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Abstract
We present a general formulation for a new knowledge-based approach to anisotropic diffusion of
multi-valued and multi-dimensional images, with an illustrative application for the enhancement
and segmentation of cardiac magnetic resonance (MR) images. In the proposed method all
available information is incorporated through a new definition of the conductance function which
differs from previous approaches in two aspects. First, we model the conductance as an explicit
function of time and position, and not only of the differential structure of the image data. Inherent
properties of the system (such as geometrical features or non-homogeneous data sampling) can
therefore be taken into account by allowing the conductance function to vary depending on the
location in the spatial and temporal coordinate space. Secondly, by defining the conductance as a
second-rank tensor, the non-homogeneous diffusion equation gains a truly anisotropic character
which is essential to emulate and handle certain aspects of complex data systems. The method
presented is suitable for image enhancement and segmentation of single- or multi-valued images.
We demonstrate the efficiency of the proposed framework by applying it to anatomical and
velocity-encoded cine volumetric (4-D) MR images of the left ventricle. Spatial and temporal
a priori knowledge about the shape and dynamics of the heart is incorporated into the diffusion
process. We compare our results to those obtained with other diffusion schemes and exhibit the
improvement in regions of the image with low contrast and low signal-to-noise ratio.
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1. INTRODUCTION

Image processing and computer vision have traditionally
dealt with problems such as image segmentation (i.e. dividing
an image into meaningful and disjoint regions) in cases
where the data can be expressed as a single- or vector-
valued image function defined on ann-dimensional image
domain. Many semantic interpretations of these image
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functions rely on the extraction of geometric features such
as edges, corners or ridges (Lindeberg and ter Haar Romeny,
1994). Determining at which scale of resolution these image
features should be measured has emerged as a fundamental
problem especially in cases where the image is affected
by noise or any type of spurious artefacts that introduce
unwanted variations of the image intensity. In this section
we briefly review methods for generating images at different
scales of resolution and explain how these schemes can be
modified to achieve a more meaningful feature enhancement
and image segmentation.
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1.1. Linear diffusion
In recent years many different approaches for image de-
scriptions based on linear and non-linear diffusion processes
have been developed [a detailed review can be found in ter
Haar Romeny (1994) and Weickert (1997)]. This concept
originally emerged from the idea of analysing images at
varying levels of resolution (in a scale space) and was first
developed by Witkin (1983) and Koenderink (1984).

Koenderink pointed out that blurring can be expressed in
terms of the heat conduction or diffusion equation:

∂ I (x, y, τ )

∂τ
= ∇·c∇ I (x, y, τ ), (1)

where∇ is the gradient and∇· is the divergence operator. If
c is a constant, the diffusion process is called linear diffusion
and the Gaussian kernel

G(x, y, σ ) = 1

(2πσ 2)
e−(x

2+y2)/2σ2
(2)

is the Green’s function of Equation (1). In this case
the diffused image can be obtained directly by a spatial
convolution of the original image with the Gaussian function,
i.e.

I (x, y, τ ) = I (x, y)⊗ G(x, y, σ ), (3)

and the scale parameter replaces the time parameter in
Equation (1) withσ = √2τc given the initial condition
I (x, y, 0) = I (x, y). Moreover, the conductance term is
often chosen to bec = 1 so that it does not appear explicitly
in the diffusion equation.

1.2. Non-linear diffusion
A scale space generated by a linear diffusion process as
defined in Equation (1) causes an isotropic flow of intensities
and is space-invariant. The resulting blurring of the image,
however, eliminates not only noise but also the underlying
signal which one ultimately wants to characterize. The result
is a blurring process which eliminates successively more and
more details of the image without taking the local image
features into account. This leads to two problems: first, the
blurring is coupled with a loss of information about image
features such as small objects and sharp boundaries; secondly,
the blurring tends to degrade the localization of the remaining
image features.

1.2.1. Edge-based diffusion
Based on this observation, Perona and Malik (1990) proposed
a non-linear diffusion scheme in which the constant conduc-
tance term is replaced by a variable conductance term which
can vary over space and time:

∂ I (x, y, τ )

∂τ
= ∇·c(x, y, τ )∇ I (x, y, τ ). (4)

Perona and Malik suggested a conductance term which is
a monotonically decreasing function of the magnitude of the
gradient of the intensity:

c(x, y, τ ) = g(‖∇ I ‖) = 1

1+ (‖∇ I ‖/k)2
. (5)

This function introduces a new parameterk which controls
the influence of the gradient. In practicek acts as a threshold
which determines whether to preserve edges or not: areas in
which the gradient magnitude is lower thank will be blurred
more strongly than areas with a higher gradient magnitude.
This tends to smooth uniform regions, while preserving the
edges between different regions.

Such a diffusion process, Cattéet al.(1992) have argued, is
of a recursive nature and in cases where the image is degraded
by noise can introduce uncorrelated as well as unbounded
gradients. This makes it impossible to distinguish between
edges which should be preserved and noise which should be
diffused. Moreover, Cattéet al.have argued that the diffusion
process is not well posed becausef · g( f ) is not monotonic.
In practice, this can lead to significantly different results for
very similar images. These problems can be avoided if the
calculation of the gradient is regularized by a convolution
with a Gaussian kernel:

∂ I (x, y, τ )

∂τ
= ∇ · g(‖∇G(x, y, σ )⊗ I (x, y, τ )‖)∇ I . (6)

Gerig and Whitaker (Geriget al., 1992; Whitaker
and Gerig, 1994) have extended this approach to three-
dimensional (3-D) images as well as to multi-valuedT1 and
T2 weighted magnetic resonance (MR) images.

Equations (4) and (5) and their regularized version cor-
respond to (non-linear) inhomogeneous isotropic diffusion.
However, the discretization used by Perona and Malik gives
the scheme an anisotropic character, which will be discussed
in Subsubsection 1.2.3. Since this scheme has been widely
referred to as anisotropic diffusion we will refer to its
implementation as the standard anisotropic diffusion method.

