
    0.0028 
    0.0028 
    0.0121 
    0.0090 
    0.0104 
 
PredictionInterval_Perc_Of_3STD_Events = 
 
  1.0e-003 * 
 
    0.6913 
    0.6913 
    0.6913 
         0 
         0 
         0 
         0 
         0 
         0 

 

Let’s summarize the above. In terms of PE, model 4 is not the best one on the testing set but it is close to 

the best performers. Model 4 updates the volatility forecast in such a way that 1-sigma events happen as 

they should, approximately 32% of the time. We do note that a big subset of the candidate models 

performs quite well here: models 1 trough 6. On the other hand, all the models are disgraceful when it 

comes to counting 2-sigma events. Here model 4 is much worse than models 1 - 3 and 7 - 9, but those are 

not great either. The only models that lead to near-correct percentages of 3-sigma events are models 1 – 3 

(two states of the world). Note that the best model according to the Akaike information criterion (model 8) 

performs worse than the best model according to cross-validation (model 4). 

A couple of explanations are possible: 

1) The true dynamics of the exchange rate is different between the estimation-validation period and the 

testing period. No matter how well we estimate a model on the estimation-validation period, it will not 

capture all the potential moves on the testing period. 

2) It may be the case that the whole modeling framework over-predicts the unconditional fatness of tails. 

Perhaps, we need to think about keeping only two volatility states but let the residuals eps_t have a more 

complex distribution, not standard normal. 

 

As the final word, we display the expected volatility implied by model 4. It is computed by the forward 

algorithm and is based on the data from the previous days. This is how we would predict the volatility in 

reality if we committed to model 4. The expected volatility is juxtaposed with log-returns during the same 



(testing) period to illustrate the merits of the model.   

 

Predictive diagnostics is implemented in function HMM_VolatilityPrediction(). 

 

COMPARISON TO THE ANALYSIS OF LOG-RETURNS ON THE BRITISH POUND 

So far we are in the dark regarding the following questions. "How much do the optimal number of states and 

the optimal number of autoregressive coefficients change if we run the model on a different European 

currency?" "Are all our insights specific to euro or have we learned anything more general, valid for other 

economies?" It is not the intention of this study to answer these questions fully. However, we would like to 

shed some light on the issue. Our findings may serve as a starting point for any in-depth analysis in the 

future.  

We run the already built analytics on the USD/GBP exchange rate during the same time window (May 17, 

1991 – May 16, 2011). “GBP” stand for the British pound. We expect the dynamics of pound and euro to be 

similar, as both must react to events in Europe and worldwide with somewhat similar sensitivities... The 

complete output of the analysis is placed into appendix C. Here we discuss only the most important results.  

 

Similarly to euro, all coefficients Beta_i are proved to be insignificant. However, the best model is slightly 

different now, according to the cross-validation errors. Now we have 4 volatility states: 

sigma_1 = 1.9159e-005,  

sigma_2 = 0.0032, 

sigma_3 = 0.0062, 

sigma_4 = 0.0145. 



The volatility at the first state is tiny. It is an artifact of imperfect likelihood maximization. The other 

volatility states, (sigma_2, sigma_3, sigma_4), are similar in relative distances to the three volatility states 

of euro, which is reassuring. The transition dynamics follows the same rule. The transition probabilities 

between states 2 – 4 of pound are similar to those between states 1 – 3 of euro: 

A = 0.2244    0.0000    0.7323    0.0432 

 0.0041    0.9529    0.0381    0.0048 

0.0216    0.0309    0.9292    0.0183 

0.0000    0.0000    0.1583    0.8417 

The results are moderately encouraging. There are similarities between pound and euro. More analysis is 

necessary for definitive conclusions. In terms of predictive diagnostics, our models for pound performed 

much worse than our models for euro on the testing set. Again, perhaps, the dynamics of the pound has 

changed recently, or we should modify the models slightly. Here the tiny volatility state (state 1) in the 

optimal model does not make much weather, as all 9 models perform relatively badly. 

