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Greater accommodative lag and vergence deficits have been linked to attentional deficits similar to those
observed in Attention Deficit Hyperactivity Disorder (ADHD). The purpose of the present study was to
assess the effect of accommodative-vergence stress on a measure of sustained attention (Conners CPT)
used in the diagnosis of ADHD. Twenty-seven normal non-ADHD adults completed the Conners CPT
twice: wearing —2.00 D lenses and normally (without the —2.00 D lenses) in a counterbalanced order

ﬁeywords"d . with at least 24 h between the sessions. Simultaneous recording of participants’ dynamic accommodative
ccommodation responses was performed from the right eye using the Grand Seiko WAM-5500 auto-refractor and elec-

Attention . .. . . . .

ADHD troencephalographic activity (EEG) in the left prefrontal region using the Neurosky Mindset headset. The

WAM-5500 results demonstrated a significantly greater accommodative lag in the —2.00 D stress condition and a sig-

EEG nificantly poorer performance on the Conners CPT as indexed by slower reaction time, greater standard
Conners’ CPT error of hit reaction time, grater response variability, poorer stimulus detectability and a greater number
of perseverations. No differences were observed on measures of EEG in the theta (4-7 Hz), alpha
(8-12 Hz), and beta (12-20 Hz) bands. Moreover, when directly juxtaposed with each EEG band in multi-
ple linear regression analyses, greater accommodative lag in the stress condition was significantly asso-
ciated with a greater probability of clinical classification on the Conners CPT, and was also marginally
predictive of the number of omissions recorded in the stress condition. The results demonstrated that
sustained attention can be influenced by such factors as accommodative-vergence stress and suggest
that bottom-up processes can contribute to and potentially exacerbate attentional problems in individ-
uals with ADHD. The study also showed that cortical dysfunction (while sufficient) may not be a neces-
sary condition for attentional deficits.
© 2012 Elsevier Ltd. All rights reserved.

shifts of attention or irrelevant updating in working memory and
produce distractible behavior (Volkow et al., 2005). The function

1. Introduction

1.1. Neurophysiology of ADHD

Theories of the etiology of Attention Deficit Hyperactivity
Disorder (ADHD) have traditionally incorporated the notions of
dysfunctional arousal, activation and alertness systems in the brain.
More recent theoretical advances propose a top-down model that
includes an executive control network located in the frontal cortico-
striatal pathway that regulates the level of arousal and alertness
(Sergeant, 2000, 2005). There is evidence that individuals with
ADHD have increased dopamine transporter (DAT) in the striatum,
which decreases the availability of extracellular dopamine (DA;
Dougherty et al.,, 1999). Consequently, these individuals exhibit
overactivation of the prefrontal cortex (PFC; Sheridan, Hinshaw, &
D’Esposito, 2010) and this increased firing could result in irrelevant

* Corresponding author. Address: Department of Psychology, University of North
Dakota, 319 Harvard St. Stop #8380, Grand Forks, ND 58202, United States. Fax: +1
701 777 3454.

E-mail address: dmitri.poltavski@und.edu (D.V. Poltavski).

0042-6989/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.visres.2012.04.017

of stimulant medication, according to this model, would be to
decrease the ‘noise’ in the PFC by increasing extracellular DA in
the striatal region. Indeed, in a recent study by Sheridan, Hinshaw,
and D’Esposito (2010) stimulant medication in the form of methyl-
phenidate reduced PFC activity in children with ADHD and
improved their performance on a delayed match-to-sample task
using letter stimuli.

Similarly, Loo et al. (2009) examined patterns of cortical arousal
and activation as a function of adult ADHD diagnosis during com-
pletion of a sustained attention task that has repeatedly been
shown to differentiate ADHD from normal groups (Epstein et al.,
2003). On this 14-min Continuous Performance Test (CPT) by Con-
ners participants are asked to press the space bar in response to
every stimulus letter except the target letter “X”. Electroencepha-
lographic (EEG) recordings measured during CPT testing showed
that the pattern of cortical activation in ADHD adults was mark-
edly different from that of the controls especially in the frontal
regions. The most robust finding was a significantly greater atten-
uation of 8-10 Hz alpha band power in the ADHD group compared
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to controls. Alpha power is negatively associated with arousal
again suggesting that the ADHD group experienced a significantly
greater level of cortical arousal in the frontal regions than controls.