1.2.2. Geometry-based diffusion
The non-linear diffusion schemes discussed so far are char-
acterized by the evolution of the intensity function. Alter-
natively, one can characterize the diffusion as an evolution
of the isophotes curves of the image. In fact, Niessenet al.
(1997) have shown that both approaches are dual in the sense
that one determines the other. One geometry-based diffusion
scheme is the normal motion flow (Alvarezet al., 1993),

∂ I (x, y, τ )

∂τ
= ±‖∇ I ‖ (7)

where the isophotes evolve along their normal direction with
a constant speed and which corresponds to a morphological
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erosion or dilation. Other examples include the so-called
mean curvature flow (also called Euclidean shortening flow;
Alvarezet al., 1992),

∂ I (x, y, τ )

∂τ
= ‖∇ I ‖∇ ·

( ∇ I

‖∇ I ‖
)
, (8)

in which the isophotes evolve along their normal direction
with a speed proportional to their curvature, and the closely
related affine shortening flow (Sapiro and Tannenbaum, 1993;
Morel and Solimini, 1995)

∂ I (x, y, τ )

∂τ
= ‖∇ I ‖

[
∇ ·

( ∇ I

‖∇ I ‖
)]1/3

. (9)

Related diffusion schemes are the modified affine shortening
flow (Niessenet al., 1997) and entropy flow (Kimia and
Siddiqi, 1996).

Geometry-based diffusion schemes can be extended to 3-D
in which case the diffusion corresponds to an evolution of
isophote surfaces. In the case of the mean curvature flow,
the isophote surfaces evolve with a speed proportional to the
mean curvature, i.e. the sum of the two principal curvatures.
However, while in the two-dimensional (2-D) case any curve
evolves to a round point without developing singularities, this
is not the case for the 3-D counterpart. Moreover, geometry-
based diffusion schemes cannot be applied to multi-valued
images.

1.2.3. Anisotropic diffusion
Weickert (1997) has pointed out that the diffusion scheme
proposed by Perona and Malik is governed by a scalar
conductance term and the resulting flux is therefore isotropic.
This has the disadvantage that the diffusion scheme tends
to stop the diffusion at the edges rather than to permit
diffusion along the edges. To allow for a truly anisotropic
character of the diffusion equation, Weickert proposed a
tensor anisotropic diffusion

∂ I (x, y, τ )

∂τ
= ∇ · (C(∇ I )∇ I ) (10)

where the eigenvectorse1 and e2 of the diffusion tensor
C are defined in such a way thate1‖∇ I and e2 ⊥ ∇ I .
To encourage a diffusion along the edge rather than across
the edge, Weickert suggested choosing the corresponding
eigenvaluesλ1 andλ2 as

λ1 = g(‖∇ I ‖) (11)

λ2 = 1. (12)

The resulting diffusion process is truly anisotropic and
performs well in a wide variety of images (Weickert, 1998).

However, the equations do not take into account specific
system characteristics such as inhomogeneous data sampling,
and since the preferred directions for diffusion are dictated
exclusively by the gradient of the image intensity, results are
sensitive to image contrast and noise.

1.3. Overview
It has been pointed out that all of the above approaches rely
only on the differential structure of the data, while ignoring
the particular properties of the system (Sanchez-Ortizet al.,
1996b; Sanchez-Ortiz, 1999). As a consequence, results still
tend to be poor in regions of low contrast and low signal-to-
noise ratio, where the differential characteristics of data do
not provide enough information to distinguish between sig-
nificant edges and noise. Some approaches oversimplify the
conductance function of the diffusion process by ignoring the
direction of the gradient or by disregarding important system
characteristics such as non-homogeneous data sampling.

To overcome these problems we propose in this article
a second-rank tensor conductance function with an explicit
dependence on the space coordinates and the data function.
This tensor modifies the nature of the diffusion equation
making it heterogeneous and anisotropic from the starting
point, and not as a consequence of the discretization scheme
as in the case of some previous treatments. Furthermore,
we develop a general framework to incorporatea priori
knowledge of the geometry and dynamics of the system in
vector-valued and multi-dimensional images.

We illustrate this approach with an application to cine
volumetric anatomic and velocity-encoded MR images of the
heart, where noise reduction in data and segmentation of the
left-ventricle (LV) muscle (the myocardium) are commonly
required.

A simplistic model for the LV shape and contraction rate
is used to provide the equations witha priori information
which is independent of noise. This information is combined
with the differential characteristics of the data in order to
produce a robust diffusion scheme. The diffusion process also
combines information from vector- or multi-valued images,
in this case anatomic and velocity-encoded data, thus helping
the reconstruction of edges in regions where the anatomic
image presents low contrast or signal-to-noise ratio.

Results of this and other diffusion schemes are compared
on synthetic and MR images using quantitative evaluation
tools like the correlation coefficient, and qualitative ones
such as intensity profiles, visual inspection of reconstructed
volumes and the GER-RGB device.

2. 4-D MULTI-VALUED MR DATA

Gated cine MR imaging techniques are synchronized with
the electrocardiographic (ECG) signal and can be used to
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generate a sequence of tomographic images of the heart
where the image intensity is associated with the tissue type or
‘density’ (ρ). The sequence of images correspond to different
times (t) which are usually distributed homogeneously during
a cardiac cycle, covering most phases of the heartbeat. In
addition to these sequences of 2-D images (with which we
align the x–y plane of the Cartesian coordinates reference
system), multi-slice imaging can provide contiguous images
parallel to thex–y plane, at different ‘heights’ in a third
spatial coordinate axis (z). A common procedure for
evaluating LV performance is to produce data such thatx and
y lie in the short-axis plane of the LV, andz along its long
axis (see Figure 1 discussed in Subsubsection 3.3.1).

For each of the density images, velocity-encoded data
in the same plane is acquired using a phase-sensitive MR
technique. The velocity data is produced as three images,Vx,
Vy andVz, which correspond to the Cartesian components of
the velocity vector fieldV all over the image domain.

We describe the data used as the vector functionF(p) =
(F1(p), . . . , Fn(p), . . . , FN(p)) whereF : RM → RN , Fn :
RM → R, p = (p1, . . . , pm, . . . , pM ), andpm ∈ R (i.e.p ∈
RM ). In this example the space–time coordinates arex, y,
z, t (M = 4), and the multiple features or values of the
vector-valued image correspond toρ,Vx,Vy,Vz (N = 4).
Therefore, the vector data function takes the form

F(p) = (Fρ(p), FVx (p), FVy(p), FVz(p)) (13)

where

p = (x, y, z, t). (14)

Within this framework we deal witht as a fourth ‘spatial’
coordinate and allow the cine sequence to provide extra
information for the diffusion process. The method described
below treats the space of coordinates as non-homogeneous
and takes into consideration the different scales, physical
units and sampling rates of the data in each of the coordinate
axes.