PredictionInterval_AbsLogError_GBP = 
 
    0.4134 
    0.4216 
    0.4165 
    0.3670 
    0.3745 
    0.3777 
    0.3432 
    0.3886 
    0.3868 
 
PredictionInterval_VarOfStandResiduals_GBP = 
 
    0.6614 
    0.6560 
    0.6594 
    0.6928 
    0.6877 
    0.6855 
    0.7095 
    0.6780 
    0.6792 
 
PredictionInterval_Perc_Of_1STD_Events_GBP = 
 
    0.2617 
    0.2575 
    0.2586 
    0.2603 
    0.2589 
    0.2565 
    0.2682 
    0.2534 
    0.2530 
 
PredictionInterval_Perc_Of_2STD_Events_GBP = 
 
    0.0059 
    0.0059 
    0.0059 
    0.0021 
    0.0021 
    0.0021 
    0.0021 
    0.0052 
    0.0059 
 
PredictionInterval_Perc_Of_3STD_Events_GBP = 
 
    0.0007 
    0.0007 



    0.0014 
         0 
         0 
         0 
         0 
         0 
         0 

 
 

CONCLUSIONS 

We make the following conclusions. 

 There are three volatility states for the log-returns of euro. The low-volatility state and the medium-

volatility state are closer to one another than to the high-volatility state. According to the transition 

matrix, the world does not spend much time in the high-volatility state. But it may get stuck for 

quite a while in any of the other two states. The medium-volatility state is most frequent. 

 No serial correlation is exhibited by log-returns. The true auto-regressive parameters are zero. This 

is consistent with financial theory. 

 The best model according to the Akaike information criterion (model 8) performs worse on a fresh 

data set than the best model according to cross-validation (model 4). 

 The best model we have identified (model 4) predicts the volatility on a fresh data set with 10% 

error. This leaves plenty of room for model refinement. 

 The estimated models exhibit decent predictive performance when capturing the middle of the 

range of the future distribution of log-returns. However, all of them are unsatisfactory when 

predicting the tails of the future distribution. More research has to be done into the optimal choice 

of the distribution of residuals. Perhaps, possibilities for other types of structural change must be 

introduced into the models. 

 There are many similarities between the dynamics of euro and the British pound. The insights from 

this study may be cautiously used when modeling other European currencies.  

 

REFERENCES 

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. 

Fraser, A. M. (2008). Hidden Markov Models and Dynamical Systems. SIAM. 

 

 

 

APPENDIX A: THE MAIN COMMANDS OF THE MATLAB SESSION 

>> load USD_EUR_rate.txt 
>> LogReturn_On_Euro = log(USD_EUR_rate(2:length(USD_EUR_rate))) - 
log(USD_EUR_rate(1:(length(USD_EUR_rate)-1))); 
>> scatter(1:length(LogReturn_On_Euro),LogReturn_On_Euro) 



>> xlabel('Days') 
>> title('Daily log-return on Euro') 
 

>> [BestModel, BestModel_EstimResults, CV_Errors, CV_Errors_For_Blocks, AkaikeInfoCriteria, 
PredictionInterval_PredictedVolatility, PredictionInterval_VarOfStandResiduals, PredictionInterval_AbsLogError, 
PredictionInterval_Perc_Of_1STD_Events, PredictionInterval_Perc_Of_2STD_Events, 
PredictionInterval_Perc_Of_3STD_Events, TrainingPeriod, TrainingData, States, Volatility] = 
HMM_Analysis(LogReturn_On_Euro, [0, 1, 2, 0, 1, 2, 0, 1, 2], [2, 2, 2, 3, 3, 3, 4, 4, 4], 2002); 

 
>> scatter(TrainingPeriod,States) 
>> xlabel('Days') 
>> ylabel('Volatility state') 
>> title('The most likely volatility state during the estimation period') 
>> plot(TrainingPeriod,Volatility,'d',TrainingPeriod,sqrt(BestModel_EstimResults.VarianceOnTheDay),'d') 
>> xlabel('Days') 
>> legend('most likely volatility path','expected volatility on a given day') 
>> title('Volatility during the estimation period') 

>> Model_6 = HMM_Estimation(LogReturn_On_Euro, 2, 3, 3, 2002); 
 
