
Cybersecurity
Vulnerability Risk Tracker

(VRT)
ISE 305: Database Design and Practice

Masumul Mozumder, Rasha Hoda, Bushra Paracha

Project Overview -
Cybersecurity
Vulnerability Risk Tracker
(VRT)

• Relational database that tracks
vulnerabilities, affected systems,
remediation assignments, and patching
progress

• Based on how enterprises and federal
agencies manage vulnerability risk

• Helps spot high-risk and overdue
vulnerabilities across teams and business
units

• Gives security teams one place to see
systems, vulnerabilities, teams, and patch
status so they can decide what to fix first

System Architecture - How the VRT
Works System Architecture
• Systems: Represents assets across business units; each system can

have multiple vulnerabilities.
• Vulnerabilities: CVE-based records with severity, dates, and descriptions.
• System_Vulnerability: Junction table linking systems ↔ vulnerabilities

while tracking detection date, status, and risk score.
• Patches: Vendor patches mapped to specific vulnerabilities.
• Teams: Responsible remediation groups (e.g., AppSec, Infrastructure,

SOC).
• Assignments: Tracks which team was assigned to remediate which

system vulnerability and by when.

Relational Data Model (Conceptual
Design)

• Defines core entities and
relationships

• Shows primary keys, foreign
keys, and cardinalities

• Designed before
implementing in MS Access

• Basis for table creation and
constraints

MS Access
Relationships
(Implemented RDM)

• All relationships implemented
with PK–FK links

• Referential integrity enforced

• Matches conceptual RDM
structure

• Used for forms, queries, and
data population

Data Quality, Constraints & Integrity
Overview

• Primary keys: systemID, vulnerabilitiesID, patchID, teamID, assignmentID,
systemVunID

• Foreign keys:
• System_Vulnerability.systemID → Systems.systemID
• System_Vulnerability.vulnerabilitiesID → Vulnerabilities.vulnerabilitiesID
• Assignments.systemVunID → System_Vulnerability.systemVunID
• Assignments.teamID → Team.teamID
• Patches.vulnerabilitiesID → Vulnerabilities.vulnerabilitiesID

• Required fields: key IDs, severity, detectionDate, teamName, etc.
• Lookup / controlled values: severity, patchStatus, rebootRequired (Yes/No)
• Data types: INT for IDs, DATE for timelines, Short Text for names/descriptions

Data Flow: Vulnerability Lifecycle

Vulnerability Discovered:
Imported from NVD/CVE

dataset or detected
internally.

Linked to an Affected
System: Tracked through
System_Vulnerability with

detection date and risk
score.

Assigned to a Team:
Assignment table captures

priority, due date, and
completion status.

Patch Released: Patch table
stores vendor, identifier, and
whether reboot is required.

Status Updated: PatchStatus
and status fields updated
until risk is remediated.

Real-World Impact / Use Cases

• Enterprise Security Teams: Track critical CVEs across hundreds of
systems; ensure high-risk vulnerabilities get assigned and fixed.

• Government & Compliance: Supports reporting for FISMA, NIST,
FedRAMP by showing patch status, severity, and overdue risks.

• IT Operations / Patch Management: Quickly see which systems need
patches, which patches are available, and where delays exist.

• Incident Response: During a cyber incident, analysts can identify
vulnerable systems and prioritize containment steps.

Which systems
have the highest
total
vulnerability risk
scores?

SELECT s.systemID,
s.systemName,

 SUM(sv.riskScore) AS
totalRisk

FROM Systems AS s

INNER JOIN
System_Vulnerability AS sv

 ON s.systemID =
sv.systemID

GROUP BY s.systemID,
s.systemName

ORDER BY
SUM(sv.riskScore) DESC;

• Combines system +
vulnerability data

• Summarizes total
organizational risk

• Helps see which
systems need priority
attention

Query 1: Results +
Explanation
• Shows which systems carry the highest risk load
• Useful for CISOs, managers, security teams
• Helps decide where to allocate resources first

Which systems
contain critical
vulnerabilities,
and what is
their status?