The images employed in this work were acquired with a
modified Picker 1.5 T MR scanner using electrocardiographic
gating and a cine gradient-echo sequence. Eight contiguous
image planes of 256× 256 pixels were used to cover the LV,
each with a field of view of∼35 cm and a slice thickness
of 1 cm. The cine sequence consisted of 16 time frames
distributed at intervals of 40 ms during the cardiac cycle. The
diffusion process was applied to image windows of∼80×80
pixels in the short-axis plane (x–y), containing the entire LV.

The velocity data measurements were made on a range
such that images contain meaningful information about blood
and muscle tissue motion. Because blood velocity is much
larger than muscle velocity in the direction of the long-axis

(Vz), standard wrap-around correction was used to adjust
the value of blood velocity whose phase shift exceeded the
measured velocity range (Underwood and Firmin, 1991).
Since low-density material such as lung tissue produces
meaningless random velocity values, all velocity components
in the region of the lung were set to zero. This region was
identified by thresholding the density image (ρ), because
in this type of image the lung tissue has a distinctive low-
intensity value.

3. VECTOR-VALUED MULTI-DIMENSIONAL
ANISOTROPIC DIFFUSION

In the case of this vector function of several variables that
represents our four-dimensional (4-D) vector-valued data, the
equation for anisotropic diffusion (AD) is

∂F(p)
∂τ
= ∇· (Cn(p,F)∇F(p)

)
, (15)

i.e. the set of the four coupled equations:

∂Fn(p)
∂τ

= ∇· (Cn(p,F)∇Fn(p)
)
, (16)

for all n ∈ {ρ,Vx,Vy,Vz}.
We must distinguish between the variablest andτ . While

the former is the time during the heartbeat and one of the
coordinates in our 4-D set of data, the latter is the scale-space
parameter that refers to the time during the diffusion process.
The equations will be integrated with respect toτ , from 0
to the total diffusion timeτtotal, and over all of the 4-D data
domain. Following convention, the dependence ofCn andF
on τ has not been shown explicitly in the equations.

3.1. Conductance function
The coupling term for these equations is the inhomogeneous
and anisotropic conductance tensor function which we define
by the product

Cn(p,F) = l nG(F)W(p), (17)

where l n are scalar constants used to control the diffusion
rate for each of the feature images functions as described in
Subsection 3.4.

The conductance function that we introduce here differs
from previous definitions in two aspects. First, in contrast
to other approaches (Nordstrom, 1990; Perona and Malik,
1990; Geriget al., 1992; Whitaker, 1993), this conductance
function depends not only on the local behaviour of the
data functionF which is subject to noise, but also on the
particular characteristics of the system at every locationp
of the 4-D coordinate space. The two factors that regulate
the conductance—and therefore the diffusion—are, on the



Knowledge-based tensor anisotropic diffusion of cardiac MR images 81

one hand, the function matrixG(F(p)) that uses information
obtained from the local behaviour of the data values; and, on
the other hand, the weighting function matrixW(p) obtained
from a priori knowledge of the geometry and dynamics of the
system from which the data is generated.W is independent
of the data function itself.

The second difference is that instead of a scalar function,
the conductance function we define is a second-rank tensor.
Such a definition permits real heterogeneous and anisotropic
diffusion which is the result of the properties of the conduc-
tance function as well as of the data gradient of Equation (15).
As we mentioned before, in the work of Perona and Malik the
conductance was defined as a heterogeneous function over the
image space, while the anisotropic character arose only as a
consequence of their discretization scheme. In the present
scheme, the tensorsCn, W andG, which expressed in matrix
notation have entries of the formCn

i j ,Wi j ,Gi j : R4 → R

where i, j ∈ {x, y, z, t}, permit the conductance to vary
not only according to location in the 4-D space but also
depending on direction.

Although in this article we only examine the case in which
the matrices are diagonal, a conductance function defined
in this manner permits the diffusion process to be biased
differently in every direction and in every position in space.
G accounts for the characteristics of the data. For instance,
it could be a noise or boundary estimator.W accounts
for the intrinsic properties of the space. For example, a
diffusion process may be modelled in which an electrical
or gravitational field produces a force which varies with the
direction—for an anisotropic system, and also varies with the
distribution of mass or electrical charges in the material—for
a heterogeneous medium.

3.2. Differential or data-based weights: G(F)
The framework used to describe the function matrixG is suit-
able for elaborated edge estimators. In this work, however,
we use a 4-D vector-valued function analogous to the simple
and widely used functiong(‖∇ I ‖) of Equation (5). This
monotonically decreasing scalar function of the magnitude
of the gradient ofI (the image intensity), has the desired
effect of blurring small discontinuities, while sharpening
edges whenk is chosen adequately. The values ofkm

(one for each coordinate axis) are computed using Canny’s
noise estimator (Canny, 1987): 90% of the value of the
integral of the histogram of the gradient magnitude. The
computation is made for every iteration of the diffusion
process using the definition of the gradient magnitude shown
below. Thus, the elements of the diagonal matrixG are
defined as follows:

Gmm= gm(‖∇F‖∗m) =
1

1+ (‖∇F‖∗m/km)2
(18)

and

‖∇F‖∗m ≡
(∑

n

(sn Jmn)
2

)1/2

=
(∑

n

(
sn
∂Fn

∂pm

)2
)1/2

, (19)

for all m ∈ {x, y, z, t} and n ∈
{ρ,Vx,Vy,Vz}.

Since the data function that we use is a vector-valued
function, we must define a norm forJ, the Jacobian matrix
of F, instead of using the magnitude of the gradient of
F as a dissimilarity measure. In this work we use the
definition shown above as an alternative to the formerly
proposed Euclidean norm ofJ (Whitaker and Gerig, 1994).
Such dissimilarity measure exploits the information provided
by the different data feature functionsFn, while preventing
homogeneous regions in some directions to shadow steep
gradients in others. In the case of a single-valued function
(N = 1) the expression is reduced to that for the magnitude
of the gradient of the image intensity.

The scaling constantssn are used for standardizing the
units of the different data feature functions. The constants
are chosen to make dimensionless units and values within a
similar range. Since the grey values of the velocity images
have the same physical units (cm s−1), only the already
dimensionless ‘density’ image has to be rescaled to match the
range of the velocity values.