At the same time, using conservative estimates pharmacother-
apy (includes both stimulant and non-stimulant medication) has
been found ineffective for at least 10% of pediatric and adult pa-
tients diagnosed with ADHD even after controlling for psychiatric
comorbidity, drug intolerance and a history of stimulant misuse
(Wigal, 2009). While overdiagnosis can never be ruled out, Sciutto
and Eisenberg (2007) concluded that it does not appear there is
sufficient evidence to support the notion that ADHD is currently
systematically being overdiagnosed. There is, therefore, a possibil-
ity that in a small percentage of ADHD patients cognitive/attentive
deficits may be primarily related to a non-cortical bottom-up
mechanism that is not affected by ADHD medication.

1.2. Accommodative-vergence stress and visual discomfort

One such mechanism may involve a dysfunction in the oculomo-
tor system. When a young person with normal binocular vision
engages in the act of viewing a near target, there is an oculomotor
response of the eyes known as the ‘near triad’ that includes pupil
miosis (constriction), binocular convergence and increased
accommodation. Although both accommodation and vergence will
respond independently to proximal stimulation, a cross-linked reci-
procal interaction exists between accommodation-convergence
(AC), defined as a reflexive change in convergence driven by changes
in accommodation, and of convergence-accommodation (CA),
defined as a reflexive change in accommodation driven by a change
in vergence, such that accommodation and convergence will be held
in relative synchrony with each other.

Under optimal circumstances where the accommodative and
vergence responses are closely matched, young persons will typi-
cally show a mild under-accommodation to a distance target. When
viewing near targets, a mild amount of under-accommodation or
accommodative lag can be expected. The amount of accommoda-
tive lag is not constant for everyone, but is different from one
person to another. On average, the amount of accommodative lag
behind the target plane is between 0.25 D and 0.50 D (Fincham &
Walton, 1957; Iwasaki, Tawara, & Miyake, 2006). If introduced with
a concurrent mental task while viewing near targets, such as
reading, subjects will generally show an additional 0.25-0.75
accommodative shift toward far, presumably due to the activation
of the sympathetic nervous system (Bullimore & Gilmartin, 1988).

Usually, the accommodative-vergence system is able to cope
for short periods of time with some degree of conflict. Thus, a mild
dissociation between accommodation and vergence reflected by an
accommodative lag or a fixation disparity may not cause visual dis-
comfort for a person engaged in a near visual task because the sys-
tem is sufficiently flexible. In studies of asthenopia associated with
stereoscopic displays, there is evidence that as the conflict between
the vergence distance and accommodative distance increases or if
such dissociated viewing becomes prolonged, symptoms of fatigue
and discomfort are more likely to ensue as the viewer attempts to
counteract the accommodation-vergence mismatch (Emoto, Niida,
& Okano, 2005; Hoffman et al., 2008; Yano et al., 2002).

Accommodative-vergence stress can also be experimentally in-
duced by artificially decoupling the normal accommodative-
vergence mechanism using —2.00 D lenses or using base-in (BI)
prism (Bharadwaj & Candy, 2009; Maddox, 1886). In the former
condition, an accommodative stimulus demand is created that is
in excess of the vergence stimulus demand. In the case of BI prism,
a reduced fusional vergence stimulus demand is created relative to
a fixed accommodative stimulus demand.

Clinical investigations have shown that young subjects vary in
the degree to which they can view through minus lenses or BI

prisms before the stimulus is excessive and they experience blur
and then diplopia (Chin & Breinin, 1967; Parks, 1958; von Noorden
& Avilla, 1990). This individual range of accommodation-vergence
stress that can be induced without any blur or diplopia in either
direction is referred to as the zone of clear, single binocular vision
(Howard & Rogers, 2002; Morgan, 1944). Within this zone exists
a smaller theoretical zone of comfort known as Percival’s area of
comfort, which is the middle third of the zone of clear, single binoc-
ular vision (Howard & Rogers, 2002; Morgan, 1944). Relative
accommodative-vergence stress can be endured by many individ-
uals when performing near tasks without the stimulus target being
seen as “blurred” or “double”. The possibility that one will
experience discomfort will depend on whether or not the
accommodative-vergence response resides inside or outside Perci-
val’s area of comfort.

Howarth and Clemes (2006) used —2.00 D lenses in a within-sub-
ject design in which participants were asked to complete a task on a
visual display unit (VDU) under conditions of normal/corrected-to-
normal vision and near-point binocular stress induced with —2.00 D
lenses. In the stress condition participants reported significantly
greater visual discomfort. Additionally their near-point accommo-
dation and convergence were significantly worse after completing
the VDU task in the stress condition compared to the non-stress
condition (mean near points receded by over 1 cm).