>> load USD_GBP_rate.txt 
>> LogReturn_On_GBP = log(USD_GBP_rate(2:length(USD_GBP_rate))) - 
log(USD_GBP_rate(1:(length(USD_GBP_rate)-1))); 
>> scatter(1:length(LogReturn_On_GBP),LogReturn_On_GBP) 
>> [BestModel_GBP, BestModel_EstimResults_GBP, CV_Errors_GBP, CV_Errors_For_Blocks_GBP, 

AkaikeInfoCriteria_GBP, PredictionInterval_PredictedVolatility_GBP, PredictionInterval_VarOfStandResiduals_GBP, 

PredictionInterval_AbsLogError_GBP, PredictionInterval_Perc_Of_1STD_Events_GBP, 

PredictionInterval_Perc_Of_2STD_Events_GBP, PredictionInterval_Perc_Of_3STD_Events_GBP, TrainingPeriod_GBP, 

TrainingData_GBP, States_GBP, Volatility_GBP] = HMM_Analysis(LogReturn_On_GBP, [0, 1, 2, 0, 1, 2, 0, 1, 2], [2, 2, 2, 

3, 3, 3, 4, 4, 4], 2002); 

 

 

APPENDIX B: SELECTED MATLAB CODE  

function [BestModel, BestModel_EstimResults, CV_Errors, CV_Errors_For_Blocks, AkaikeInfoCriteria, 

PredictionInterval_PredictedVolatility, PredictionInterval_VarOfStandResiduals, 

PredictionInterval_AbsLogError, PredictionInterval_Perc_Of_1STD_Events, 

PredictionInterval_Perc_Of_2STD_Events, PredictionInterval_Perc_Of_3STD_Events, TrainingPeriod, 

TrainingData, States, Volatility] = HMM_Analysis(Series, NumOfLags, NumOfStates, EndOfTrainingData) 

  

% 

% The methodology in this analysis follows sections 13.2.1 - 13.2.2, 13.2.6 of  

% Bishop's "Pattern Recognition and Machine Learning" as well as sections 2.1 - 2.3  

% of Fraser's "Hidden Markov Models and Dynamical Systems". 

% 

  

% INITIALIZATION 

StartOfTrainingData     = 1 + max(NumOfLags); 

if length(NumOfLags) ~= length(NumOfStates) 

    fprintf( '\nArrays NumOfLags and NumOfStates must be of the same length, which is the number of 

models tried.\n' ); 

end 

NumOfModels             = length(NumOfLags); 

  

% TWO-FOLD CROSS-VALIDATION 

fprintf( '\nCROSS-VALIDATION BEGINS.\n'); 

BlockSize               = floor((EndOfTrainingData-StartOfTrainingData+1) / 2); 

CV_Errors_For_Blocks    = zeros(NumOfModels, 2); 

  

for m = 1:NumOfModels 

    EstimResults                = HMM_Estimation(Series, NumOfLags(m), NumOfStates(m), 

StartOfTrainingData, StartOfTrainingData+BlockSize-1);     

    PredictionResults           = HMM_VolatilityPrediction(Series, NumOfLags(m), NumOfStates(m), 

EstimResults, StartOfTrainingData+BlockSize, EndOfTrainingData); 

    CV_Errors_For_Blocks(m,1)   = PredictionResults.AbsLogError; 

  

    EstimResults                = HMM_Estimation(Series, NumOfLags(m), NumOfStates(m), 

StartOfTrainingData+BlockSize, EndOfTrainingData);     

    PredictionResults           = HMM_VolatilityPrediction(Series, NumOfLags(m), NumOfStates(m), 

EstimResults, StartOfTrainingData, StartOfTrainingData+BlockSize-1); 

    CV_Errors_For_Blocks(m,2)   = PredictionResults.AbsLogError; 

end 



fprintf( '\nCROSS-VALIDATION COMPLETED.\n'); 

  

CV_Errors               = mean(CV_Errors_For_Blocks')'; 

CV_Errors_Min           = CV_Errors(1) + 1; 

for m = 1:NumOfModels 

   if CV_Errors(m) < CV_Errors_Min 

       CV_Errors_Min    = CV_Errors(m); 

       BestModel        = ['Best model: number of lags = ' num2str(NumOfLags(m)) ' and number of 

different volatility regimes = ' num2str(NumOfStates(m)) '.']; 

