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Spatial Transformation of Motion and Deformation
Fields Using Nonrigid Registration

A. Rao*, R. Chandrashekara, G. I. Sanchez-Ortiz, R. Mohiaddin, P. Aljabar, J. V. Hajnal, B. K. Puri, and D. Rueckert

Abstract—In this paper, we present a technique that can be used
to transform the motion or deformation fields defined in the co-
ordinate system of one subject into the coordinate system of an-
other subject. Such a transformation accounts for the differences
in the coordinate systems of the two subjects due to misalignment
and size/shape variation, enabling the motion or deformation of
each of the subjects to be directly quantitatively and qualitatively
compared. The field transformation is performed by using a non-
rigid registration algorithm to determine the intersubject coordi-
nate system mapping from the first subject to the second subject.
This fixes the relationship between the coordinate systems of the
two subjects, and allows us to recover the deformation/motion vec-
tors of the second subject for each corresponding point in the first
subject. Since these vectors are still aligned with the coordinate
system of the second subject, the inverse of the intersubject co-
ordinate mapping is required to transform these vectors into the
coordinate system of the first subject, and we approximate this in-
verse using a numerical line integral method. The accuracy of our
numerical inversion technique is demonstrated using a synthetic
example, after which we present applications of our method to se-
quences of cardiac and brain images.

Index Terms—Atlas, brain deformation, cardiac motion, conju-
gate map, diffeomorphism, numerical inverse.

I. INTRODUCTION AND BACKGROUND

VECTOR fields which describe the spatio-temporal char-
acteristics of anatomical structures are frequently used to

study biological processes such as motion and growth. Typi-
cally, the motion or deformation fields are derived from a se-
ries of medical images acquired at different time points. For
example, longitudinal neuro-imaging studies which follow in-
dividual subjects over several years are frequently used to as-
sess long-term structural changes in the brain due to growth
or atrophy. The deformation fields associated with long-term
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structural changes in the brain can be calculated using tech-
niques such as nonrigid registration [1]–[4]. In cardiac imaging,
the spatio-temporal analysis of images acquired over a cardiac
cycle can be used to study the motion and deformation of the
heart as it contracts. For example, Chandrashekara et al. [5]
have used nonrigid registration to reconstruct the 4D motion
field describing cardiac motion from tagged magnetic resonance
imaging (MRI) images [6], [7]. Other authors have proposed al-
gorithms for the reconstruction of myocardial motion by using
optical flow techniques [8], [9] or by explicitly tracking tag lines
and planes [10]–[17]. In all cases, the resulting vector fields are
defined with respect to the coordinate system of the anatomy of
the chosen subject at some temporal reference point.

Although any qualitative or quantitative inspection of the
vector field derived from any particular subject may allow the
assessment of the function of (motion), or changes in (defor-
mation) the subject’s anatomy, one cannot directly compare the
vector fields from different subjects because of differences in
their anatomical coordinate systems. These differences arise
from different subject alignment and variations in the size and
shape of the subject anatomies. In this paper, we describe a
technique which can be used to align and transform the vector
field of a particular subject into the coordinate system of an-
other subject (i.e., a reference subject), thereby enabling both
vector fields to be qualitatively and quantitatively compared
in a common coordinate system. The spatial transformation
of the vector fields is facilitated by using nonrigid registration
to calculate an intersubject mapping between both coordinate
systems which is then inverted using a numerical technique
and applied to the original motion/deformation field of the first
subject. The resulting transformed vector field is then defined
in the coordinate system of the second subject.

The motion and deformation fields that we transform in this
paper describe external, visible macroscopic properties of a sub-
ject’s anatomy, which enables us to directly apply intersubject
mappings when transforming from one coordinate system to an-
other. To the best of our knowledge, there are no previous publi-
cations that address the transformation of such fields. However,
spatial transformation schemes have been proposed [18]–[20]
that deal with the transformation of MR diffusion images to
a single “reference” coordinate system. Such images have a
symmetric second-order tensor defined at every voxel that de-
scribes the local diffusive behavior of water at the corresponding
point in the imaged material. Since the principal diffusitivity
directions are characterized by the eigenvectors of the diffu-
sion tensor, the proposed transformation schemes seek to pre-
serve the direction of the eigenvectors with respect to subject
anatomy. Although these methods are facilitated by calculating
a reference-subject mapping using image registration of corre-
sponding MR images, they do not transform the tensor image by
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simply applying the reference-subject mapping using a tensor
transformation law. This is because the registration of the MR
images yields a correspondence between reference and subject
that does not hold at microscopic scales. For example, we do
not expect a subject with a larger brain than another subject to
have larger water molecules even though specific regions within
the larger brain may indeed be bigger. Instead we would ex-
pect the larger brain to contain more, rather than bigger, water
molecules. Since the diffusion tensor describes microscopic cel-
lular properties of a subject, it would be inappropriate to use
the mapping derived from the anatomical MR images to trans-
form it into the reference coordinate system. In our paper, we
are concentrating on the transformation of motion and defor-
mation fields, each of which are implicitly macroscopic proper-
ties since they describe external, observable anatomical changes
rather than internal, hidden cellular phenomena. We can, there-
fore, directly apply intersubject mappings to our motion /defor-
mation fields when transforming them.