Earlier research also showed that accommodative-vergence
near-point stress induced with BI prism or —2.00 D lenses resulted
in significant deterioration of reading comprehension and reading
speed (Garzia et al., 1989; Ludlam & Ludlam, 1988).

1.3. ADHD, accommodation and convergence

Many of the adverse symptoms expressed by individuals with
accommodative and vergence problems have also been reported
for individuals diagnosed with attention problems. Borsting, Rouse,
and Chu (2005) found that school-aged children with symptomatic
accommodative dysfunction and or convergence insufficiency (CI;
a condition where the vergence plane tends to dissociate behind
the accommodative plane of a viewed near target) appear to have
a higher frequency of ADHD-like behaviors as measured by the
Conner’s Parent Rating Scale-Revised Short Form (CPRS-R:S).
Granet et al. (2005) also reported a three times greater incidence
of Attention-Deficit Hyperactivity Disorder (ADHD) among pa-
tients with convergence insufficiency (CI) when compared to the
general population and, conversely, a threefold greater incidence
of CI in the ADHD population. Moreover, Granet et al. (2005) went
further to suggest that medications used to treat ADHD may actu-
ally aggravate CI as some of the drugs are associated with side ef-
fects of blurred vision and difficulties of accommodation.

Finally, Gronlund et al. (2007) reported a number of ocular and
visual abnormalities in children and adolescents with ADHD. Spe-
cifically, the authors found that overall 76% of the ADHD subjects
had abnormal ophthalmologic findings including subnormal visual
acuity, strabismus, reduced stereo-vision, absent or subnormal
near point convergence, refractive errors, small optic discs and/or
signs of cognitive visual problems. Importantly, administration of
stimulant medication did not significantly improve visual function
in the ADHD group.

1.4. Current study

In the present study we used an open field autorefractor to con-
tinuously measure accommodative lag along with prefrontal EEG
activity in normal non-ADHD subjects as they performed a contin-
uous performance task with and without —2.00 lenses designed to
induce accommodative-vergence stress. The term accommoda-
tive-vergence stress is defined in this study as the stimulus
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demand mismatch that was induced rather than the subjective
feeling of asthenopia that may have been experienced by the sub-
ject. We hypothesized that the disruption of visual processing
alone may be sufficient to account for symptoms of inattentiveness
in the absence of changes in cortical activity.

2. Method
2.1. Materials

2.1.1. Participants

Twenty-seven college students 18-26 years of age (8 males and
19 females) participated in the study for course credit. The study
was approved by the Institutional Review Board of the University
of North Dakota. All participants were required to provide in-
formed written consent prior to their participation. The partici-
pants were screened for normal or corrected to normal visual
acuity (20/20 or better in each eye) at distance and near. Uncor-
rected refractive errors and corrected over-refractions of the right
eye all had spherical equivalent (SE, sphere + 0.5 X cyl.) between
—0.50 sph. and +0.50 sph. and showed astigmatism <—0.75 sph.
All participants demonstrated at least 9 D of accommodative
amplitudes monocularly and binocularly and were non-strabismic,
with heterophorias measuring between 2 prism diopters esophoria
and 6 prism diopters exophoria, which is considered to fall within a
normal range (Casillas & Rosenfield, 2006). Those with strabismus,
uncorrected astigmatism > or equal to 0.75 and anisometropia, as
well as significant ocular pathology (excluding color deficiencies)
and head trauma were excluded. Additional exclusionary criteria
included presence of a learning disability, ADHD, or a psychiatric
condition such as depression and/or concomitant use of stimulant
medication, antidepressants, or anxiolytic drugs.

2.1.2. Static and dynamic accommodation

Static push-up accommodative amplitudes were measured for
each subject monocularly and binocularly using an RAF rule
according to Donder’s clinical method (Donders, 1864).

Steady-state accommodative responses were measured dynam-
ically from the right eye using the Grand Seiko WAM-5500 auto-
refractor (Grand Seiko Co. Ltd., Hiroshima, Japan) in HI-SPEED
mode. The left eye was not covered during the experiment as all
subjects viewed the near target stimulus binocularly, thus insuring
a closed vergence loop. The Grand Seiko WAM-5500 is a binocular
open-field autorefractor and keratometer that also permits dy-
namic recording of refraction and pupil size by connection to an
external PC via an RS-232 port. The instrument can measure refrac-
tion in the range of +22 D sphere and 10 D cylinder in increments
of 0.01, 0.12 or 0.25 D for power, and 1° for cylinder axis. In the
present study the WAM-5500 software was set for the maximal
resolution of 0.01 D.

