

SPEAK India: Mathematical & Statistical Modelling

Update May 2019

Swaminathan Subramanian, Adinarayanan Srividya, Ashwani Kumar & Purushothaman Jambulingam ICMR-Vector Control Research Centre, Puducherry

Lloyd Chapman, Emily Nightingale & Graham Medley London School of Hygiene and Tropical Medicine

Aims

Statistical modelling

- Develop short-term prediction approaches to support management of elimination
- Support capacity development in India
- Mathematical modelling
 - Transmission dynamic processes (space, vectors etc)
 - Identify barriers to zero transmission (proper elimination)
 - Define a minimum set of population measurements to estimate population risk

Block-level Forecasting

- Use routinely collected case data (KA-MIS) for short-term prediction of block level incidence (~3-4 months ahead of current data)
 - Spatiotemporal statistical model
 - Produce an expected range for future months according to the block-specific historical patterns
 - Highlight where blocks may be deviating from the overall trend
- 2. Use VL case and environmental covariates data for predicting block level risk of resurgence
 - Spatiotemporal statistical model
 - Identify the determinants of risk of resurgence
 - Predict block level risk of resurgence using INLA (Integrated Nested Laplace Approximation)

1. Short-term prediction of block-level incidence

Average monthly block-level incidence 2013-2018

- Current model has good predictive power at least four months ahead of current data.
 - 93% of predicted points were within +/-2 cases of the observed count, when predicted four months ahead of the training data.
 - 85.6% of observations in the test period were captured in the 25-75% prediction interval.
 - 94.7% were captured in the 10-90% prediction interval.
- Identified model limitations and considered how these could be addressed in next steps
- Used model to demonstrate that current target is unlikely to be met to inform discussions on 2030 target setting at WHO STAG meeting
- Proposed alternative target and tested its performance using predictions from the model

Next steps:

• Investigate village-level dynamics ("micro-outbreaks") to better understand block-level incidence

Short-term predictions

JALALPUR, BIHAR

Central 10%, 50% and 80% prediction intervals (illustrated by red, orange and yellow bands) from a model fitted to training data from January 2013 to December 2016 (4 years, months 1-48). The mean (expected) case count is indicated by the white line.

Short-term predictions

PAKUR, JHARKHAND

Predictions for elimination target

Elimination target (incidence in all blocks <1/10,000/yr for 3 years) very unlikely to be met by 2020 or 2025

Predictions for alternative target

Proportion of cases coming from blocks with low incidence in the previous year (<0.5/10,000/yr) has increased and should continue to increase to 70% by 2025 if interventions are maintained

2. Predicting block level risk of resurgence

Progress:

- Developed methods for extracting climatic and environmental covariates data
- Extracted monthly data for 19 bio-climatic and 4 environmental covariates for all the 534 blocks (endemic / non-endemic) in Bihar for the period from Jan 2013 to Dec 2019.

Next steps:

- Extraction of covariates data for blocks in Jharkhand,
 UP and West Bengal
- Modelling association of VL cases with covariates, and predict block level incidence using INLA

Transmissio n Dynamics

Progress:

- Reviewed the work on modelling sand fly population dynamics and ecological modelling, and the assumptions and structure of the models
- Developed individual-level spatial kernel transmission model for VL
- Estimated contribution of PKDL cases to transmission
- Fitted to geolocated individual-level data from Fulbaria,
 Bangladesh (Caryn Bern), and PKDL infectiousness data from xenodiagnosis study in Bangladesh (Dinesh Mondal, Jorge Alvar)

Next steps:

- Model the transmission dynamics in human-parasite-vector
- Complete work to include asymptomatic infection and immunity from asymptomatic infection in the model
- Simulate spatially and temporally targeted control interventions
- Apply the model to identify the 'minimum surveillance set' data and evaluate potential changes to interventions

VCRC

Data

Fulbaria, Bangladesh 2002-2010

Contribution to transmission

Contribution to infection of sandflies

Contribution to infection of new cases