In Section II, we describe each of the steps required to per-
form the spatial transformation, before presenting a validation
of the proposed transformation technique using synthetic data
in Section III-B. The results obtained using clinically acquired
heart and brain data are then given in Sections III-C and III-D,
respectively, while Section IV presents some conclusions and
directions for future work.

II. METHOD

A. Motion/Deformation Field Derivation

The first step in our process requires the calculation of the de-
formation pattern/motion fields for a subject that we will later
map into the coordinate system of a second subject , referred
to as the reference subject. Given a sequence of images ,

which show the anatomy for subject at dif-
ferent time points, we first have to choose an image within this
sequence relative to which the derived deformation/motion field
will be expressed. Let this image be with coordinate system

, and let the corresponding image for be with
coordinate system . This makes the reference
coordinate system to which we will ultimately map the original
motion/deformation fields of subject . These fields are calcu-
lated by using a suitable tracking/nonrigid registration algorithm
to give a set of transformations relating to
every image in the sequence. The actual deformation/motion
fields that we require are then given by

In principle, any motion or deformation field defined in the coor-
dinate system can be transformed into the coordinate
system of subject regardless of how it has been calculated.
For example, we could transform a synthetically generated field
defined in this coordinate system if we so wished. However, the
images and are still required to determine the intersubject
mapping that facilitates the field transformation.

B. Transformation of Deformation/Motion Fields

In order to actually transform the deformation/motion field
for , we need to calculate a mapping between coordinate sys-
tems and . To do this, we can perform a non-
rigid registration of image to (in this paper we use the

algorithm described in Section III-B). This produces a mapping

Although any nonrigid registration technique can be used to de-
termine this mapping, we must ensure that the mapping is dif-
feomorphic, i.e., that it is differentiable and has a differentiable
inverse so that our field transformation technique can be used.

Although the aim of our technique is to transform the field
vectors into the coordinate system
of , in practice we also want the transformed field to be de-
fined on a specific set of coordinates, eg. the voxel positions
of , since this will enable us to directly compare the trans-
formed fields of a number of different subjects. Given such a
set of coordinates , consider a point with coordinates

. The transformed field vector that
will be placed at this location is equal to

where

are the coordinates of expressed in the coordinate system of
and is the original untransformed field vector at . Note that
since the original field may not be explicitly
defined at , an interpolation method may be required to deter-
mine the untransformed vector . Such an interpolation should
be straightforward because will be defined on
a regular grid of coordinates, i.e., the voxel positions of .
Clearly, the transformation requires a calculation of the inverse
mapping which, in theory, one could calculate by regis-
tering image to . In practice, however, it is likely that the
calculated inverse would be inconsistent with the original map-
ping, i.e., their composition would not be identity. While image
registration techniques exist which ensure the consistency of the
original mapping and its inverse [21] we have chosen to use a nu-
merical method to directly determine the inverse from the orig-
inal mapping. Another possibility that avoids these consistency
issues would be to calculate and use just the inverse mapping

to transform the field vectors at a spe-
cific set of coordinates rather than at a specific set of co-
ordinates, and then use an interpolation method to calculate the
transformed field at the required locations. The drawback of
this method is that the required interpolation would be difficult
because the uninterpolated transformed field would be defined
on a nonuniformly distributed set of coordinates. Thus, we
prefer to calculate the mapping and approximate its in-
verse using our numerical technique.

In order to determine , consider a path
defined in the coordinate system of that represents the trans-
formed motion or deformation vector, i.e.,

By the fundamental theorem of calculus
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Fig. 1. This figure shows how the transformed vector at the point with reference coordinates xxx is determined using the recursion formula. First, F is used
to map into the source coordinate system giving xxx , and the untransformed motion vector d at this location is then divided into n intervals. In this case, we have
set n = 4. Each interval is then transformed using the Jacobian matrix evaluated at the current location expressed in R coordinates, and on each occasion, the
transformed interval is appended to the current position to give the new position inR coordinates. Once all intervals have been transformed, the finalR coordinates
f(xxx ) enable the transformed motion vector ~d to be calculated.

where is defined in the coordinate system of repre-
senting the untransformed motion vector and is the
Jacobian matrix of the transformation evaluated along

which can be determined analytically. This integral can then be
approximated by dividing the interval [0, 1] into subintervals
of length

where and . In
a previous publication [22], we used precisely this formulation
but with . We improved the approximation to the integral
in a later publication [23] by setting and evaluating the
integral as

where is the recursion formula

Fig. 1 illustrates the mechanism of the recursion formula de-
scribed. In the base step, the intersubject mapping is used to
transform from coordinates into coordinates . The
untransformed motion vector at this location is then divided
into intervals to give coordinates . At each recur-
sive step , the next interval is transformed into
the coordinate system of and the resulting vector is appended
to to give the new position . Once all inter-
vals have been transformed, we arrive at which is our
approximation to the coordinates . The trans-

formed vector is then given by .