Measurement data are displayed on an internal 5.6 in. color
monitor, which permits visualization of the pupil to enable align-
ment of the instrument with the subject’s visual axis. In high-speed
mode, mean spherical equivalent refractive error (MSE; equalo
spherical component + cylindrical power/2) and pupil diameter
can be recorded at a rate of 5 Hz by interfacing with a PC running
the WAM communication system (WCS-1) software, allowing
objective measurement of a subject’s dynamic accommodative re-
sponse to a target. A number of research studies have recently
showed that the WAM-5500 produces reliable and accurate
measurements of dynamic accommodation (Chase et al., 2009;
Sheppard & Davies, 2010; Tosha et al., 2009).

In the present study spherical accommodative response was
sampled every 200 ms during a 15-min Continuous Performance
Test presented on a laptop computer screen at a distance of
40 cm from the observer. Participants viewed a series of 2.5 cm

high-contrast white letters on a black computer screen at a central
point of fixation, yielding an approximate near Snellen equivalent
letter size of 20/858 (angular subtense at the eye is inverse tangent
of 2.5/40 or 3.57°). During recording of dynamic accommodation
focus of the corneal reflections on the WAM-5500 monitor was
continuously maintained using a joystick.

Accommodative lag was determined by subtracting the sub-
ject’s mean point of focus during testing (WAM-5500 dynamic
refraction value ‘REF_mean_dynamic’) from the target distance
(2.5 D) and adjusting for the baseline static refraction value
(‘REF_mean_static’). In the stress condition an additional adjust-
ment was made for the —2.0 D lens.

Formula 1 (non-stress): Accommodative lag (D)=-2.5 -
REF_mean_dynamicpenstress — REF_mean_static

Formula 2 (—2.0 D stress): Accommodative lag (D)= -4.5 -
REF_mean_dynamicsyess — REF_mean_static

2.1.3. EEG recording

EEG recording was carried out using Neurosky’s Mindset head-
set. The headset incorporates a single active pea-sized electrode
(10 mm diameter) that is placed in the left forehead area approxi-
mately 2 cm above the left eyebrow. This roughly corresponds to
area Fp1 using the International 10-20 System of electrode place-
ment. The reference electrode is integrated into the earpiece of the
headset and measures electrical potential from two points on the
left earlobe. The electrical potential is supplied directly to the
embedded chipset for analog filtering with band pass and notch fil-
ters and 128 kHz digital sampling every second. Analogue data is
then automatically converted into digital format and analyzed by
Fast Fourier Transform (FFT) in the headset circuit board. FFT pro-
duces power values for each 1-s epoch and each frequency bin that
are transmitted via Bluetooth to the Mindset Research Tools data
acquisition software installed on a Mac Book Pro laptop. The ex-
tracted data represent the electrical potential difference between
active and reference electrodes, and analyses of the power ratio
of the frequency components to total power have reliably and
accurately shown which frequency range is dominant at the time
the data are taken (Yasui, 2009). Power values for each frequency
component were then grouped into 3 frequency bands: theta
(4-7 Hz), alpha (8-12 Hz) and beta (12-20 Hz). Similar bands were
used in the study by Loo et al. (2009), in which frontal and parietal
cortical activity was correlated with performance on Conners CPT.

2.1.4. Conners Continuous Performance Test

The Conners’ Continuous Performance Test (CPT) is a neuropsy-
chological task of sustained attention that has repeatedly been
shown to differentiate ADHD from normal groups (Epstein et al.,
2003). The test takes 14 min to complete and requires participants
to make a response (mouse click) as quickly as possible to any let-
ter displayed in the center of a laptop computer screen except the
letter “X” (probability of occurrence = 0.10). Each letter (~2.5 cm,
white on a black screen) is displayed for 250 ms over 18 blocks
of 20 trials on a Sony lap-top computer screen (screen resolution
1024 x 768) with high contrast (95.1%) The signal in each block
is presented at one of the three interval rates, i.e. 1,2, or 4s in a
counterbalanced order. Dependent measures include hit reaction
time, accuracy (errors of omission and commission), signal detec-
tion parameters of d’ (sensitivity) and beta (response bias) as well
as response variability between and within the blocks (the stan-
dard error estimate of hit reaction time).