       BestModelIndex   = m; 

   end 

end 

  

% ESTIMATION, AKAIKE CALCULATION & PREDICTIVE PERFORMANCE 

AkaikeInfoCriteria                      = zeros(NumOfModels,1);  

PredictionInterval_VarOfStandResiduals  = zeros(NumOfModels,1); 

PredictionInterval_AbsLogError          = zeros(NumOfModels,1); 

PredictionInterval_Perc_Of_1STD_Events  = zeros(NumOfModels,1); 

PredictionInterval_Perc_Of_2STD_Events  = zeros(NumOfModels,1); 

PredictionInterval_Perc_Of_3STD_Events  = zeros(NumOfModels,1); 

  

for m = 1:NumOfModels 

    EstimResults                                = HMM_Estimation(Series, NumOfLags(m), 

NumOfStates(m), StartOfTrainingData, EndOfTrainingData); 

    AkaikeInfoCriteria(m)                       = EstimResults.AIC; 

     

    PredictionResults                           = HMM_VolatilityPrediction(Series, NumOfLags(m), 

NumOfStates(m), EstimResults, EndOfTrainingData+1, length(Series)); 

    PredictionInterval_PredictedVolatility      = PredictionResults.PredictedVolatility; 

    PredictionInterval_VarOfStandResiduals(m)   = PredictionResults.VarianceOfStandResiduals; 

    PredictionInterval_AbsLogError(m)           = PredictionResults.AbsLogError; 

    PredictionInterval_Perc_Of_1STD_Events(m)   = PredictionResults.Perc_Of_1STD_Events; 

    PredictionInterval_Perc_Of_2STD_Events(m)   = PredictionResults.Perc_Of_2STD_Events; 

    PredictionInterval_Perc_Of_3STD_Events(m)   = PredictionResults.Perc_Of_3STD_Events; 

     

    if m == BestModelIndex 

        BestModel_EstimResults  = EstimResults; 

    end 

    fprintf( '\nCOMPLETED ESTIMATION & PREDICTION DIAGNOSTICS FOR MODEL %i.\n', m); 

end 

  

% IDENTIFYING THE MAXIMUM A POSTERIORI (MAP) STATE SEQUENCE VIA THE VITERBI 

% ALGORITHM. THE MAXIMUM A POSTERIORI SEQUENCE IS THE MOST LIKELY SEQUENCE 

% GIVEN THE DATA AND THE PARAMETER ESTIMATES. 

[TrainingPeriod, TrainingData, States, Volatility]  = HMM_Viterbi(Series, NumOfLags(BestModelIndex), 

NumOfStates(BestModelIndex), BestModel_EstimResults, StartOfTrainingData, EndOfTrainingData); 

 

 

function PredictionResults = HMM_VolatilityPrediction(RawSeries, NumOfLags, NumOfStates, 

EstimResults, StartOfTestingData, EndOfTestingData) 

  

% 

% Uses parameter estimates from a different period and predicts volatility 

% in the forward looking fashion. 

% 

  

AutoRegressCoeff    = EstimResults.AutoRegressCoeff; 

VariancesAtStates   = EstimResults.VariancesAtStates; 

A                   = EstimResults.A; 

APower              = A^100; 

StationaryPi        = APower(1,:)'; 

  

% 

% INITIALIZATION 

% 

Dim                 = size(RawSeries); 

if Dim(1) == 1 

    Series  = RawSeries'; 

else 

    Series  = RawSeries; 

end 

n                   = EndOfTestingData - StartOfTestingData + 1; 

  

X                   = ones(n,1); 

for lag = 1:NumOfLags 

    X   = [X, Series((StartOfTestingData-lag):(EndOfTestingData-lag))]; 

end 

Y                   = Series(StartOfTestingData:EndOfTestingData); 

  

% FORWARD CALCULATION OF STATE PROBABILITIES 

Alpha           = zeros(NumOfStates,n); 

Alpha(:,1)      = ( StationaryPi .* 1 ./ sqrt(VariancesAtStates) .* normpdf((Y(1) - 

X(1,:)*AutoRegressCoeff) ./ sqrt(VariancesAtStates)) )'; 



Alpha(:,1)      = Alpha(:,1) / sum(Alpha(:,1)); 