Applying this technique to each of the motion/deformation
fields of the subject gives us a set of transformed motion fields

. Transforming our field in this way produces a
field that is said to be conjugate to the original field (see the
Appendix ).

III. RESULTS AND DISCUSSION

A. Nonrigid Registration

Although both the motion/deformation fields as well as the
intersubject mappings can be calculated or produced using any
registration technique, in this paper we calculate both using the
nonrigid registration technique of Rueckert et al. [24]. This al-
gorithm expresses the required transformation as the sum of a
global and local component

is modeled by an affine transformation that incorporates
scaling, shearing, rotation, and translation. , the local de-
formations, are modeled using a free-form deformation (FFD)
model based on B-splines that manipulates an underlying mesh
of control points , thus changing the shape of the object. The
resulting deformation can be expressed as the three-dimensional
(3-D) tensor product of the standard one-dimensional cubic B
splines

where denotes the -th B-spline basis function. To find the
parameters of the transformation the algorithm uses a voxel-
based similarity measure, normalized mutual information [25],
which measures the degree of alignment between images. The
normalized mutual information of two images and is de-
fined as

where , are the marginal entropies of images and
, and denotes the joint entropy of the combined im-

ages , . The entropies are calculated using a two-dimensional
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Fig. 2. Images S and R show corresponding 2-D views of the synthetic subject and reference at time t = 0, while S shows the deformed subject at time
t = 1. We need to transform the deformation field of S, D , into the coordinate system of R to give the corresponding deformation field for the reference
subject.

(2-D) histogram to estimate the corresponding probability den-
sity functions. We are using normalized mutual information as
a similarity measure because it only measures the statistical de-
pendencies between the intensity distributions in both images
rather than the actual intensity values themselves. This becomes
important in Section III-C where we use this nonrigid image reg-
istration algorithm to track the heart in a sequence of tagged MR
images where the image intensities can change as a result of tag
fading.

As mentioned in Section II-B we assume that the transforma-
tion between reference and subject coordinate systems is dif-
feomorphic. To ensure that the FFD calculated by the nonrigid
registration algorithm is diffeomorphic we have added a second
term to the cost function that penalises any nondiffeomorphic
transformations using the following penalty function :

if
otherwise

Here represents the determinant of the Jacobian of
the FFD. A similar penalty function has been first proposed by
Edwards et al. [26] and effectively penalises any transforma-
tions for which the determinant of the Jacobian falls below a
threshold . By penalising Jacobians that approach zero, we
prevent the transformation from collapsing and keep it diffeo-
morphic. Note that simply using a smoothness penalty function
would not be sufficient to guarantee a diffeomorphic transfor-
mation, since it is possible for a transformation to be smooth
but nondiffeomorphic.

The cost function which the registration algorithm mini-
mizes is a combination of the image similarity and the penalty
function

The weighting parameter defines the tradeoff between the
image similarity and the penalty function. For the experiments
in this paper, was set to 0.3 and to 0.1.

B. Validation With Synthetic Data

For the purposes of validation, we have generated synthetic
3-D images to which we applied our proposed transformation al-
gorithm. First, a synthetic image was generated depicting the
anatomy of a subject at time . In this case, the anatomy
was modeled as a sphere with a spherical inner wall surface cen-
tred on the object centre, giving a wall of homogeneous thick-
ness. A pattern was also imposed throughout the wall to add tex-
ture information. We show a 2-D slice of this image in the top
left corner of Fig. 2 without the texture information. The syn-
thetic 3-D image was then transformed using a known mapping
that had been interpolated using a B-spline model to produce the
corresponding 3-D image that depicts the reference subject

at time . The mapping used retains the spherical outer
surface, but deforms the inner wall in the -direction so that the
wall no longer has constant thickness. We show a 2-D slice of
this image in the bottom left corner of Fig. 2. To generate a mo-
tion for the anatomy of subject we once again used a known
mapping expressed with a B-spline model to transform to an
image representing the deformed version of at time .
This transformation is a uniform outward radial movement of
the inner surface of that linearly falls to zero at the outer wall
of . Again a 2-D slice of this image is shown in the top right
corner of Fig. 2. Our goal is to calculate the corresponding de-
formation in the coordinate system of the reference subject .
Since the motion of the image is one in which each point on
the inner wall moves an equal distance toward the outer wall,
we would expect the transformed motion field in the reference
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Fig. 3. The calculated transformed motion field of the subject with homogeneous wall thickness into the coordinate system of the reference is shown in (a).
(b) Shows what the transformed motion field should look like.

coordinate system to be of similar magnitude to the original mo-
tion field where the wall thickness of each subject is similar, but
to be relatively smaller at those points of the reference subject
at which the wall is thinner.