SELECT v.vulnerabilitiesID,

 v.cveID,

 v.severity,

 sv.status,

 sv.systemID

FROM Vulnerabilities AS v

INNER JOIN
System_Vulnerability AS sv

 ON v.vulnerabilitiesID =
sv.vulnerabilitiesID

WHERE v.severity =
"Critical";

• Filters the dataset to
only Critical-severity
vulnerabilities

• Shows the current
status of each
vulnerability (Open, In
Progress, Resolved)

• Helps identify which
systems are affected
by the
highest-severity
issues

Query 2: Results +
Explanation
• Shows all Critical vulnerabilities across systems
• Helps identify gaps in remediation(e.g., Critical

vulnerabilities still Open or In Progress)
• Supports risk assessment and compliance

reviews(auditors focus heavily on Critical findings)
• Highlights systems needing urgent attention

How many
vulnerability
assignments
does each team
have?

SELECT t.teamID,
t.teamName,

COUNT(a.assignmentID)
AS assignmentCount

FROM Team AS t

LEFT JOIN Assignments AS
a

 ON t.teamID = a.teamID

GROUP BY t.teamID,
t.teamName

ORDER BY
COUNT(a.assignmentID)
DESC;

• Shows workload
distribution

• Uses a LEFT JOIN to
include teams with 0
assignments

• Helps identify
overloaded teams

Query 3: Results +
Explanation
• Ensures fair workload balancing
• Helps managers allocate resources and build

schedules
• Prevents bottlenecks in remediation efforts

How many open
vulnerabilities
do we have at
each severity
level?

SELECT

 v.severity,

 COUNT(*) AS openVulnCount

FROM

 Vulnerabilities AS v

 INNER JOIN System_Vulnerability
AS sv

 ON v.vulnerabilitiesID =
sv.vulnerabilitiesID

WHERE

 sv.status = 'Open'

GROUP BY

 v.severity

ORDER BY

 openVulnCount DESC;

• Counts how many
open vulnerabilities
exist at each severity
level

• Helps identify how
much high-severity
risk is still unresolved

• Shows whether your
environment has
more High, Medium,
or Critical open issues

• Useful for prioritizing
remediation and
reporting to
leadership

Query 4: Results +
Explanation
• High severity has the most unresolved items
• Critical vulnerabilities are still significantly high →

major concern
• Low severity still needs attention but is lower priority
• Gives a clear severity-based distribution of open

issues

Which patches
require a reboot
and which
vulnerability do
they fix?

SELECT p.patchID,
p.patchIdentifier,
p.rebootRequired,
 v.cveID, v.severity
FROM Patches AS p
INNER JOIN
Vulnerabilities AS v
 ON
p.vulnerabilitiesID =
v.vulnerabilitiesID
WHERE
p.rebootRequired =
"Yes";

• Identifies patches
impacting uptime

• Links patches →
vulnerabilities

• Important for
scheduling
maintenance windows

Query 5: Results +
Explanation
• Helps plan downtime
• Reduces disruption to business operations
• Ensures high-risk patches get proper scheduling

Forms Overview
(Purpose of Forms in
the VRT System)
• Our MS Access forms provide a user-friendly

interface for entering and viewing data across all
tables.

• Each form supports a specific part of the
vulnerability lifecycle: systems, vulnerabilities,
teams, patches, and assignments.

• Forms enforce referential integrity by only allowing
valid IDs and linked records (e.g., teamID must
exist before assignment).

• Consistent layout and required fields help ensure
data quality and accurate reporting.

• Why forms are important:

• Reduce data-entry errors

• Enforce 1-M relationships visually

• Allow analysts to quickly review records

• Mimic real enterprise vulnerability-management
dashboards

Form 1: Assignments
Form (Parent–Child
Relationship)

• The Assignments Form allows security teams to assign remediation responsibility for
each detected system vulnerability.