     

for t = 2:n 

    Alpha(:,t)      = ( (Alpha(:,t-1)' * A) .* 1 ./ sqrt(VariancesAtStates') .* normpdf((Y(t) - 

X(t,:)*AutoRegressCoeff) ./ sqrt(VariancesAtStates')) )'; 

    Alpha(:,t)      = Alpha(:,t) / sum(Alpha(:,t)); 

end  

  

% VOLATILITY PREDICTION 

PredictedVariance           = Alpha' * VariancesAtStates; 

PredictedStandResiduals     = (Y - X*AutoRegressCoeff) ./ sqrt(PredictedVariance); 

BurnInPeriod                = min( max(ceil(n/10),150), ceil(n/2) ); 

VarianceOfStandResiduals    = var(PredictedStandResiduals((BurnInPeriod+1):n)); 

AbsLogError                 = abs(log( VarianceOfStandResiduals )); 

Perc_Of_1STD_Events         = sum( abs(PredictedStandResiduals((BurnInPeriod+1):n)) >= 1 ) / (n - 

BurnInPeriod); 

Perc_Of_2STD_Events         = sum( abs(PredictedStandResiduals((BurnInPeriod+1):n)) >= 2 ) / (n - 

BurnInPeriod); 

Perc_Of_3STD_Events         = sum( abs(PredictedStandResiduals((BurnInPeriod+1):n)) >= 3 ) / (n - 

BurnInPeriod); 

  

PredictionResults.PredictedVolatility       = sqrt(PredictedVariance); 

PredictionResults.VarianceOfStandResiduals  = VarianceOfStandResiduals; 

PredictionResults.AbsLogError               = AbsLogError; 

PredictionResults.Perc_Of_1STD_Events       = Perc_Of_1STD_Events; 

PredictionResults.Perc_Of_2STD_Events       = Perc_Of_2STD_Events; 

PredictionResults.Perc_Of_3STD_Events       = Perc_Of_3STD_Events; 

PredictionResults.BurnInPeriod              = BurnInPeriod; 

 

 

APPENDIX C: THE COMPLETE MATLAB SESSION  

>> load USD_EUR_rate.txt 
>> LogReturn_On_Euro = log(USD_EUR_rate(2:length(USD_EUR_rate))) - 
log(USD_EUR_rate(1:(length(USD_EUR_rate)-1))); 
>> scatter(1:length(LogReturn_On_Euro),LogReturn_On_Euro) 
>> xlabel('Days') 
>> title('Daily log-return on Euro') 
 

>> [BestModel, BestModel_EstimResults, CV_Errors, CV_Errors_For_Blocks, AkaikeInfoCriteria, 
PredictionInterval_PredictedVolatility, PredictionInterval_VarOfStandResiduals, PredictionInterval_AbsLogError, 
PredictionInterval_Perc_Of_1STD_Events, PredictionInterval_Perc_Of_2STD_Events, 
PredictionInterval_Perc_Of_3STD_Events, TrainingPeriod, TrainingData, States, Volatility] = 
HMM_Analysis(LogReturn_On_Euro, [0, 1, 2, 0, 1, 2, 0, 1, 2], [2, 2, 2, 3, 3, 3, 4, 4, 4], 2002); 
 
CROSS-VALIDATION BEGINS. 
 
Processed initial guess 1 for the model with 0 lags and 2 states. 
Found a better estimate. 
 
Processed initial guess 2 for the model with 0 lags and 2 states. 
Found a better estimate. 
... 
 
Processed initial guess 1 for the model with 1 lags and 2 states. 
Found a better estimate. 
... 
 
Processed initial guess 4 for the model with 2 lags and 4 states. 
 
CROSS-VALIDATION COMPLETED. 
 
Processed initial guess 1 for the model with 0 lags and 2 states. 
Found a better estimate. 
 
Processed initial guess 2 for the model with 0 lags and 2 states. 
 
Processed initial guess 3 for the model with 0 lags and 2 states. 
 
Processed initial guess 4 for the model with 0 lags and 2 states. 
 
COMPLETED ESTIMATION & PREDICTION DIAGNOSTICS FOR MODEL 1. 



... 
 