The motion field of subject was calculated by registering
to and deriving the motion field as explained in

Section II-A. The intersubject mapping is calculated by
registering to , and the field was then transformed
using this mapping and the recursion formula described in Sec-
tion II-B. We set when applying the recursion formula to
produce the transformed field shown in Fig. 3(a). Since
all mappings in this example are known a priori, we can also
determine the theoretical transformed motion field shown in
Fig. 3(b) without doing any registrations or numerical inverse
approximation. We can see that the calculated and the theoret-
ical transformed motion fields are almost identical and in fact
the root-mean-square (rms) difference between these two fields
is 0.08 pixels, with a maximum error of 0.42 pixels. These fig-
ures compare favorably with the rms deformation and the max-
imum deformation of the theoretical transformed field which are
1.47 pixels and 3.92 pixels, respectively, demonstrating that the
numerical errors that accumulate during the registrations and
numerical inverse approximation are of a negligible size. We
can improve the overall accuracy of our method by using a larger
value of when using the recursion formula, since, up to a point,
this improves the numerical approximation to the inverse that we
calculate. For example, with the rms error is 0.08 pixels
and the maximum error is 0.36 pixels. Conversely, if we reduce
the value of to 1, the accuracy degrades to an rms error of 0.1
pixels and a maximum error of 0.79. However, it is interesting
to note that with , the errors to two decimal places
are the same as those when . The reason for this lies in
the way our recursive technique works (see Section II-B) when
trying to approximate so that we may calculate
the transformed vector at . Each time the recursion function

is recursively applied, a point that lies closer to
than the preceding point is transformed to coordinates to
give . This is calculated using the Jacobian
evaluated at but since this is only an
approximation, the numerical error will be passed on to the cal-
culation of . The final value
will, therefore, have errors that accumulate at every step of the
recursion scheme, i.e., times. For very large , there will be
some tradeoff between improvements in accuracy due to an in-
creased number of intervals used to approximate the integral,
and lowering in accuracy due to an accumulation of errors at-
tributed to the recursive nature of the inversion scheme. In ad-
dition, larger values of also lead to increased computational
time. Throughout this paper we have used since this
seems to represent a reasonable compromise between the nu-
merical accuracy and computational time required.

C. Application to Cardiac MR Images

To test our proposed method on real data we applied our tech-
nique to transform the motion fields describing the cardiac mo-
tion of a set of subjects into the coordinate system of a single
reference subject. In order to calculate the motion fields of the
subjects we used images acquired using tagged MR [6], [7]
which provides a means to investigate the deformations that
the heart undergoes through the cardiac cycle. Tagged MR im-
ages are produced by perturbing the magnetization in the my-
ocardium in a specified spatial pattern at end-diastole, i.e., when
the heart is at peak relaxation. These appear as dark stripes or
grids when imaged immediately after the application of the tag
pattern, and, since the myocardial tissue retains this perturba-
tion, the dark stripes or grids deform with the heart as it con-
tracts, allowing local deformation parameters to be estimated.
To calculate the myocardial motion fields we are using an ex-
tension of the FFD model described in Section III-B in which a
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Fig. 4. Extraction of cardiac motion parameters: A virtual tag grid which has been aligned with the tag pattern at time t = 0 is overlaid on different time
frames of the tagged MR sequence to illustrate the tag tracking with nonrigid registration. As time progresses the virtual tag grid is deformed by the motion
field calculated by the nonrigid registration and follows the underlying tag pattern in the images. An animated color version of this figure can be found at
http://www.doc.ic.ac.uk/~dr/research/CardiacMotionTracking.html.

number of single-level FFDs are combined in a multi-level FFD
framework [27]. In order to compute a 3-D motion field the al-
gorithm aligns both the end-diastolic short-axis and long-axis
tagged MR images at time to their corresponding im-
ages at each time frame . The transformation between the
end-diastolic time frame and the image at time frame
is then given by

This approach has been previously applied successfully for my-
ocardial motion tracking [5], [28]. Fig. 4 shows the short axis
tagged images taken at different time frames overlayed with a
virtual grid which has been aligned with the tag pattern of the
end-diastolic frame. As time progresses, the virtual tag grid is
deformed by the motion field calculated from the nonrigid regis-
tration and follows the underlying tag pattern in the images. This
provides a visual assessment of the success of the tracking al-
gorithm. The motion fields associ-
ated with the calculated transformations are then determined as
described in Section II-A. The motion field

of subject is calculated in the same manner using the
tagged image sequences of this subject.