As we mentioned in Subsubsection 1.2.1, the standard
anisotropic diffusion equation is known to present potential
numerical instability. The conditions required for stability
and for the existence and uniqueness of a solution have
been discussed by several authors including Peronaet al.
(1994). In this work we use the functionsgm which are
known to be stable, and a dissimilarity measure which is
a special case of the Euclidean norm ofJ (in fact the
dissimilarity measure employed here treats each coordinate
axis separately, in the same manner as standard anisotropic
diffusion does). Since the Euclidean norm ofJ is known to
be well behaved, we can expect the matrixG to be well posed
and stable too. As for the influence of the knowledge-based
weight matrixW, as we shall see in Subsubsection 3.3, it is
composed of smoothly varying multiplicative constants that
only decrease the amount of diffusion and therefore are not a
source of numerical instability. These expectations have been
confirmed by our observations.

3.2.1. Reference frame
In the case of the anisotropic diffusion scheme described
in Subsubsection 1.2.3, the eigenvectors of the tensor
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conductance are chosen accordingly with the direction of
the local image gradient. Although these varying frames of
reference seem to be a natural choice for the enhancement
of edges, the correct estimation of these directions depends
strongly on the amount of noise and edge contrast of the
image. Also, since in this frame of reference the matrix is
not diagonal, the method is expected to be computationally
more expensive.

As for the diagonal matrixG defined above, the reference
frame is fixed and aligned with the coordinate axes along
which the data was sampled. This is a suitable reference
frame for many applications including that of the MR data
used in this work (described in Section 2), because the data
generation process relies heavily on it. For instance, the 4-D
data is constructed as a collection of 2-D (x–y) images and
the dimensions of a 4-D voxel (that correspond to a pixel)
are normally different for every coordinate axis. Images
belonging to different anatomical planes (z) are usually
created with a few minutes time interval during which the
patient might move or the electromagnetic field can vary.
Also, images corresponding to different times (t) during the
heart cycle are affected by non-homogeneous data sampling
(see Subsection 3.3.2). Even within a 2-D image we can find
inhomogeneities in the magnetic field or artefacts in thex- or
y-axis due to the way in which tissue is encoded during data
acquisition.

The present definition ofG (andW) deals with the image
in its natural coordinate system and can easily incorporate
simple or sophisticated models that take into account the
anisotropic and inhomogeneous characteristics of the data,
inherent to the imaging system. In this work we use the
simple model introduced via the matrixW as described in the
following section, and we keep the functionsgm as close as
possible to the well understood function used by Perona and
Malik (the only differences are those necessary to incorporate
vector-valued data such as the scaling constantssn). In the
future we intend to investigate the combination of different
reference frames. For instance, a variable frame for the matrix
G that follows the direction of the local gradient (as described
in Subsubsection 1.2.3), and for the matrixW, a fixed frame
aligned with the coordinate axes of the image.

3.2.2. Multi-feature diffusion
The different types of feature images could be diffused in
a completely independent manner, however previous work
such as that of Gerig and Whitaker onT1- andT2-weighted
MR images has shown that combining information from the
different feature images can improve results. They have
proposed to diffuse the feature images separately but using
the conductance as a coupling term between the images,
where the common image gradient is used to decide how

much to diffuse each image. Noise is filtered better because
random fluctuations of the image intensity will rarely be
registered in all feature images. Unlike noise, high gradient
values corresponding to boundaries between different types
of tissue tend to reinforce each other because they are likely
to be present in all feature images. Using density and velocity
data has similar advantages because blood flow differs from
muscle motion and in some images, for instance inVz during
mid-systole or diastole, the boundaries between both tissue
types are clearly marked and can help the density images to
locate boundaries and prevent diffusion across them. On the
other hand, density images contribute to locate boundaries in
velocity images at times when motion is minimal, therefore
preventing blood and muscle velocities from being diffused
together.

While density and velocity images are different in nature,
the velocity images are all components of the same velocity
vector. As we just mentioned, we diffuse them separately
but using the common conductance term which determines
the amount of diffusion for all by estimating the presence
of a boundary. This is a common procedure for diffusing
vector images (Whitaker and Gerig, 1994) and in our case it is
natural to deal with them as Cartesian components (instead of
using magnitude and directions of the vectors, for instance),
since this is the way in which the components are (separately)
physically measured. An alternative way of clearing velocity
data from noise would be to use fluid mechanics equations
and information about the flow patterns, but this possibility is
not explored in this work.

The next section describes how a weighting function for a
specific problem can be chosen based ona priori knowledge
of the system.

3.3. Knowledge-based weights: W(p)
Information about the nature of the system and the data
generation process can be very valuable when processing
and analysing data. The system’s geometry and dynamics,
the sources of noise in the data, and in general, any kind
of a priori knowledge can improve the results of tasks
such as image segmentation or noise reduction. Using this
information has a clear advantage over making statistical
measurements of the regional properties of the data: it
is noise independent. However, one must find a robust
method to incorporate ‘fresh’ information from the data and
thus avoid over-constraining the behaviour of the system
and overlooking real characteristics which were not antici-
pated.

In particular, we are interested in all the information about
the structure of the 4-D image that can be used to encourage
intra- rather than inter-region diffusion. In the following we
use simple knowledge about cardiac MR to generate a weight
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Figure 1. Left, orientation of the coordinate system with respect to the barrel-shaped LV. Middle, cross-section of the LV and polar coordinates
in the x–y plane. Right,x–z plane view of a pixel of the myocardium without a neighbouring pixel of the myocardium in the positivez
direction.

function matrix W(p) that reflects the characteristics of a
given position within a,per se, heterogeneous and anisotropic
space.

3.3.1. Geometric information
The LV has the approximate shape of a ‘capless’ ellipsoid
and has been modelled using super-ellipsoids (Bardinetet al.,
1996) and other sophisticated deformable models (Parket al.,
1996), some of which used planispheric (Declercket al.,
1997) or prolate coordinates (Hunteret al., 1992; Matheny
and Goldgof, 1995). In this article, however, we intend to
introduce a minimal amount ofa priori knowledge about
the exact shape of the heart because one of the applications
of the diffusion methods is precisely the segmentation and
the consequent extraction of the detailed shape variations of
the ventricle. Moreover, simple assumptions facilitate the
portability of the method to other imaging environments that
share similar characteristics.

