Visceral leishmaniasis transmission in India: the role of xenomonitoring in a post-elimination setting.

Prof. Mary Cameron

Ms Giorgia Dalla Libera Marchiori

Dr Miguella Mark-Carew

Ms Shannon McIntyre

Dr Matt Rogers

Dr Pradeep Das

Dr Vijay Kumar

Mr Kundan Kumar

Dr Vikram Gandhi

Rajendra Memorial Research Institute of Medical Sciences

Molecular Xenomonitoring (MX)

- MX = assessing parasite DNA or RNA levels through PCR in the vector population
- Potential for use as a passive surveillance system for VL
 - Non-invasive = fewer ethical implications than screening human populations
 - Potentially more cost effective than active case detection and more sensitive than traditional passive case detection systems
 - Indicates circulating parasite levels

Objectives

1. Generate *Phlebotomus argentipes* sampling framework and standard operating procedures

- 2. Collect and analyse *P. argentipes* from sites across blocks with no, low, and high VL transmission in Bihar
- 3. Use data to develop transmission endpoint assessment guidelines for India's VL control program
- 4. Utilise xenomonitoring and sero-surveillance data collected in the same place, at the same time, to improve transmission models

Objective 1: Protocol

- Three sampling methods:
 - CDC light trap
 - Improved Prokopack Aspirator
 - Mechanical Vacuum Aspirator

Aspirations standardised at a rate of 30s/m²

$$n = \frac{2(Z_a + Z_{1-\beta})^{2\delta 2}}{\Delta^2}$$

$$\alpha$$
 = 0.05
 β = 0.20
 Δ^2 (estimated effect size) = 1.0, 1.25,
1.5
(standard deviation) = 3.2512

Effect	Trap nights required
size	
1.0	166
1.25	106
1.5	74

Objective 1: Protocol

- 48 households across four villages (Dhampura, Ruchanpura, Rampur Jagdish & Bishambhapur) split between two districts (Nalanda & Saran) recruited in April 2018
- Household surveys examining known risk factors for VL completed in June 2018
- Sampling of households commenced in June 2018
 - Follows a randomised Latin Square design balanced for carry-over effects ($4 \times 12 \times 12 = 576$ 'trap nights' much greater than 498 required).

Objective 1: Results

	CDC LT	Mechanical aspirator	Prokopak
Total Sandflies	4076	1433	1645
Females	1781	876	1025
P. argentipes females	866****	501	568

Objective 2: Study Design

- 120 HH recruited in 12 villages, 6 endemic and 6 nonendemic
 - 50 HH to overlap with the collection of human serum samples by the SPEAK India Surveillance project
- Surveys assessing household composition, building materials, and known risk factors for VL carried out in advance of entomological sampling commencement
- CDC light traps placed indoors overnight to capture *P. argentipes* bimonthly in each HH

District	Village
1=Vaishali	1=Enayatpur Prabodhi
1=Vaishali	2=Boariya
2=Patna	3=Nawasichak
2=Patna	4=Moriyawan
3=Nalanda	5=Dharampur
3=Nalanda	6=Nadwar
3=Nalanda	7=Madarpur
4=Saran	8=Rampur Jagdish
4=Saran	9=Bishambarpur
5=Muzzafarpur	10=Panapur Kariyata
5=Muzzafarpur	11=Dharfari
5=Muzzafarpur	12=Chainpur Turki

Study Design

- Female sandflies, male sandflies, female mosquitoes, and male mosquitoes separated from CDC light trap captures
 - Female sandflies: speciated, counted, stored in ethanol at -80°C
 - Male sandflies: counted, stored in ethanol at -80°C
 - Female mosquitoes: counted, stored in ethanol at -80°C
 - Male mosquitoes: counted
- All capture data recorded against date and household identification number
- PCR to detect presence of *L. donovani* (infection) and *L. donovani* metacylics (infectiousness)

Infection vs Infectious

Study design

2. Xenomonitoring

- b. Identification of infectious *P. argentipes L. donovani* metacyclic stage:
 - Single SF infected with L. donovani
 - Method: specific qPCR for sherp expression (E. Giraud et al., 2018)

Problem – Flooding – DNA (infection) - RNA

Objective 2: Revised Study Design

- 144 HH recruited in 12 villages, 6 endemic and 6 non-endemic
 - 60 HH to overlap with the collection of human serum samples by the SPEAK India Surveillance project
- Surveys assessing household composition, building materials, and known risk factors for VL carried out in advance of entomological sampling commencement
- CDC light traps placed indoors overnight to capture *P. argentipes* bimonthly in each HH
- +CDC light traps placed outdoors (varanda) overnight to capture *P. argentipes* bimonthly in 3 HH/village
- Samples stored in RNA*later*-ICE at -20°C.

District	Village
1=Vaishali	1=Enayatpur Prabodhi
1=Vaishali	2=Boariya
2=Patna	3=Nawasichak
2=Patna	4=Moriyawan
3=Nalanda	5=Dharampur
3=Nalanda	6=Nadwar
3=Nalanda	7=Madarpur
4=Saran	8=Rampur Jagdish
4=Saran	9=Bishambarpur
5=Muzzafarpur	10=Panapur Kariyata
5=Muzzafarpur	11=Dharfari
5=Muzzafarpur	12=Chainpur Turki

Problem – COVID-19 Pandemic - lockdown

Female P. argentipes Collected		
Flood-Affected Specimens (Replicates 1-6)		
18 June – 18 September, 2019		
Post-flood, frozen at -20 C and stored in ethanol (Replicate 7)	200	
5 November – 18 November, 2019		
Post-flood, frozen at -20 C and stored in RNALater Ice (Replicate 8)		
3 March – 17 March, 2020		
Includes both indoor (n=31) and veranda (n=10) totals		
Total	2,600	

Mitigation

Objectives 3 & 4

- Human sero-surveillance data to be collected at the same time in five of the 12 study villages
 - Asymptomatic VL
 - Clinical VL
 - Post-Kala azar dermal leishmaniasis (PKDL)
- Data on humans, parasites & vectors at the household level used to improve transmission models

Conclusions

- Integrating MX into India's existing passive surveillance system could help to overcome sensitivity constraints and indicate whether transmission within a given region is ongoing to assist in the deployment of VL control methods.
- MX could shed light on unknown aspects of VL transmission, including the entomological inoculation rate, natural rates of *P. argentipes* infection and infectiousness.
- This information could be used to formulate transmission assessment surveys similar to those in use for lymphatic filariasis, to determine when transmission has been interrupted.

Acknowledgements

Consortium Partners: BHU, CARE, DNDi, ICMR, IPH, ITM, NVBDCP, KAMRC, LSTM, LSHTM, PATH, RMRI, UNION, WHO

RMRI Field Workers: Mukesh Kumar (1), Mukesh Kumar (2), Ratnesh Kumar, Santosh Kumar, Rahul Keshri

Statistics: Emily Nightingale

All Particpants

For further information, news, publications, or contact details, please visit our website:

www.speakindia.org.in