In addition, we also require the mapping between subjects
and to transform the motion fields of into the coordinate
system of . To do this, we acquired a set of untagged images
for all subjects shortly after the acquisition of the tagged im-
ages. The short-axis images are acquired in the same position
as the tagged images and do have the same spatial and tem-
poral resolution. This means that we can use the end-diastolic
untagged images from each subject, to calculate the intersub-
ject coordinate system mapping. The transformation between
subjects and is determined using the nonrigid registration
algorithm described in Section III-B, giving a mapping
between coordinate systems and . The tech-
nique described in Section II-B is then used to transform the
motion fields of into the coordinate system of giving the
fields .

We applied our technique using sets of untagged and tagged
short-axis images of nine healthy volunteers. The untagged
and tagged MR images were acquired shortly after each other
to minimize any motion between the image acquisitions. All
images were acquired using a Siemens Sonata 1.5T scanner.
For the tagged sequences, a cine breath-hold sequence with a
SPAMM tag pattern was used to acquire ten short-axis slices
covering the entire LV and a set of long-axis slices. For the
untagged images, a cine breath-hold TrueFisp sequence was
used to acquire ten slices in the same anatomical planes as
the tagged imaging planes. In both cases, the images have a
resolution of 256 256 pixels with a field of view ranging
between 300 and 350 mm depending on the subject and a slice
thickness of 10 mm. Imaging was done at the end of exhalation
and all images have been visually assessed to verify that there
was minimal motion between the acquisitions. Our previous
experiments [5] have shown that, using a manual tag tracking
as the gold standard, the nonrigid registration algorithm is
able to track the myocardial motion with an rms error of less
than 0.5 mm in simulated data and with an rms error between
1 and 2 mm on tagged MR images. One of the nine subjects
was used as reference subject, and the untagged end-diastolic
images of the other were registered to this one using a mesh
with a uniform control point spacings of 5 mm. The calculated
transformations were then used to map the myocardial motion
fields of each of these eight subjects into the coordinate system
of the reference subject.

The principal reason for the transformation of the cardiac mo-
tion fields into a common coordinate system is that it enables the
motion patterns of the different subjects to be compared and an-
alyzed both qualitatively and quantitatively. To demonstrate this
approach we have constructed an atlas of cardiac motion by av-
eraging the transformed motion fields: Given the motion fields
of subjects and a reference subject the
average motion field is calculated as
[23]
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Fig. 5. The myocardial motion field at end-systole of the cardiac atlas on a short-axis slice toward the base of the left ventricle is shown in (a). (b) and
(c) Corresponding motion fields for parallel slices through the middle of the left ventricle and toward the apex of the left ventricle, respectively. (d) Motion
field from a long-axis side view of the left ventricle. In cases (a)-(c), the motion fields have been projected onto the planes defined by the associated anatomical
slice, whereas all three components of the motion field are shown in (d). Full color animations of these fields can be found at http://www.doc.ic.ac.uk/~dr/
IEEE_TMI/DeformationAtlas.html.

We have calculated such an atlas using the transformed motion
fields of our 8 subjects and our reference subject . Since each
of the datasets were acquired from volunteers, the atlas repre-
sents the average motion model of the hearts of this population.

Fig. 5 shows the calculated cardiac motion atlas describing
cardiac motion between end-diastole and end-systole. We chose
to show the motion fields at end-systole because this is when the
deformation of the heart is greatest, and vectors are only shown
for regions which are part of the myocardium. Fig. 5(a) shows a
short-axis slice toward the base of the left ventricle of the heart,
Fig. 5(b) shows a slice through the middle of the left ventricle,
Fig. 5(c) shows a slice toward the apex of the left ventricle,
while Fig. 5(d) shows a long-axis side view of the heart. The
magnitude of the motion vectors is indicated by the length of the
arrows. In Fig. 5(a)-(c), the motion fields have been projected
onto the planes defined by the associated anatomical slice, while
all three components of the motion field are shown for Fig. 5(d).
All of the slices show a contraction of the left ventricle but we
can also see that toward the base of the heart the atlas has a
counter-clockwise twisting action while toward the apex it has
a clockwise twist. The motion in the slice through the middle
of the left ventricle has minimal twisting and is almost a pure
contraction. These observations confirm that our motion atlas
possesses the characteristic qualitative behavior that we would
expect in a healthy heart.