A simple model that serves our purpose can be built
from the realization that in the series of LV short-axis
images described above, the myocardium exhibits a strong
cylindrical symmetry. The left-hand diagram of Figure 1
shows the approximate shape of the middle section of the LV
(excluding base and apex), and the orientation of a coordinate
system that exploits this symmetry. When looking at the 2-D
images in thex–y plane, the symmetry is circular and the area
of interest for the segmentation, the myocardium, appears as
a ring formed by two almost concentric boundaries, as shown
in the middle diagram of Figure 1. The outer boundary,
the epicardium, has a shape that resembles a circle in all
the slices and present little variation through the heart cycle.
The shape of the inner boundary, or endocardium, varies

more with time. For approximately half of the images
the shape is circular and for the other half the fluctuations
could be regarded as moderate deformations of a circle.
The most pronounced of the deformations occur in images
where the papillary musclea is indistinguishable from the
endocardium.

Since MR provides high contrast between blood and tissue,
the endocardium is normally preserved and emphasized with
the part of the diffusion equation that uses the norm of the
gradient of the intensity function. However, blood flow
turbulence can considerably reduce the contrast and generate
intensity variations that resemble tissue structures. In the case
of the epicardium, the region contiguous to the lung is well
defined, but the contrast between the heart and the rest of the
(non-lung) tissue that surrounds it is poor and the diffusion
process tends to merge them obliterating the boundary.

For these reasons we introduce the weighting factorsWxx

andWyy which acting together penalize diffusion within the
x–y plane in the radial direction of a polar coordinate system.
The origin of the coordinate system is located at the centre
of the circle that best fits the epicardium. In this manner we
avoid blurring the outside boundaries of the myocardium and
also the regions of the endocardium which are aligned with
circles centred at the origin of such polar coordinate system
(Figure 1, middle).

Finding the location of the centre of such a family of
circles (one for each of the 2-D images) can be achieved
by visual inspection, or can be done automatically with an
algorithm based on the Hough (Ballard, 1981) transform or
multi-scale medial analysis (Morseet al., 1993). Since the

aTubular-shaped muscles that are attached to the endocardium and cross part
of the ventricular chamber to control the opening of the mitral valve.
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method described is robust with respect to small errors in
the location of this centre, we use the same coordinates of
the centre for all the images,(xorigin, yorigin), making the
weighting functionsWxx(x, y) andWyy(x, y) independent of
the coordinatesz andt . The weighting factors are

Wxx(x, y) = |sin(θ(x, y))| (20)

and
Wyy(x, y) = |cos(θ(x, y))| (21)

where

θ(x, y) = arctan

(
y− yorigin

x − xorigin

)
(22)

is the angle defined by the polar coordinate system in each of
the slices.θ also corresponds to the angle of the cylindrical
polar coordinate system whosez-axis is the symmetry axis
(the long axis) of the LV.

As for the third spatial coordinate axis (z), we correlate
pixels with a weight that depends on the average radius of
the LV rings at every height on thez-axis. Contiguous
planes where the radius of the myocardium ring is very
different are less likely to have az-neighbour that belongs
to the myocardium (see right-hand diagram of Figure 1),
and therefore should be less correlated. We find that the
sinusoidal function

Wzz(z) = |sin(ωzz+ φz)| (23)

can approximately describe this correlation when adjusting
the frequency (ωz) and phase (φz) constants of the function
according to the data (see the Appendix).

Although cylindrical coordinates would seem a natural
choice for developing the equations (one could transform
the data and Equation (15) to such coordinate system),
the MR data is given in Cartesian coordinates and would
require interpolation to convert it from one system to another.
Since the interpolation could introduce unwanted blurring,
we prefer to write and manipulate the equations directly in
Cartesian coordinates.

3.3.2. Dynamic information
As for the fourth dimension, the time coordinate (t), we can
also correlate data with different weights using information
about the behaviour of the heart during the heart cycle,
specifically, using the fact that the LV contracts and expands
at very different speeds during the various phases of systole
and diastole. The immediate consequence of this is that data
collected at times when the contraction rate is maximum
is less correlated with data adjacent in thet-axis, i.e. the
data gathered shortly before and afterwards in the cine
sequence. On the other hand, data obtained when the heart

moves slowly should be strongly correlated in the time axis.
This phenomenon can be viewed as non-homogeneous data
sampling.

We can generate a function that describes precisely how to
correlate data in thet-axis, either using textbook knowledge
about the functional relationship between the phase and speed
of the heart contraction and expansion, or using the velocity-
encoded data to compute how fast specific regions of the
myocardium move at different times of the sequenceb. How-
ever, in this article we prefer to keep the model consistently
simple and use the same type of functions in all coordinate
axes. For this reason we overlook the fact that the heart
cycle is not completely symmetrical between the contraction
and expansion time, and approximate the correlation between
successive data using the first harmonic of its Fourier series
representation:

Wtt (t) = |cos(ωt t + φt )| (24)

where the frequency (ωt ) and the phase (φt ) are adjusted
according to the data as described in the Appendix.

Equations (20)–(24) describe the elements of the diagonal
function matrixW(p) which incorporates knowledge from
this simple model of the LV that has proved to be effective.

3.4. Total diffusion time for multi-feature data
As we mentioned before, there are two main reasons for
using diffusion on images. If the purpose of the diffusion
process is to pre-segment the images, a long diffusion time
is suitable, as it will create homogeneous regions and sharp
boundaries between them. However, when the purpose of the
diffusion is to remove noise but without obliterating details
of the local structure of the data, then the diffusion time
must be small. In either case the diffusion time of the
process (τtotal), which translates into the number of iterations
in the discrete implementation, can be set interactively by
visually inspecting the results or estimating its noise or
data correlation. For example, Canny’s noise estimator will
gradually slow down the process by decreasing the value of
km at an exponential rate (Simmons, 1992).

As discussed in Subsubsection 3.2.2, when using the
multi-feature framework for diffusing vector-valued images,
density and velocity data greatly benefit from each other.
However, choosing a proper diffusion time is a delicate issue
because of the conflicting motivation for diffusing each type
of image. The most common reasons for diffusing density-
encoded MR data are the enhancement and pre-segmentation
of the images, therefore relatively long diffusion times are
required. On the other hand, in the case of velocity-encoded

bSee Morel and Solimini (1995) for a formal discussion of the enhancement
of image sequences.
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MR data a very short diffusion time is required because the
main purpose of diffusing is to reduce some of the noise
but without altering the regional variations of the velocity.
These regional variations are of paramount importance to the
analysis of non-rigid motion of the myocardium (Sanchez-
Ortiz and Burger, 1995; Meyeret al., 1996; Sanchez-Ortiz
et al., 1996a; Sanchez-Ortiz, 1999).