Processed initial guess 1 for the model with 2 lags and 4 states. 
Found a better estimate. 
 
Processed initial guess 2 for the model with 2 lags and 4 states. 
Found a better estimate. 
 
Processed initial guess 3 for the model with 2 lags and 4 states. 
 
Processed initial guess 4 for the model with 2 lags and 4 states. 
Found a better estimate. 
 
COMPLETED ESTIMATION & PREDICTION DIAGNOSTICS FOR MODEL 9. 
 
 
>> BestModel 
 
BestModel = 
 
Best model: number of lags = 0 and number of different volatility regimes = 3. 
 
>> CV_Errors 
 
CV_Errors = 
 
    0.3038 
    0.3037 
    0.3023 
    0.1905 
    0.1922 
    0.1914 
    0.3213 
    0.3354 
    0.3211 
 
>> CV_Errors_For_Blocks 
 
CV_Errors_For_Blocks = 
 
    0.5950    0.0126 
    0.5953    0.0120 
    0.5925    0.0122 
    0.3612    0.0199 
    0.3611    0.0233 
    0.3596    0.0233 
    0.6112    0.0313 
    0.6141    0.0567 
    0.6090    0.0331 
 
>> AkaikeInfoCriteria 
 
AkaikeInfoCriteria = 
 
   -7.4382 
   -7.4389 
   -7.4387 
   -7.4655 
   -7.4667 
   -7.4665 
   -7.4769 
   -7.4782 
   -7.4776 
 
>> BestModel_EstimResults 
 
BestModel_EstimResults =  
 
                     AutoRegressCoeff: -1.1700e-005 
           AutoRegressCoeff_StdErrors: 1.3943e-004 
                    VariancesAtStates: [3x1 double] 
                     VarianceOnTheDay: [1x2000 double] 
                                   Pi: [3x1 double] 



                                    A: [3x3 double] 
                                Alpha: [3x2000 double] 
                                 Beta: [3x2000 double] 
                                Gamma: [3x2000 double] 
                                  Ksi: [3x3x2000 double] 
                        LogLikelihood: 7.4710e+003 
                                  AIC: -7.4655 
                             ExitFlag: 0 
                                 Iter: 54 
                         IniGuessCode: 4 
        ExitFlagsForAllStartingValues: [0 0 0 0] 
    LogLikelihoodForAllStartingValues: [7.4704e+003 7.4704e+003 7.4705e+003 7.4710e+003] 
       IterationsForAllStartingValues: [81 73 55 54] 
 
>> BestModel_EstimResults.VariancesAtStates 
 
ans = 
 
  1.0e-003 * 
 
    0.0140 
    0.0328 
    0.1582 
 
>> BestModel_EstimResults.Pi 
 
ans = 
 
    0.0000 
    1.0000 
    0.0000 
 
>> BestModel_EstimResults.A 
 
ans = 
 
    0.9864    0.0059    0.0077 
    0.0031    0.9735    0.0234 
    0.0180    0.1774    0.8046 

 

>> scatter(TrainingPeriod,States) 
>> xlabel('Days') 
>> ylabel('Volatility state') 
>> title('The most likely volatility state during the estimation period') 
>> plot(TrainingPeriod,Volatility,'d',TrainingPeriod,sqrt(BestModel_EstimResults.VarianceOnTheDay),'d') 
>> xlabel('Days') 
>> legend('most likely volatility path','expected volatility on a given day') 
>> title('Volatility during the estimation period') 

 

>> PredictionInterval_AbsLogError 
 
PredictionInterval_AbsLogError = 
 
    0.1956 
    0.1983 
    0.1950 
    0.2008 
    0.2056 
    0.2003 
    0.2142 
    0.2195 
    0.2182 
 
>> PredictionInterval_VarOfStandResiduals 
 
PredictionInterval_VarOfStandResiduals = 
 
    0.8224 



    0.8201 
    0.8228 
    0.8180 
    0.8142 
    0.8185 
    0.8072 
    0.8029 
    0.8040 
 
>> PredictionInterval_Perc_Of_1STD_Events 
 
PredictionInterval_Perc_Of_1STD_Events = 
 
    0.3066 
    0.3059 
    0.3049 
    0.3076 
    0.3069 
    0.3052 
    0.2876 
    0.2886 
    0.2883 
 