2.2. Procedure

Upon arrival at the lab each participant read and signed the in-
formed consent form and completed two questionnaires. The first
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questionnaire concerned demographic information and medical
history. The second instrument was the Convergence Insufficiency
Symptom Survey (CISS), a 15-item questionnaire assessing symp-
toms related to reading, including fatigue, headaches, reading per-
formance and perceptual distortions. A score of 22 or higher on the
CISS has been shown to differentiate between adults with conver-
gence insufficiency (CI) from those with normal binocular vision
(Rouse et al., 2003). The CISS is useful in identifying children with
other binocular vision and accommodative disorders that have
symptoms that are similar to those found with convergence insuf-
ficiency (Borsting et al., 1999, 2003).

Next participants underwent a brief optometric examination
that included distance and near monocular and binocular acuities,
monocular and binocular accommodative pushup amplitudes, near
Maddox Rod dissociated phoria testing and static WAM-5500 base-
line autorefraction measurements of the right eye taken three
times while subjects binocularly viewed a distant target at 6 m.
Lastly, a probe of accommodative-vergence flexibility was given
whereby each subject was asked to read aloud a 20/20 reduced
Snellen line of letters binocularly at 40 cm. while —2.00 lenses
were held before the subject’s eyes or habitual correction. All sub-
jects were able to successfully resolve the acuity letters without
diplopia. This momentary ability to have accommodation stimu-
lated while the vergence is held constant is known as relative
accommodation and indicates a capacity of our subjects to fall
within a normal range of clinically established positive relative
accommodation values for adults (Fry, 1983; Morgan, 1968).

Following the exam, participants were asked to completely un-
cover their ears from any hair as well as to remove any earrings.
Next the Neurosky Mindset headset was placed over their ears
with the active electrode positioned in firm contact with the fore-
head area approximately 2 cm above the left brow. The subjects
then placed their chin in the chin support of the WAM-5500 and
were given instructions how to complete Conners CPT by clicking
on the corded mouse extending from the laptop. All participants
first completed a 3-min practice session before beginning the
experimental blocks. Dynamic accommodation and pupil diameter
of the right eye as well frontal EEG activity were recorded through-
out the duration of the CPT.

Testing took place between 9:00 am and 3:00 pm and was com-
prised of two sessions (separated by at least 24 h) that were
administered in a counterbalanced order. Thus each participant
completed a non-stress CPT session, during which participants
viewed the laptop screen binocularly using their habitual optical
correction of contact lenses or glasses (if they had corrected vi-
sion). In the stress condition participants completed the CPT task
while wearing —2-D spherical lenses binocularly in a trial frame
(if no glasses or contacts were worn) or wearing —2-D trial lenses
binocularly clipped over their glasses.

3. Results
3.1. Baseline data

The mean score on the Convergence Insufficiency Symptom
Survey was 16 (SD = 7.13). On the accommodative pushup ampli-
tude test the mean for the right eye was 10.50 D, for the left eye
10.55 D (SD =4.42), and 13.26 D (SD = 4.82) on the binocular push-
up amplitude measure. On the phoria test the mean finding was an
exophoria of 4314 (SD=5.53). Mean static refraction/over-
refraction of the right eye at baseline was —0.02 D. Predictably,
measures of accommodative pushup amplitude had significant
high correlations with each other (r = 0.86). Additionally a signifi-
cant moderate correlation was observed between phoria and the
total score on the CISS (r=0.41, p = 0.045) with higher phoria val-
ues associated with greater CISS scores.

3.2. Within-subject comparisons

Participants’ accommodative lag, EEG activity, and performance
on Conners CPT in the non-stress and stress conditions were com-
pared with a series of paired-sample t-tests. The results showed
that accommodative lag was significantly greater in the stress
condition compared to the non-stress condition. Attentional per-
formance significantly deteriorated in the stress condition increas-
ing the probability of participants’ clinical classification by 6%.
Participants in the stress condition had a significantly slower reac-
tion time, a significantly greater standard error of hit reaction time,
showed greater response variability, significantly poorer stimulus
detectability and a significantly greater number of perseverations.
No significant differences were observed on measures of EEG activ-
ity for any of the frequency bands (theta, alpha, beta) or pupil
diameter. These results are summarized in Table 1.

3.3. Regression modeling

Accommodative lag in the stress condition was then directly
juxtaposed with frontal EEG activity in a series of multiple regres-
sion analyses predicting each of the attentional measures. Each
EEG frequency band was tested in a separate regression model
since they had very high (over 0.93) significant bivariate correla-
tions with each other producing problems of multiple collinearity.
Pupil diameter was the third continuously measured variable in
the stress condition. This variable, however, was not included into
the regression models as it did not show significant bivariate cor-
relations with any of the attentional measures.