For these reasons we require a mechanism that controls
the amount of diffusion which takes place in the density
and velocity data when using the multi-feature framework.
We found that the scalar constantsl n that multiply the
conductance tensor in Equation (17) are a simple way to
control the diffusion rate independently for each of the feature
data functionsFn. In fact, in the discrete implementation
these constants are also used to keep the scheme stable (see
the Appendix).

In the next section we present the results of diffusing
density- and velocity-encoded data, focusing particularly on
relatively long diffusion times that make the process useful as
a pre-segmentation tool.

4. RESULTS

Equation (15) was solved using a 4-D finite-difference
method analogous to the 2-D discretization scheme used by
Peronaet al. (1994; see the Appendix for details). The
computational complexity of these algorithms is a linear
function of the number of pixels of them-dimensional image,
and also of the number of iterations selected for the diffusion
process. The weighting factorsW(p) were used to introduce
adiabatic boundary conditions in the four coordinate axes,
i.e. the conductance function was set to zero in the boundaries
of the 4-D imagec.

In this section we compare results of different types of
diffusion applied to synthetic data and MR images of the LV.
All images in a single figure were produced using the same
parameters. This includes the total diffusion timed and, in
the case of the anisotropic diffusion methods, the parameters
km that were computed using Canny’s noise estimator as
described in Subsection 3.2. In the following, when referring
to a particular image in a figure we use a suffix to distinguish
each row and column, e.g. Figure 3.r2c1 refers to the first
column and second row of Figure 3, and Figure 5.c4 refers to
the fourth column of Figure 5.

4.1. 2-D synthetic data
In order to assess the performance of the proposed and other
common diffusion schemes in cases were a ground truth is
cCine studies normally exclude late diastolic images. Otherwise one could
take advantage of the cyclic nature of the heartbeat and treat the first and last
cine images as contiguous in the time axis, in a kind of 4-D torus.
dThe Gaussian filtered images were produced using the equivalent (linear)
homogeneous isotropic diffusion scheme.

known, we created simple synthetic images with a geometry
that resembles that of the actual cardiac MR data and added
to them a strong component of Gaussian noise.

Figures 2 and 3 show respectively the results of 25 and
75 iterations of diffusion for a synthetic image composed
of concentric circles and added Gaussian noise. The first
row shows, from left to right, the original image, the image
after adding noise, the image processed with homogeneous
isotropic diffusion (i.e. with a Gaussian filter), the image
processed with the mean curvature flow (MCF) scheme
described in Subsubsection 1.2.2, the image processed with
‘standard’ anisotropic diffusion (i.e. with the algorithm of
Perona and Malik and the parameterskm computed as
described above), and the image processed with knowledge-
based anisotropic diffusion. The second row shows the
magnitude of the intensity gradient corresponding to each of
the images on the row above.

Although all diffusion schemes smooth homogeneous
regions of the image, Gaussian blur also affects the edges and
makes their exact localization difficult (Peronaet al., 1994).
The mean curvature flow and both anisotropic diffusion
schemes tend to enhance boundaries and, as we can see in
the gradient images, to locate them with reasonable precision
and sharpness. However, the knowledge-based method has a
better enhancing effect on the boundary of the inner circle,
where the contrast was lower. This is not surprising since
the scheme penalizes diffusion in the direction normal to
the boundaries, and unlike the mean curvature flow method,
the estimation of this direction does not depend only on the
differential characteristics of the noisy data: it also relies on
a priori information about the shape of the objects of interest
in the image.

Figures 4 and 5 show respectively, the results of 25
and 75 iterations of diffusion for another synthetic image
composed of squared regions and added Gaussian noise.
Images are arranged in the same fashion as those in the
figures with synthetic circular regions, and the algorithms and
parameters used to create them are also the same as those in
the previous figures. In particular, thea priori information
used for the knowledge-based scheme is the same, i.e. a
geometric model corresponding to circular shaped structures.

The purpose of the figure is to show the performance of all
methods in sharp boundaries like the corners of the squares.
The mean curvature flow scheme produces visually appealing
smooth images with straight edges, however, the corners of
the squares are strongly erodede. On the other hand, the
images produced with the anisotropic diffusion methods show

eAs we will discuss below, the variation of the parameters that control the
degree and speed of the smoothing was limited to the values where the
scheme was not subject to numerical instability.
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Figure 2. Synthetic circles (c1) with Gaussian noise (c2) and the results of 25 iterations of different diffusion schemes: isotropic diffusion
(c3), mean curvature flow (c4), standard anisotropic diffusion (c5) and knowledge-based anisotropic diffusion (c6). The second row shows the
gradients of the images on the first row.

Figure 3. Synthetic circles (c1) with Gaussian noise (c2) and the results of 75 iterations of different diffusion schemes: isotropic diffusion
(c3), mean curvature flow (c4), standard anisotropic diffusion (c5) and knowledge-based anisotropic diffusion (c6). The second row shows the
gradients of the images on the first row.

edges which are not so straight but corners that are better
preserved.

We must observe that the performance of the knowledge-
based method is basically the same as that of standard
anisotropic diffusion, i.e. that the method respects charac-
teristics of the image, such as boundaries in the corners of
the squares, which do not conform with the simple geometric
model designed for the retrieval of circular shapes. This
highlights that the diffusion scheme is strongly governed by
the data dependent non-linear termG(F) of the conductance
function, and that the knowledge-based termW(p) does not

degrade the performance of the scheme by over-constraining
the evolution of the image.

Another manifestation of the preference given to the
tangential direction can be seen on the effect of diffusion
on homogeneous regions with noise. When using the
knowledge-based scheme, the randomly oriented patterns
that we see in the gradient images become aligned with
the circular regions. Although this is not a desired side
effect, it is a very small drawback when compared with
the good performance retrieving the boundaries we are
interested in. On the other hand, our experience shows that
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Figure 4. Synthetic squares (c1) with Gaussian noise (c2) and the results of 25 iterations of different diffusion schemes: isotropic diffusion
(c3), mean curvature flow (c4), standard anisotropic diffusion (c5) and knowledge-based anisotropic diffusion (c6). The second row shows the
gradients of the images on the first row.

Figure 5. Synthetic squares (c1) with Gaussian noise (c2) and the results of 75 iterations of different diffusion schemes: isotropic diffusion
(c3), mean curvature flow (c4), standard anisotropic diffusion (c5) and knowledge-based anisotropic diffusion (c6). The second row shows the
gradients of the images on the first row.

spurious image features are not formed more often with the
proposed method than with standard anisotropic diffusion,
and that its finite-difference implementation is subject to less
numerical instability than that of the mean curvature flow
method.

