
Data Analysis - One Predictor Linear Regression
Bushra Paracha

I. Part A
Introduction: The main goal of this report is to observe the number of observations and attain
data for the independent and dependent variables presented. Any missing data in the files will be
imputed appropriately to facilitate the identification of the fitted function.
Methods: Inorder to do the analysis, programming language R was used. First using R, the
merge() function was used to merge both the files together. After examining them, using str() the
missing values presented in the data set that need to be addressed. The imputation of the missing
values will be solved by using package mice. Afterwards, we use the bootstrap method and
complete() to impute the rest of the missing values. Using R, it is also capable of performing
OLS regression by using the lm() function, which provides a summary of the completed data set.
The ANOVA table can also be provided by using the package knitr. A scatter plot is then created
by using plot() with its useful estimated regression line (Fig. 5). After this, the confidence
intervals of the slope can be calculated by using confint().
Results: After using R it was found that two files contain 630 observations of 3 variables. One
file contains ID numbers as integers with respective IV numbers and the other file has its ID
with its respective DV numbers. There are 630 observations in this file and three columns in the
data set, called ‘ID’, ‘IV’ and ‘DV’. Fig.1 attached below shows the merged data set of the two
files provided. After merging the data it was observed that the file has 499 complete data
sets,138 cases missing either IV OR DV, 79 cases missing IV, 45 cases missing and 7 cases
missing both IV AND DV. This can be seen in Fig.2. The 7 cases missing both IV and DV were
dropped because they did not provide any information. Next we used the bootstrap method to
impute values. It was found that there are 623 complete data sets. After finding the complete data
set it was found that estimated regression equation for this set is DV = 49.0220 + 4.8722*(IV).
The equation was found using simple linear regression as shown in Fig.3. For the following set
the p-value,2.2e-16,provided in the summary is significantly less than 0.5 which means that we
can reject the null hypothesis that the slope is 0 and that there is a significant relationship
between the DV and IV. Using knitr package in R we found the ANOVA table for the following
set. It was found that the F value ANOVA table further supports that we can reject the null
hypothesis. This can be seen in Fig.4. After the ANOVA table we created a scatter plot for the
following data set. We found the 95% and 99% confidence intervals of the slope. For the 95%
confidence interval the slope is between (4.64365 5.100699) and for the 99% confidence
interval the slope is between (4.571504 5.172845). Fig.5 shows the scatter plot for this data set.
Conclusion and Discussion: By looking at the p-value we see that there is a significant
relationship between the DV and IV. Based on the summary of our data, the R-squared value that
was found was 0.7834 or 78.34%. This typically means that 78.34% of the DVs can be analyzed
by the IVs. Our estimated regression equation of DV= DV = 49.0220 + 4.8722*(IV) can be used
to predict the values about 78.34% of the time, which is quite significant.



II. Part B
Introduction: For this part, the main goal is to apply a transformation of either IV or DV or both
if required to find a fitted model. An appropriate LOF test will be applied. We will find repeated
independent variables and bin near repeated data into one level.
Methods: For this project I chose to use R inorder to perform data analysis. First step was to get
a visual representation of the data. This can be done using plot() function or View() to examine
the values in a table. Next inorder to calculate the correlation coefficient needed to discern the
relationship between x and y variables cor() function was used. For the transformation of the
data, the function data.frame() is used and set to a different variable to keep original and
transformed data separate. I then used the lm() function to view a summary of both the original
and transformed data. The next step for this project was to create groups for the transformed
data, for that I used the cut() function. Then using the ave() function the average values of x were
calculated after binning the data. At the end inorder to perform the Lack of Fit text, I used the
alr3 package remotes to access the library, where to find analysis of the variable table
pureErrorAnova() function is used.
Results: The data set in part B file contains 530 observations of 3 variables “ID”, “x”, and “y”.
Using the data and plot() function we view the graph to see if we can locate the transformation in
the data. The graph can be seen in Fig.6. From the figure we can note that it is an exponential
decay. After that using cor() function the correlation coefficient was found between x and y
which came out to be -0.6422736. Looking at Fig.6 it can be seen that there is an obvious outlier.
After some trial and error the transformation found was IV and log (DV). After plotting
transformed data we can see the changed graph in fig.7. The correlation coefficient for the
following transformed data comes out to be 0.7797685. The summary of the transformed data
shows that the R squared value is 0.608 which can be seen as 8.2. This means that the 60.8% of
the variance can be explained. In contrast, in the original data, summary revealed only 41.25% of
the variance could be explained; this can be seen in fig 8.1. After binning the data cut() function
was used to create groups as seen in fig.9. These groups were later on used for the LOF test. As
seen in fig 9 we have a total of 3 groups with each group being separated by 0.3. After this we fit
the bins and perform LOF test using pureErrorAnova() function. The analysis showed that the F
value is 2.2178 and that the p value of the data is 0.137 within the Lack of Fit row. The high
p-value within the test indicates that there is not a significant LOF in the fitted regression model
after we transformed our data as seen in fig 10. It is also apparent that the p-value of x is less
than 0.05, which shows that we can reject the null hypothesis and say that there is a significant
relationship between x and y.
Conclusions and Discussions: After looking at the correlation coefficient in the original and
transformed data, the original graph has a negative correlation while the transformed data has a
positive correlation. Furthermore, we can see that R seems to improve after the data has
transformed and F-value in comparison to the p-value indicates there is not a significant lack of
fit in the regression model.