The results showed that the power of each of the three fre-
quency bands was not significantly predictive of performance on
any of the attentional measures. Greater accommodative lag, on
the other hand, was associated with a significantly higher probabil-
ity of clinical classification (p < 0.05) regardless of the bandwidth
entered into the model. Each model accounted for 30-40% of vari-
ance in this attention measure (see Table 2 for details). Accommo-
dation lag in the stress condition was also marginally predictive
(p =0.06) of the mean number of omissions recorded in the same
condition.

There were no significant correlations between accommodative
lag in the stress condition and the power of any of the frequency
bands. Fig. 1 illustrates a fairly flat pattern of fluctuations of the
three bands across the range of accommodative lag responses.
On the other hand, significant bivariate correlations were observed

Table 1
Mean differences on measures of visual function, cortical activity and sustained
attention (CPT).

Variable name No stress —2.0 D stress t
Mean SD Mean SD

Accommodative lag (D) -1.02 0.79 —4.24 0.96 2698
Pupil diameter (mm) 5.57 0.87 5.34 1.01 1.73
EEG theta (4-7 Hz) 4296 4220 26.17 26.10 0.93
EEG alpha (8-12 Hz) 20.87 21.33 11.89 8.05 1.23
EEG beta (12-20 Hz) 13.26 19.10 8.15 9.40 0.70
Clinical probability 0.29 0.15 0.35 0.22 -2.01"
Omissions 1.30 1.86 5.04 13.47 -1.45
Commissions 11.37 6.74 12.44 6.33 -1.02
Hit reaction time (ms) 359.76 53.13 379.23 59.02 —3.54"
Hit reaction time SE 4.49 133 5.31 2.23 —2.47"
Variability 5.82 2.25 8.59 6.44 —2.36"
Detectability 0.95 0.47 0.74 0.36 2.74"
Response style 0.64 0.77 0.61 0.81 0.19
Perseverations 0.11 0.32 0.52 080 —3.05"

" p<0.05.

" p<0.01.
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Table 2
Regression analysis summary for accommodative lag and EEG frequency bands in the
stress condition predicting probability of clinical classification on Conners CPT.

Model Variable B SEB B

12 Accommodative lag 0.19 0.08 0.63"
Alpha (8-12 Hz) power —0.12 0.01 —.42

20 Accommodative lag 0.19 0.08 0.67
Beta (12-20 Hz) power —0.02 0.01 -0.48

3¢ Accommodative lag 0.19 0.08 0.65

Theta (4-7 Hz) power —0.004 0.003 -0.34

a Adjusted R? = 0.38 (N =27, p = 0.07).

b Adjusted R? = 0.44 (N = 27, p = 0.05),

¢ Adjusted R’ =0.30 (N=27, p=0.12).
" p<0.05.

between accommodative lag in the stress condition and probability
of clinical classification (r=0.59; p = 0.04), number of omissions
(r=0.59; p=0.04) and hit reaction time (r= 0.55; p = 0.05).

Furthermore, a series of paired-sample t-tests showed that
mean accommodative lag of subjects at each minute of the Conners
CPT in the non-stress condition was significantly smaller than the
mean accommodative lag for corresponding time points in the
stress condition. Fig. 2 shows that the accommodative lag at each
minute of the Conners CPT in the non-stress condition was fairly
stable fluctuating around —1.00 D (M =1.01, SD=0.05). In the
—2.0 D stress condition accommodative lag was also fairly stable
vacillating near —4.0 D (M =4.2, SD=0.13).

4. Discussion

The results of this study showed that performance on a comput-
erized test of sustained attention often used in diagnosis of ADHD
can be compromised by adding a —2.00 D accommodative stimulus
to the normal -2.50 D accommodative-vergence stimulus
demand. Increasing the accommodative stimulus from —2.50 to

an absolute of demand of —4.50 D while retaining a fixed vergence
stimulus at —2.50 D resulted in a larger accommodative lag and
significantly poorer performance on the CPT reaction time, stan-
dard error of hit reaction time, response variability, stimulus
detectability and the number of perseverations was found. There
was no appreciable change in frontal lobe electrophysiological
activity. Importantly, minus lens induced accommodative-
vergence demand increased the likelihood of clinical diagnosis on
the Conners CPT by 6%. Dynamic measure of accommodation dur-
ing binocular viewing of the Conners CPT showed that greater
accommodative lag in the stress condition was significantly corre-
lated with the probability of clinical diagnosis, reaction time and
number of omissions. What was particularly interesting was the
finding that accommodative lag alone could account for a signifi-
cant proportion of cases with a higher probability of clinical classi-
fication even after controlling for frontal EEG activity.