4.2. SSD and CC
In order to quantitatively compare results obtained with the
different diffusion schemes in the case when the ground truth
is known, we have computed the squared sum of intensity
differences (SSD) and the linear correlation coefficient (CC).
For two imagesI1(p) and I2(p), these quantities are defined

as

SSD= 1

n

√∑
p∈P

(I1(p)− I2(p))2 (25)

and

CC=
∑

p∈P (I1(p)− I1(p))(I2(p)− I2(p))√∑
p∈P (I1(p)− I1(p))2

√∑
p∈P (I2(p)− I2(p))2

,

(26)
where I1(p) and I2(p) denote the average intensities of the
images over the image domainP. The sum of square differ-
ences is zero only if both images are identical, and positive
if the images differ (even if only by a scale factor). The
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Table 1. Square sum of differences (SSD) and correlation coefficients (CC) obtained when comparing the gradient of the original circles image
(Figure 2.r2c1) with all of the other gradient images of Figures 2.r2 (for 25 iterations) and 3.r2 (for 75 iterations).

Number of Noised Isotropic MCF Standard Knowledge-
iterations image diffusion diffusion AD based AD

SSD 25 0.37 0.43 0.20 0.19 0.17
75 0.37 0.64 0.22 0.16 0.14

CC 25 0.11 0.51 0.72 0.77 0.83
75 0.11 0.38 0.68 0.81 0.86

Table 2. Square sum of differences (SSD) and correlation coefficients (CC) obtained when comparing the gradient of the original squares
image (Figure 4.r2c1) with all of the other gradient images of Figures 4.r2 (for 25 iterations) and 5.r2 (for 75 iterations).

Number of Noised Isotropic MCF Standard Knowledge-
iterations image diffusion diffusion AD based AD

SSD 25 0.41 0.44 0.13 0.14 0.14
75 0.41 0.62 0.14 0.12 0.13

CC 25 0.16 0.56 0.87 0.86 0.86
75 0.16 0.40 0.84 0.89 0.88

correlation coefficient can take values between zero and one:
it is zero when the images are not correlated, and one when
they are identical or a linear transformation of each otherf .

Table 1 presents the SSD and CC values obtained
when comparing the gradient of the original circles image
(Figure 2.r2c1) with all of the other gradient images of
Figures 2.r2 and 3.r2. We can see that the correlation
coefficient for the noised image is greatly increased with
the diffusion methods and that among them, the knowledge-
based scheme achieves the best results.

We can also appreciate that while both anisotropic schemes
improve the correlation as the number of iterations increases,
the isotropic and the MCF schemes decrease the correlation
with longer diffusion times. It has been pointed out (Whitaker
and Pizer, 1993) that due to the discrete nature of the finite-
difference implementation, during the diffusion process edges
undergo an initial period of gradient increase, followed by
a stable stage, slow decay, and eventually, if the time of
diffusion is too long, a period of rapid decay that leads to
a uniform intensity imageg. While the anisotropic diffusion
schemes delayed the arrival of the rapid decay stage by means
of the adaptive threshold parameterskm, the mean curvature
flow scheme lacks such a mechanism and reaches the decay
stage sooner.

f In fact the CC can be negative and reach−1 if the images have negative
correlation, i.e. one is the ‘negative image’ of the other.
gAnother possible scenario, the so-called ‘staircasing’ which arises when
the values of the parameterskm are too small, will be described in
Subsection 4.3.

The moment when this decay stage is reached is also influ-
enced by the parameters that control the degree and speed of
the smoothing action of the mean curvature flow algorithm,
namely, the kernelσ used for regularizing the gradient, and
the time step used in the finite-difference implementation.
The selection of those values was determined not only by
the necessity to match the global performance of the other
diffusion schemesh, but also by the necessity to avoid the
range of values where the algorithm presented the numerical
instability described in Niessenet al. (1997).

The SSD values shown in the tables provide a different
measure that corroborates the results discussed for the
correlation coefficients.

Table 2 presents the analogous of Table 1 for the square
images of Figures 4 and 5. We can see that the SSD
and CC values for the images processed with knowledge-
based diffusion are very similar to those of the images
processed with the standard anisotropic diffusion scheme. As
we mentioned before, this shows that the proposed method
performs reasonably well in situations where the image does
not conform with the geometric model designed for the
retrieval of circular shapes. We also notice that although
mean curvature flow achieves slightly better values for short
diffusion times, the performance is worse for a larger number
of iterations.

hThe degree of homogeneity reached in the background of the image assist
in the assessment of the matching criterion.
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Figure 6. Results of different diffusion schemes applied to an LV image. Top images, left to right: original, isotropic diffusion, mean curvature
flow, standard anisotropic diffusion and knowledge-based anisotropic diffusion. Bottom: magnitude of the intensity gradient corresponding to
each of the images in the row above. The horizontal lines in the middle of the images mark the regions for which intensity profiles have been
plotted in Figure 7.
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Figure 7. Profiles of the magnitude of the intensity gradient of the top images in Figure 6. The dashed line in all plots correspond to the
intensity profile along the horizontal line in the middle of the original image gradient (Figure 6.r2c1). Solid lines are the intensity profiles
along the horizontal line in the middle of the gradient images of Figure 6: (a) isotropic diffusion (Figure 6.r2c2); (b) mean curvature flow
(Figure 6.r2c3); (c) standard anisotropic diffusion (Figure 6.r2c4); (d) knowledge-based anisotropic diffusion (Figure 6.r2c5).
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4.3. 2-D MR data
Figure 6 presents the results of diffusing a 2-D systolic image
of the myocardium. The first row shows, from left to right, the
original image and the results of processing it with isotropic
diffusion, mean curvature flow, standard anisotropic diffusion
and knowledge-based anisotropic diffusion. The second row
shows the magnitude of the intensity gradient corresponding
to each of the images on the row above. The horizontal
lines at the centre of the images mark the regions for which
intensity profiles have been plotted in Figure 7.

Unlike Gaussian blur, mean curvature flow and standard
anisotropic diffusion preserve and sharpen boundaries. How-
ever, in regions where the image intensity varies slowly, even
these methods perform poorly. For instance, in Figure 6 we
can see that when diffused with any of the first three methods,
the right-hand side of the endocardium tends to disappear. It
is only when processed with the knowledge-based technique
that it is clearly outlined.