Part A Appendix
Fig.1. Data received using R by using str()
> str(PartA)
'data.frame': 630 obs. of 3 variables:
$ ID: int 1 2 3 4 5 6 7 8 9 10 ...
$ IV: num 5.14 5.08 4.91 6.69 4.71 ...
$ DV: num 69.6 73.4 NA 79 69.3 …

Fig.2. Pattern of missing values in merged set
>md.pattern(PartA_incomplete)

Fig.3. Summary of completed set M
> summary(M)
Call:
lm(formula = DV ~ IV, data = PartA_complete)
Residuals:
Min 1Q Median 3Q Max

-7.9296 -2.1151 -0.1427 1.9961 11.4261
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.0220 0.5920 82.80 <2e-16 ***
IV 4.8722 0.1164 41.87 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.943 on 621 degrees of freedom
Multiple R-squared: 0.7384, Adjusted R-squared: 0.738
F-statistic: 1753 on 1 and 621 DF, p-value: < 2.2e-16



Fig.4. Table of the ANOVA table
> kable(anova(M), caption='ANOVA Table')

Table: ANOVA Table

| | Df| Sum Sq| Mean Sq| F value| Pr(>F)|
|:---------|---:|---------:|------------:|--------:|------:|
|IV | 1| 15186.555| 15186.554551| 1752.957| 0|
|Residuals | 621| 5379.968| 8.663394| NA| NA|

Fig.5. Scatter plot for data set
> plot(PartA_complete$DV ~ PartA_complete$IV, main='Scatter : DV ~ IV', xlab='IV',
ylab='DV', pch=20)
> abline(M, col='red', lty=3, lwd=2)
> legend('topleft', legend='Estimated Regression Line', lty=3, lwd=2, col='red')



Part B Appendix
FIG.6.
> plot(data$y ~ data$x, main='Scatter: y ~ x', xlab='x', ylab='y', pch=20)

FIG.7.
> plot(data_trans$y ~ data_trans$x, main='Scatter: y ~ x', xlab='x', ylab='y', pch=20)
> model <- lm(data_trans$y~data_trans$x)
> abline(model,col='red',lty=3,lwd=2)



Fig.8.1.
> model <- lm(data$y~data$x)
> summary(model)
Call:
lm(formula = data$y ~ data$x)
Residuals:

Min 1Q Median 3Q Max
-0.04419 -0.01231 -0.00281 0.00829 0.43465
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.226204 0.004968 45.53 <2e-16 ***
data$x -0.066700 0.003464 -19.25 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.02695 on 528 degrees of freedom
Multiple R-squared: 0.4125, Adjusted R-squared: 0.4114
F-statistic: 370.7 on 1 and 528 DF, p-value: < 2.2e-16

Fig.8.2.
> model <- lm(data_trans$ytrans~data_trans$xtrans)
> summary(model)
Call:
lm(formula = data_trans$ytrans ~ data_trans$xtrans)
Residuals:

Min 1Q Median 3Q Max
-1.96144 -0.19586 0.02713 0.22390 0.85275
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.26741 0.05994 37.83 <2e-16 ***
data_trans$xtrans 1.19612 0.04179 28.62 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3252 on 528 degrees of freedom
Multiple R-squared: 0.608, Adjusted R-squared: 0.6073
F-statistic: 819.1 on 1 and 528 DF, p-value: < 2.2e-16



Fig.9.
> groups <- cut(data_trans$xtrans,breaks=c(-Inf,seq(min(data_trans$xtrans)+0.3,
max(data_trans$xtrans)-0.3,by=0.3),Inf))
> table(groups)
groups
(-Inf,1.1] (1.1,1.4] (1.4, Inf]

131 143 256

Fig.10.
> corpureErrorAnova(fit_b)
Analysis of Variance Table
Response: y

Df Sum Sq Mean Sq F value Pr(>F)
x 1 78.331 78.331 646.6600 <2e-16 ***
Residuals 528 64.105 0.121
Lack of fit 1 0.269 0.269 2.2178 0.137
Pure Error 527 63.836 0.121
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