D. Application to Brain MR Images

To demonstrate the flexibility of the proposed technique
we have applied it to a set of deformation fields describing
the structural changes over time in the brains of a series of
subjects. These deformation fields have then been mapped into
a common coordinate system of a single reference subject. For
this purpose, MR brain data sets of 19 different subjects were
acquired, each of whom were diagnosed with first-episode
schizophrenia with less than 12 weeks lifetime exposure to
anti-psychotic medication. Scanning was performed on a 1.5T
Eclipse MR system (Phillips Medical Systems), giving images
with a resolution of 256 256 pixels with a slice thickness of
1.6 mm and a field of view of 250 mm. For each subject, an
image was acquired at time and at time , with the
average time interval being 8 months [29].

In the first step, the deformation fields between the baseline
and followup scans were calculated using the nonrigid registra-
tion algorithm described in Section III-B. Since the MR scanner
produces high resolution images with good soft tissue contrast,
the deformation fields allow us to investigate how different re-
gions of the brain change in size and shape between baseline and
followup times. Although in our example each subject data set
consists of images acquired on just two different occasions, one
could calculate and transform the deformations describing brain
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Fig. 6. The deformation grid of the brain deformation atlas constructed in Section III-D.

Fig. 7. This figure shows the isoline of the volume change function of the brain deformation atlas constructed in Section III-D corresponding to a 2% volume
expansion. A full color version of the volume change map can be found at http://www.doc.ic.ac.uk/~dr/IEEE_TMI/DeformationAtlas.html.

deformations at many more time points if the corresponding im-
ages are available. In the second step, the baseline MR images
of all subjects were registered to a reference brain based on the
MNI brainweb dataset [30] using again the nonrigid registration
algorithm described in Section III-B. The intersubject mappings
were then used to map the deformation fields of each of the 19
subjects into the coordinate system of the MNI brainweb refer-
ence subject.

Analogous to the cardiac example in Section III-C, we
then produced a brain deformation atlas using
the transformed deformation fields of our 19 subjects. Since
each of the subjects has been diagnosed with first-episode
schizophrenia, the resulting atlas represents the expected tem-
poral deformations of a brain in patients with first-episode
schizophrenia defined in the coordinate system of the reference.
Axial and coronal slices through the resulting deformation atlas
are shown on the left and right, respectively, of Fig. 6. This atlas
is much more difficult to interpret directly than the cardiac atlas

because the long-term deformations of the brain are much more
subtle and appear to be less coherent than the transient motion
that the heart undergoes over the cardiac cycle. One way of
analysing this field is to perform a volume-change analysis of
the deformation by calculating its associated volume change
function, which can then be visualised as a scalar image. The
volume change function of a transformation

is calculated as

and represents the local volume scaling factor of the transfor-
mation at each point . Since the deformation atlas
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is an average of the transformed deformation fields, the volume-
change function of this atlas , therefore, gives the volume-
change of the average transformed deformation field (which we
call VATD). Fig. 7 shows the isoline corresponding to an ex-
pansion of 2% of the resulting volume-change function for the
same slices as shown in Fig. 6. The image seems to indicate an
expansion of the ventricles as time progresses. Similar observa-
tions using this data have been reported previously in [29].

Alternatively, one can perform a similar volume-change anal-
ysis without transforming the deformation fields of each sub-
ject to the reference. This is achieved by calculating for each
subject the volume-change functions from the untransformed
deformation fields in their native coordinate system and then
mapping them in the coordinate system of the reference sub-
ject by simply applying the intersubject maps to the images of
the corresponding volume-change functions. These transformed
images are then averaged to produce an image which, therefore,
represents the average of the transformed volume changes of the
deformation of each subject (ATVD). Such an image would not
be identical to the VATD image shown in Fig. 7 for a number of
reasons. In particular, the volume change function corresponds
to the determinant of a matrix and, thus, is not a linear oper-
ator. Hence, the volume change of an average field is not the
same as the average of the volume changes in a series of fields.
However, even if we examine the images produced using both
approaches for a single subject, i.e., without averaging over a
series of subjects, there will still be differences. Fig. 8(a) shows
the isoline corresponding to a 2% expansion of the transformed
volume change of the original deformation field of one of the
schizophrenic subjects while Fig. 8(b) shows the corresponding
isoline of the volume change of the transformed deformation
field of the subject. We can see that the two images are not iden-
tical and this is because of the way that the volume-change of
the original untransformed deformation field is placed in the
coordinate system of . By treating the volume-change func-
tion as an “image” rather than gradient of deformation oper-
ator (which is what it is), its transformation into the coordi-
nate system of only places the volume-change values in the
correct anatomical location of the reference subject, without
changing the values themselves to correct for the coordinate
system differences between subject and reference (see the Ap-
pendix ). Such a function as that shown in Fig. 8(a) is, therefore,
a “half-transformed” volume change function when compared
to the volume change function of Fig. 8(b). As we show in the
Appendix , the “half-transformed” volume-change function in
Fig. 8(a) can be fully transformed into the coordinate system of

by multiplying the values at each point by a scaling factor
that depends on the point location, the transformed deforma-
tion field, and the reference-to-subject mapping. Applying this
volume-correction to the volume-change function of Fig. 8(a)
gives a new volume-change function, and we show the isoline
corresponding to a 2% expansion of this function in Fig. 8(c).
We can see that this image is now very similar to that shown in
Fig. 8(b).