>> PredictionInterval_Perc_Of_2STD_Events 
 
PredictionInterval_Perc_Of_2STD_Events = 
 
    0.0093 
    0.0090 
    0.0093 
    0.0028 
    0.0028 
    0.0028 
    0.0121 
    0.0090 
    0.0104 
 
>> PredictionInterval_Perc_Of_3STD_Events 
 
PredictionInterval_Perc_Of_3STD_Events = 
 
  1.0e-003 * 
 
    0.6913 
    0.6913 
    0.6913 
         0 
         0 
         0 
         0 
         0 
         0 

 

>>plot(2003:length(LogReturn_On_Euro),LogReturn_On_Euro(2003:length(LogReturn_On_Euro)),'d',2003:length(LogRet
urn_On_Euro),PredictionInterval_PredictedVolatility,'d') 
>> xlabel('Days') 
>> legend('log-return on euro','predicted volatility of euro') 
>> title('Log-returns and their predicted volatility during the prediction period') 

 

>> Model_6 = HMM_Estimation(LogReturn_On_Euro, 2, 3, 3, 2002); 
 
Processed initial guess 1 for the model with 2 lags and 3 states. 
Found a better estimate. 
 
Processed initial guess 2 for the model with 2 lags and 3 states. 
Found a better estimate. 
 
Processed initial guess 3 for the model with 2 lags and 3 states. 



 
Processed initial guess 4 for the model with 2 lags and 3 states. 
Found a better estimate. 
>> Model_6 
 
Model_6 =  
 
                     AutoRegressCoeff: [3x1 double] 
           AutoRegressCoeff_StdErrors: [3x1 double] 
                    VariancesAtStates: [3x1 double] 
                     VarianceOnTheDay: [1x2000 double] 
                                   Pi: [3x1 double] 
                                    A: [3x3 double] 
                                Alpha: [3x2000 double] 
                                 Beta: [3x2000 double] 
                                Gamma: [3x2000 double] 
                                  Ksi: [3x3x2000 double] 
                        LogLikelihood: 7.4730e+003 
                                  AIC: -7.4665 
                             ExitFlag: 0 
                                 Iter: 50 
                         IniGuessCode: 4 
        ExitFlagsForAllStartingValues: [0 0 0 0] 
    LogLikelihoodForAllStartingValues: [7.4727e+003 7.4727e+003 7.4727e+003 7.4730e+003] 
       IterationsForAllStartingValues: [107 103 66 50] 
 
>> Model_6.AutoRegressCoeff 
 
ans = 
 
   -0.0000 
   -0.0262 
    0.0193 
 
>> Model_6.AutoRegressCoeff_StdErrors 
 
ans = 
 
    0.0001 
    0.0224 
    0.0223 

 

>> load USD_GBP_rate.txt 
>> LogReturn_On_GBP = log(USD_GBP_rate(2:length(USD_GBP_rate))) - 
log(USD_GBP_rate(1:(length(USD_GBP_rate)-1))); 
>> scatter(1:length(LogReturn_On_GBP),LogReturn_On_GBP) 
>> [BestModel_GBP, BestModel_EstimResults_GBP, CV_Errors_GBP, CV_Errors_For_Blocks_GBP, 
AkaikeInfoCriteria_GBP, PredictionInterval_PredictedVolatility_GBP, PredictionInterval_VarOfStandResiduals_GBP, 
PredictionInterval_AbsLogError_GBP, PredictionInterval_Perc_Of_1STD_Events_GBP, 
PredictionInterval_Perc_Of_2STD_Events_GBP, PredictionInterval_Perc_Of_3STD_Events_GBP, TrainingPeriod_GBP, 
TrainingData_GBP, States_GBP, Volatility_GBP] = HMM_Analysis(LogReturn_On_GBP, [0, 1, 2, 0, 1, 2, 0, 1, 2], [2, 2, 2, 
3, 3, 3, 4, 4, 4], 2002); 
 
CROSS-VALIDATION BEGINS. 
 
Processed initial guess 1 for the model with 0 lags and 2 states. 
Found a better estimate. 
 
... 
 