The Conners CPT letter stimulus occupied a vertical dimension
of 2.5 cm on the computer screen with a 0.5 cm brush stroke. This
is equivalent to a relatively large reduced Snellen acuity letter of
20/858 at 40 cm. approximating a relatively low spatial frequency
target of 0.7 cpd. This sized target subtends the retina at 3.57° at a
40 cm. distance. Under the non-stressed CPT condition, subjects
showed an average lag of accommodation of 1.02 D with sustained
viewing of about 14 min. High contrast targets of low spatial fre-
quency do not appear to require particularly accurate accommoda-
tion. Therefore, a greater lag of accommodation can be expected
compared to higher frequency targets (Tucker & Charman, 1987,
Ward, 1987).

Under the stressed CPT condition, an average accommodative
lag of —4.24 D was recorded. The direction of this response agrees
with Leat and Gargon (1996) who found that accommodative lag
increases for increased demands. Under conditions where stimuli
to accommodation and vergence conflict, it is known that accom-
modation is less accurate, yielding a larger accommodative lag
than under non-conflicting binocular viewing conditions (e.g.
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Fig. 1. Relationship between frontal EEG bands and accommodative lag during completion of Conners CPT in the stress condition.
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Fig. 2. Accommodative lag during completion of Conners CPT in non-stress and stress conditions (n = 26).

Hung & Ciuffreda, 1994; Jaschinski, 1997; Ramsdale & Charman,
1988).

The large accommodative lag means found under the stress CPT
condition suggest that a significant retinal defocus beyond the
eye’s depth of focus (DOF) may have occurred. Depth-of-focus re-
fers to the range of retinal defocus that can be tolerated without
the perception of blur with accommodation held constant. Xu
et al. (2009) reported that retinal defocus greater than 2 D would
compromise task performance such as reading, whereas under
more stringent and restrictive dynamic viewing conditions such
as rapid serial visual presentation (RSVP) retinal defocus beyond
a range of 1.0 and 1.5 D can deleteriously affect performance at
near due to an exceeded “functional blur threshold”.

In the present study the CPT task represented a temporally lim-
iting and restricting condition (similar to RSVP), making CPT per-
formance susceptible to retinal defocus with even low
accommodative lag being potentially detrimental to performance.
Our CPT target subtended a visual angle of 3.57° and with an aver-
age pupil diameter of 5.34 mm and accommodative lag of —4.24 D
in the stress condition of the CPT, it is very likely that the subjects
exceeded their DOF resulting in perception of blur. For example,
Wang and Ciuffreda (2004) reported a foveal mean DOF of 0.89 D
(range: 0.55-1.55 D) with an artificial 5 mm pupil placed in front
of the cyclopleged and dilated right eye of the subject. At 8° of ret-
inal eccentricity the total subjects’ DOF in their study increased to
3.51 D (range: 3.16-3.86 D).

At the same time under specific viewing conditions, in which
processing time is not an issue, target clarity may not be all that
necessary for object recognition. For example, Tucker and Charman
(1987) showed that a subject with normal vision and paralyzed
accommodation could still read a letter of our size (20/858) when
defocused by minus lenses of over —7 D. In combination with the
dynamic timing limitations of the CPT, however, perceived blur
in the presented study may have adversely affected the subjects’
performance especially on measures of reaction time and stimulus
detectability in the fastest interstimulus interval condition (1 s). In

the other two interstimulus interval conditions when the letters
were presented at 2 and 4-s intervals, identification of targets
may have been less compromised by retinal defocus but by other
factors such as accommodative-vergence stress.

4.1. ADHD, accommodation, convergence and EEG

According to a model of homeostatic balance between accom-
modation and convergence in an individual wearing stress-inducing
experimental lenses, accommodation will tend to lag further behind
the plane of the target and convergence will localize closer than
accommodation (Schor, 1983a, 1983b, 1985; Schor & Narayan,
1982; Semmlow & Heerema, 1979). Since convergence and accom-
modation do not localize nearly as close to the same target plane for
visually stressed condition as they do for non-stressed persons,
extra effort, consciously or unconsciously, must be directed toward
the effector system mismatch. It is felt that this added effort may
diminish one’s information processing capacity, create asthenopia,
disrupt attentional reserves, and decrease the efficiency of task
performance (Skeffington, 1974).