Moreover, the brain deformation atlas approach is much more
useful because while both the VATD and the ATVD images are
scalar valued and, therefore, of limited use, the atlas con-
tains multidimensional deformation information that can be an-
alyzed further. For example, one can analyze the directions of
the volume changes using the brain deformation atlas, which

Fig. 8. Isolines corresponding to a 2% expansion of the volume change maps
of a single subject calculated using the ATVD and VATD methods. (a) Isoline
of the volume change using the ATVD approach. (b) Isoline of the volume
change using the VATD approach. (c) Isoline of the function shown in (a) after
the volume correction (discussed in the Appendix). Full color versions of the
volume change maps can be found at http://www.doc.ic.ac.uk/~dr/IEEE_TMI/
DeformationAtlas.html.

one cannot do using either of the volume-change images be-
cause it is impossible to reconstruct a unique deformation field
from just the volume-change function of the field.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have developed a technique that can be used
to transform motion and deformation fields defined in one co-
ordinate system into another coordinate system. Such a trans-
formation of the fields of a series of subjects into the coordi-
nate system of a single reference subject facilitates their anal-
ysis and comparison by accounting for the differences in size
and shape of the subjects. The proposed method can, therefore,
be useful in a wide range of clinical scenarios. In Section III-C,
we described how it can be used to build a cardiac motion atlas
that represents an average healthy heart motion by transforming
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the motion fields of a number of subjects into a single refer-
ence coordinate system and then averaging them. The motion
of the resulting atlas was shown to possess the characteristic
qualitative behavior that we would expect in a healthy heart. In
the same spirit we have shown in Section III-D how the pro-
posed method can be used to build a brain deformation atlas that
contains the expected long-term deformations that occur in the
brains of schizophrenics by transforming the deformation fields
of a number of subjects into a single reference coordinate system
and then averaging them. A volume change analysis of the re-
sulting atlas appeared to show that the ventricles in a schizo-
phrenic subject expand over time. There are other possible ap-
plications of the motion and deformation field transformation
technique presented in this paper: For example, Chandrashekara
et al. [28] have performed a principal component analysis of the
transformed cardiac motion fields of a number of subjects and
then used the recovered principal modes to guide the motion
tracking algorithm described in Section III-C. These principal
modes could also be incorporated into the cardiac atlas to extend
it from a simple mean motion model to one in which a range of
types of motion for a particular population can be produced.

There are some theoretical and practical considerations re-
garding the use of our field transformation technique to trans-
form the field of one subject into that of a reference subject: In
particular, the choice of the reference subject itself will be im-
portant for two reasons. First, by changing the reference subject
we will change the transformed field as the intersubject map-
ping will then be different. This means that if we wish to com-
pare the transformed fields of a number of different subjects
there will be some bias associated with the choice of reference
subject. For example, one choice of reference subject may ap-
pear to give very similar (in terms of vector difference) trans-
formed fields across the different subjects for a particular sec-
tion of the reference, while another choice of reference may give
a much larger variation in the transformed fields for the corre-
sponding section of that reference. Note that any bias is quan-
titative rather than qualitative as it is the vector differences that
will differ with choice of reference subject; the qualitative de-
scriptions of the transformed motion/deformations will be the
same with any choice of reference subject. This is because the
transformed motion/deformation fields will always be conjugate
to the original untransformed field whichever reference subject
is chosen, and since conjugacy is an equivalence relation, each
transformed field will be conjugate to each other. This means
that if one transformed field indicates, for example, a swapping
in the positions of two anatomical regions, then the other trans-
formed field will indicate the same swapping even though the
fields themselves will be numerically different. Since there is
no way to remove the quantitative bias, the best that one can
do is to choose a reference subject that is representative of the
subject population as a whole, i.e., one whose anatomy lies to-
ward the centre rather than at the extrema of the distribution
of anatomies of the subject population. This then enables us to
draw meaningful quantitative conclusions from the set of trans-
formed fields. For the heart and the brain applications described
in this paper, we did indeed try to choose such reference sub-
jects, but this was done purely by visual assessment. A better
approach would be to calculate an “average” shape using the
subject population and use this as the reference subject. The
choice of the reference subject is important for a second reason:

Since our method relies on calculating the inverse of the inter-
subject mapping in order to transform the field of one subject
into the coordinate system of a reference subject, the technique
is ill-posed if no such inverse exists. Such an inverse will exist
if the intersubject mapping is always one to one and onto, i.e.,
if every point of the anatomical region of interest in each sub-
ject corresponds with a unique point in the other subject. In ad-
dition, the numerical technique used to determine the inverse
requires the calculation of the Jacobian matrix of the original
mapping, which implicitly assumes the intersubject mapping
to be differentiable and, therefore, smooth and topology pre-
serving. The reference subject chosen must, therefore, not only
contain “the same” anatomy as the other subject, but also have
the same topology. In the case of the heart application described
in Section III-C, both of these assumptions are reasonable ones
to make since all subjects were healthy and so we expect to be
able to make a one-to-one and onto point correspondence be-
tween each subject that preserves the topology. However, for
the brain application described in Section III-D these assump-
tions are more problematical. It is known that even the brains
of healthy subjects can be topologically different, which raises
doubts about the topological equivalence of the schizophrenic
brains used to calculate the atlas. Although we side-stepped this
problem by ensuring the invertibility and the topology preserva-
tion of the intersubject mappings by including a penalty energy
term during the registrations (see Section III-A), this is an im-
portant issue that is difficult to resolve. For example, how does
one transform the deformations of a particular structure found in
one brain into the coordinate system of another brain that does
not contain that structure? This is a question that we will address
in future work. Finally, it should be noted that our transforma-
tion method is fundamentally a numerical inversion technique
and that although the errors are of a neglible size, improvements
in the numerical accuracy of the inverse mapping would cer-
tainly prove beneficial.

APPENDIX

A map is said to be conjugate to the
map iff there exists a homomorphism,
i.e., a 1–1 onto map such that

If we associate each of the transformed motion fields
for a subject with a mapping

we find that these mappings are conjugate to the mappings
associated with the corresponding untrans-

formed motion field . The homomorphism
that facilitates the conjugate relationship between the untrans-
formed and transformed mappings is the transformation

which defines the coordinate transformation between the refer-
ence and the subject. One interesting property of a pair of maps
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that are conjugate to one another is the relationship between the
fixed points of each. Consider a fixed point . Then

and so the corresponding point is then a fixed
point of .

To see how the first order derivatives of conjugate mappings
are related to each other we further assume for the sake of sim-
plicity that , i.e., that conjugate maps and are scalar
functions defined on the real line , and that the conjugation is
facilitated by the map . Consider a point . Then

By 2 applications of the chain rule

The first element of the product can be evaluated using the chain
rule

Substituting this into the original expression gives

Note that is the derivative of the original map
evaluated at the corresponding point since

. This derivative has, therefore, been multiplied by
a scaling factor

when producing the transformed conjugated map .
We can extend this result to -dimensional maps in the fol-

lowing way. Let and be -dimensional maps facilitated by
an -dimensional map

Once again consider a point . Then, the Jacobian matrix
of the conjugate map can be calculated using the chain rule
once again

The first matrix in the product can be calculated using the chain
rule

Substituting this into the original expression gives

Taking determinants of both sides of the expression gives the
following expression relating the volume changes of each
function:

Once again, is the volume-change function of the
original mapping evaluated at the corresponding point

because . We can see that the volume change
has been multiplied by the scaling factor

when producing the transformed conjugated map . Applying
this result to the volume-change images we produced in Sec-
tion III-D, we can see why Fig. 8(a) and (b) are not identical.
Adopting the approach used to produce a volume-change image
such as that shown in Fig. 8(a), the image would be defined as

where the volume-change at the point is equal to the volume
change at the corresponding point . In Fig. 8(b), on the
other hand, the volume-change image would be equal to

Clearly, if then the scaling factor is
equal to 1 at and so the volume-change functions are the
same using either of the two approaches. There are two ob-
vious ways of this happening. First, if , i.e., is
a fixed point of , then the scaling factor is equal to 1 at the
fixed point and so the volume change functions are the same
using either of the two approaches. By continuity, we would
also expect the volume-change functions to be very similar to
each other at if , i.e., if the deformations asso-
ciated with the conjugate map are small. Second, we can see
that the scaling factor will be 1 everywhere if is constant
since then for all . Such a situation
would arise if is an -dimensional affine map, which in the
case that would mean that is a mapping encompassing
a rigid body rotation and anisotropic scaling and skewing. By
continuity, we would also expect the volume-change functions
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to be very similar to each other at if the first order derivatives
of do not change much between and .

One further point of interest is that the qualitative nature of
the deformations in a local neighborhood of a fixed point, of

are the same as the qualitative nature of the deformations in a
local neighborhood of the corresponding fixed point of

. The reason is that the matrix expression

reduces to

if is a fixed point of , in which case acts as a
“change of basis” matrix on . This means that

is a “similar” matrix to , and that the local
phase portrait behavior is qualitatively identical for both and

at corresponding fixed points.
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