



## **Update on Modelling work package**

S. Subramanian, A. Srividya & P. Jambulingam ICMR-Vector Control Research Centre, Puducherry &

Graham Medley, Lloyd Chapman & Emily Nightingale
Centre for Mathematical Modelling of Infectious Disease
London School of Hygiene and Tropical Medicine





# Aim and objectives



#### Aim

Develop mathematical models and software tools that can support the elimination of VL as a public health problem, and the maintenance of that elimination

### **Objectives**

- 1. Develop age-time-space based transmission dynamic models, using data from other SPEAK research programmes
- 2. Use the models to consider the 'minimum surveillance set' of data required to understand VL transmission dynamics and predict epidemics
- 3. Use the models to evaluate potential changes to interventions, e.g. focal IRS and active case finding.
- 4. Develop the 'RiskMap' software programme for the short-term prediction of VL outbreaks and long terms changes in risk of lymphatic filariasis
- 5. Support the development of quantitative capacity within NVBDCP to use these tools





## **Project activities / deliverables**

## Objective 1: Age-time-space based transmission dynamic models

- Review and provide a summary of data available for modelling sand fly population dynamics and ecological modelling, and the assumptions and structure of the models (VCRC)
- Model the transmission dynamics in human-parasite-vector (LSHTM/VCRC)
- Extend, parameterize, and validate existing VL transmission dynamic models (LSHTM/VCRC)
- Develop a model of sand fly population dynamics that can be used to predict the impact of sand fly controls (LSHTM/VCRC)





## **Project activities / deliverables**

# Obj 4: Develop the 'RiskMap' software programme for the short-term prediction of VL outbreaks and long terms changes in risk of LF

- 1. Extraction of block level covariates data (environmental, bioclimatic and socio-economic)
- 2. Explore the association of VL cases with covariates, and predict block level incidence using Integrated Nested Laplace Approximation (INLA)
- Develop modelling framework to predict the risk of resurgence at block level associated with covariates







## Project activities completed

## **Objective 1: Age-time-space based transmission dynamic models**

- Review and provide a summary of data available for modelling sand fly population dynamics and ecological modelling, and the assumptions and structure of the models (VCRC)
  - Reviewed five papers on population dynamics, 28 on ecological modelling and one review paper on transmission model - Nine papers on VL.
  - Draft manuscript prepared and shared with LSHTM for review







## Project activities completed

Objective 4: Develop 'RiskMap' software for short-term prediction of VL outbreaks and long terms changes in the risk of LF

#### 1. Extraction of block level covariates data

 Extracted monthly data on climatic and environmental covariates for all the 534 blocks (endemic / non-endemic) in Bihar for the period from Jan 2013 to Dec 2019.

Environmental data - Land surface temperature (LST), Normalized difference

vegetation index (NDVI), Enhanced vegetation index (EVI) and Soil moisture

(TerraClim database, MODISTools in R, spatial resolution 4 km)

19 Bioclimatic variables (BIO1 to BIO19, dismo package in R, WorldClim database)





## **Project activities in progress**

# Objective 4: Develop 'RiskMap' software for short-term prediction of VL outbreaks and long terms changes in the risk of LF

- Extraction of covariates data for blocks in Jharkhand, UP and West Bengal (One month)
- Modelling association of VL cases with covariates, and predict block level incidence using INLA (Integrated Nested Laplace Approximation) – 3 months including write-up)





## Project activities to be done



### **Objective 1: Age-time-space based transmission dynamic models**

- Model the transmission dynamics in human-parasite-vector
- Extend, parameterize, and validate existing VL transmission models
- Apply model to identify the 'minimum surveillance set' data and evaluate potential changes to interventions

Objective 4: Develop the 'RiskMap' software programme for the short-term prediction of VL outbreaks and long terms changes in risk of LF



Modelling framework to predict the risk of resurgence at block level associated with covariates









# BILL & MELINDA GATES foundation

Thank you