Our EEG data also seems to be somewhat consistent with the
above hypothesis. Specifically, non-significant attenuation of EEG
power was observed in the stress condition for all measured EEG
band frequencies including alpha power. Loo et al. (2009) also re-
ported that the most robust finding in their study during comple-
tion of the Conners CPT was a significantly reduced alpha power in
adults with ADHD compared to normal controls especially over the
frontal and parietal regions. The researchers suggested that
decreased alpha power may be an important neurophysiological
marker in adults with ADHD representing increased cortical
arousal necessary to comply with the experimental situation. In
non-ADHD adults attenuation of 8-10 Hz alpha power has been
observed during a variety of tasks and is thought to represent in-
creased attentional demands (Klimesch, Sauseng, & Hanslmayr,
2007). Additionally reductions in alpha power have been linked
to expectancy and preparation of the visual cortex to incoming
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visual cortex (Gomez et al., 2004). It is thus possible that in our
study increased accommodative-vergence demand in the —2.0 D
stress condition required greater recruitment of attentional re-
sources for accurate processing of the visual stimulus which was
reflected in presumably greater cortical activation (indexed by
attenuated alpha power) at least in the frontal region. For persons
with accommodative-vergence conflicts, the struggle to keep
accommodation and convergence within the zone of clear, single
binocular vision may become a distracting event that can be detri-
mental to attentional and cognitive performance.

This concept supposes that there is a limited -capacity pool of
attention available for processing and a fixed amount of overall en-
ergy consumption that is made available to the brain. For example,
Laufs et al. (2006) reported an inverse relationship between alpha
power and fMRI BOLD cortical response. Attention thus seems to
optimize the use of the visual system’s limited resources by
enhancing the representation of objects appearing with relevant
features or at relevant locations while diminishing the representa-
tion of objects appearing at less relevant locations or with less rel-
evant aspects of our visual environment. With efficient binocular
and accommodative function, the allocation of attention is not de-
pleted by the need to exercise volitional control of accommodation
and vergence to compensate for their dysfunction (LaBerge &
Samuels, 1974; Peachey, 1991). If a person can reduce the amount
of attention needed for a task, then more attention is available that
can be devoted to a concurrent task (e.g. Schneider & Shiffrin,
1977).

4.2. Study limitations

The methodology of the study did not allow separation of
accommodative/vergence stress from perceived blur. CPT testing
under non-cyclopleged conditions with the use of incrementally
increasing minus lens powers could have provided better informa-
tion about the relative contribution of blur and accommodative/
vergence stress factors on performance, especially if an objective
method to measure fixation disparity, such as binocular eye move-
ment recordings, and a self-report symptom questionnaire were
also included. Likewise, CPT testing under cyclopleged conditions
using incrementally decreasing plus lens powers and questionnaire
could have provided better information about the contribution of
blur factors on performance.

Other limitations include a relatively small sample size and the
use of only one frontal EEG electrode. Although Loo et al. (2009)
did report greatest differences in the alpha range between ADHD
and non-ADHD adults in the frontal region, the researchers also
found differences in the parietal region. It is, therefore, possible
that there may have been shifts in the band activity in other brain
regions under the condition of increased accommodative stress,
but the measurements from these regions were not taken. Never-
theless, the Neurosky’s Mindset headset has been validated by
Yasui (2009) who used the system’s EEG output to discriminate be-
tween REM/non-REM sleep, car driving, using a cell phone while
driving a car as well as students’ engagement in classroom activi-
ties and relaxation. The system’s software also provided data on
the signal quality. In the present study only 100% signal quality
data was used making it highly unlikely that the observed EEG
activity was spurious.

5. Conclusion

Overall the results of this study suggest that bottom-up pro-
cesses such as accommodative stress (as indexed by a greater
accommodative lag) and/or functional blur can influence sustained
attention to visual stimuli and may potentially contribute to and

exacerbate the severity and clinical profile of attentional problems
in individuals with ADHD. Whether anomalies of the oculomotor
system can account for instances of drug-resistant forms of ADHD
is not yet known, the present study is one of the first to suggest
that a possible accommodative-vergence mismatch may be a suf-
ficient condition for inattentiveness that is not necessarily corre-
lated with the frontal cortical function (as measured by EEG).

Other populations whose performance on the Conners CPT may
be compromised may include those who have errors of refraction
(e.g. uncorrected hyperopia, uncorrected astigmatism, anisometro-
pia), anomalies of binocularity (e.g. convergence excess; conver-
gence insufficiency) and/or anomalies of accommodation (e.g.
accommodative insufficiency, ill-sustained accommodation) and/
or individuals who have normal clinical findings of accommoda-
tion and vergence, but are susceptible to a breakdown of this syn-
chrony when doing near tasks under conditions that activate the
sympathetic nervous system.
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