• Parent Table:

• SystemVulnerability (systemVunID)

• Child Table:

• Assignments (assignmentID)

• What it shows

• assignmentID

• systemVunID

• dueDate

• completionDate

• assignedDate

• priority

• teamID

• Why it is useful:

• Connects responsibly teams to active vulnerabilities

• Tracks deadlines and completion progress

• Helps identify overdue or high-priority remediation tasks

• Supports reporting on workload distribution

Form 2: Patches Form
(Lookup + Detail Form)

• Purpose:
The Patches_Form captures all vendor-issued patches
mapped to vulnerabilities.

• Fields shown:

• patchID

• vulnerabilitiesID (FK → Vulnerabilities table)

• patchIdentifier

• patchDescription

• vendor

• releaseDate

• rebootRequired

• Why it is useful:

• Links each patch to the vulnerability it resolves

• Tracks release dates and reboot requirements

• Supports reporting such as:
Which patches require a reboot?

Form 3: Team Form
(Single-Table Entry
Form)

• Purpose:
The Team_Form stores information about the
remediation teams responsible for addressing
vulnerabilities.

• Fields shown:
• teamID

• teamName

• teamType

• contactEmail

• managerName

• Why it is useful:
• Provides contact and ownership information for

vulnerability assignments

• Used as a lookup when creating Assignment
records

• Supports Query 3 (assignment count by team)

Form 4: Systems-
Vulnerabilities Parent
Child Form

• Description:
A hierarchical form based on the 1-M
relationship:

• Systems (1)
→ System_Vulnerability (Many)

• Why it matters:
• Enables viewing all vulnerabilities for a

selected system

• Supports risk reporting and helps
analysts understand which assets
have the highest exposure

• Aligns perfectly with your Queries 1 &
2 (risk scores & critical vulnerabilities)

External Dataset Usage

• Used the CISA Known Exploited Vulnerabilities (KEV) Catalog
• Real-world dataset of actively exploited vulnerabilities

• Imported KEV CSV data into our Vulnerabilities table
• Filled fields such as: CVE ID, title, description, severity, and dates
• Adds realism by reflecting true cybersecurity threats rather than

made-up sample data

Challenges & Future Enhancements

Challenges:
Designing a normalized schema for multiple

interconnected tables
Balancing practical cybersecurity fields with

database simplicity
Ensuring proper PK/FK constraints and

relational accuracy
Managing data variety and formatting from

NVD/CVE datasets

Future
Improvements:Add automated risk scoring calculations

Integrate dashboards (Power BI / Tableau)
Add user authentication and role-based

access control
Build automated patch compliance alerts

Add CVSS scoring breakdowns and exploit
likelihood

Team Roles & Individual Contributions

Masumul
MozumderLed the overall project structure

and direction
Designed the RDM (tables,

keys, relationships)
Created the SQL queries and

analysis
Prepared external dataset

integration (CISA KEV import)

Rasha Hoda
Entered and validated large

parts of the dataset in Access
Built several Access forms

(parent–child + data entry forms)
Helped populate tables based

on RDM structure
Assisted with reviewing queries

and formatting the database

Bushra Paracha
Supported data entry across

multiple tables
Assisted with initial RDM

brainstorming and refinement
Contributed to form population
and minor table adjustments

Helped test queries and verify
table relationships

Conclusion & Key Takeaways

Our VRT system shows how relational databases can simplify cybersecurity
operations by connecting vulnerabilities, impacted systems, responsible
teams, and patch activity--all in one place.
Key Takeaways:
• Risk Visibility: Quickly see which systems face the highest risk
• Operational Tracking: Monitor patch progress and vulnerability status
• Team Coordination: Understand workload distribution and assignments
• Real Data: Supports analysis using real-world vulnerability datasets
• Scalable Design: Can grow with more systems, data sources, or security

features