Processed initial guess 4 for the model with 2 lags and 4 states. 
 
COMPLETED ESTIMATION & PREDICTION DIAGNOSTICS FOR MODEL 9. 
 
 
>> BestModel_GBP 
 
BestModel_GBP = 
 
Best model: number of lags = 0 and number of different volatility regimes = 4. 



 
>> CV_Errors_GBP 
 
CV_Errors_GBP = 
 
    0.6659 
    0.6669 
    0.6653 
    0.4097 
    0.3890 
    0.3874 
    0.3331 
    0.4385 
    0.4401 
 
>> CV_Errors_For_Blocks_GBP 
 
CV_Errors_For_Blocks_GBP = 
 
    0.8548    0.4770 
    0.8658    0.4679 
    0.8603    0.4703 
    0.4792    0.3403 
    0.4354    0.3426 
    0.4318    0.3430 
    0.4085    0.2576 
    0.6183    0.2586 
    0.6213    0.2589 
 
>> BestModel_EstimResults_GBP 
 
BestModel_EstimResults_GBP =  
 
                     AutoRegressCoeff: -1.8215e-005 
           AutoRegressCoeff_StdErrors: 1.4387e-004 
                    VariancesAtStates: [4x1 double] 
                     VarianceOnTheDay: [1x2000 double] 
                                   Pi: [4x1 double] 
                                    A: [4x4 double] 
                                Alpha: [4x2000 double] 
                                 Beta: [4x2000 double] 
                                Gamma: [4x2000 double] 
                                  Ksi: [4x4x2000 double] 
                        LogLikelihood: 7.5686e+003 
                                  AIC: -7.5591 
                             ExitFlag: 0 
                                 Iter: 80 
                         IniGuessCode: 2 
        ExitFlagsForAllStartingValues: [0 0 0 0] 
    LogLikelihoodForAllStartingValues: [7.5361e+003 7.5686e+003 7.5529e+003 7.5529e+003] 
       IterationsForAllStartingValues: [119 80 207 220] 
 
>> BestModel_EstimResults_GBP.VariancesAtStates 
 
ans = 
 
  1.0e-003 * 
 
    0.0000 
    0.0102 
    0.0388 
    0.2093 
 
>> BestModel_EstimResults_GBP.Pi 
 
ans = 
 
         0 
    0.0000 
    1.0000 
    0.0000 
 
>> BestModel_EstimResults_GBP.A 



 
ans = 
 
    0.2244    0.0000    0.7323    0.0432 
    0.0041    0.9529    0.0381    0.0048 
    0.0216    0.0309    0.9292    0.0183 
    0.0000    0.0000    0.1583    0.8417 
 
>> PredictionInterval_AbsLogError_GBP 
 
PredictionInterval_AbsLogError_GBP = 
 
    0.4134 
    0.4216 
    0.4165 
    0.3670 
    0.3745 
    0.3777 
    0.3432 
    0.3886 
    0.3868 
 
>> PredictionInterval_VarOfStandResiduals_GBP 
 
PredictionInterval_VarOfStandResiduals_GBP = 
 
    0.6614 
    0.6560 
    0.6594 
    0.6928 
    0.6877 
    0.6855 
    0.7095 
    0.6780 
    0.6792 
 
>> PredictionInterval_Perc_Of_1STD_Events_GBP 
 
PredictionInterval_Perc_Of_1STD_Events_GBP = 
 
    0.2617 
    0.2575 
    0.2586 
    0.2603 
    0.2589 
    0.2565 
    0.2682 
    0.2534 
    0.2530 
 
>> PredictionInterval_Perc_Of_2STD_Events_GBP 
 
PredictionInterval_Perc_Of_2STD_Events_GBP = 
 
    0.0059 
    0.0059 
    0.0059 
    0.0021 
    0.0021 
    0.0021 
    0.0021 
    0.0052 
    0.0059 
 
>> PredictionInterval_Perc_Of_3STD_Events_GBP 
 
PredictionInterval_Perc_Of_3STD_Events_GBP = 
 
    0.0007 
    0.0007 
    0.0014 
         0 
         0 



         0 
         0 
         0 
         0 

------------------------------------------------------------------------------------------------------ ------------------------------------ 
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