These differences can be better seen in Figure 7 where we
compare the magnitude of the gradient of the intensity of the
original and the diffused images along the horizontal line in
the centre of the images of Figure 6. These plots show that
the Gaussian filter crudely identifies the four edges along the
line, although it also produces a protuberance in the region
between pixels 30 and 40 where the blood movement makes
the image intensity vary slowly.

Only the knowledge-based method smooths the homo-
geneous region and at the same time produces high and
narrow peaks, i.e. a high-contrast image with sharply located
edges. Mean curvature flow produces high but too wide
peaks, making the exact localization of edges difficult.
Although standard anisotropic diffusion smooths the homo-
geneous region and produces narrower peaks, these are not as
high and therefore the image lacks contrast.

We must realize that this is not a consequence of having
different ‘effective’ diffusion times in each of the diffusion
methods. Every scheme, using the coefficientsλn described
in the Appendix, takes into account and compensates for the
factors that influence the total flux of brightness during the
diffusion process, namely, the number of pixel neighbours of
the scheme (whether in 2-, 3- or 4-D), and the average values
of the knowledge-based weights.

In order to illustrate the effect of using different dif-
fusion time lengths, Figure 8 exhibits some stages of the
process of diffusing a noisy early diastolic image. The
first, third and fifth rows compare the results of mean
curvature flow, standard and knowledge-based diffusion. The
second, fourth and sixth rows show the enhanced magnitude
of the gradients of the images on the rows immediately
above. These gradients have been inverted and enhanced

for visual inspection by applying to them the function of
Equation (5).

As we mentioned before, mean curvature flow lacks an
adaptive mechanism like Canny’s noise estimator which helps
the anisotropic diffusion schemes to enhance the contrast
of significant boundaries, and therefore quickly reaches the
stage where edges are not enhanced but eroded. On the
other hand, anisotropic diffusion methods are liable to the
undesired effect of ‘staircasing’ described by Whitaker and
Pizer (1993), in which a single boundary is broken into many
discrete steps. This occurs in slowly varying gradients when
the value ofkm is too low and the diffusion time is too long.
Although longer diffusion times help anisotropic diffusion to
achieve sharper edges, in most of the figures presented in
this article we use shorter periods (like that used to produce
the images in the fourth column) and thus avoid deficiencies
such as excessive blur and staircasing. Concerning the
performance of the schemes in this figure, the main difference
can be seen in low-contrast boundaries where the knowledge-
based method reinforces the expected near circular shape of
the regions.

4.4. GER-RGB
Since the original image and its corresponding gradient are
noisy, it is difficult to assess from the intensity profile plots
whether the edges have been accurately located. To enlighten
this point and to further compare edge detection results
we have developed the graphic device GER-RGB (graphic
edge representation from red, green and blue) (Sanchez-
Ortiz, 1999). This representation facilitates the comparison
of the edges’ positions and sharpness between two or three
similar images. The images could be, for instance, parts
of an animated sequence, or as in the case of this article, a
single image which has been processed by different methods.
The magnitude of the gradient intensity of each of the three
images is thresholded and three binary images are produced.
The threshold can be set by inspection or automatically
selected using Canny’s noise estimator. The binary images
are coloured with red, green and blue respectively, and
combined to produce an RGB colour map that can be overlaid
on one of the original images. As we shall see in the next
figure, the colours in the new image provide ‘labels’ for
each pixel that indicate whether the pixel was selected by the
threshold in one or more of the red, green and/or blue images.

Figure 9 employs the above-mentioned device to compare
the results obtained with the different diffusion schemes.
The first and second rows show, respectively, the images
of Figure 6 and their corresponding enhanced gradients.
Here we observe that knowledge-based diffusion provides
better defined edges and less areas where edges have not
been properly detected nor properly erased either. In the



Knowledge-based tensor anisotropic diffusion of cardiac MR images 91

Figure 8. Different stages of the diffusion process. The columns, from left to right, show the original and the diffused images after 12, 25, 50,
100 and 200 iterations respectively. The first, third and fifth rows compare the results of mean curvature flow, standard and knowledge-based
anisotropic diffusion respectively. The second, fourth and sixth rows show the enhanced magnitude of the gradients of the images on the rows
immediately above.

third row we compare the edge detection performance of the
schemes using the GER-RGB device. The magnitude of the
intensity gradient of each diffused image (Figure 6.r2) has

been thresholded and the resulting binary images have been
coloured and overlaid onto the original MR image. Thus,
the second column presents results of mean curvature flow
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Figure 9. Comparison of images diffused with mean curvature flow, standard anisotropic diffusion and 2-D knowledge-based anisotropic
diffusion, using the GER-RGB device. The last row shows the coloured thresholded gradients for each diffused image, and its RGB colour
superposition on columns 5 and 6.

Figure 10. Comparison of images diffused with mean curvature flow, standard and 2-D knowledge-based anisotropic diffusion, using the GER-
RGB device. The last row shows the coloured thresholded gradients for each diffused image, and its RGB colour superposition on columns 5
and 6.
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(image in blue), the third column of standard anisotropic
diffusion (red) and the fourth column of the knowledge-based
scheme (green).

The fifth and sixth columns show respectively the red–
green and red–green–blue superpositions of the colour thresh-
olds described above. Figure 9.r3c5 compares and illustrates
the difference in performance of standard and knowledge-
based anisotropic diffusion. The yellow areas correspond to
the regions that both methods have preserved as edges. The
red and green areas are those that only one of the methods
has preserved (red for standard and green for knowledge-
based diffusion). It is clear that knowledge-based diffusion
preserves many regions of the boundary of the myocardium
that are eroded by standard diffusion. Image 9.r3c6 adds the
blue component corresponding to the mean curvature flow
image, changing the colour of the commonly detected areas
as described by the palette in the figure.

Figure 10 presents results for another LV image in a plane
near to the apex. The images were produced and placed in
the same fashion as the previous figure. The second, third
and fourth columns show results for mean curvature flow,
standard and knowledge-based diffusion respectively. It can
be clearly seen that the latter preserves and emphasizes the
left-hand side of the epicardium better than the other schemes.
The colour images in the fifth and sixth columns compare the
exact location of the enhanced edges.

In Figure 10.r3c6 white regions correspond to significant
edges marked in all of the coloured images. The blue
areas surrounding white edges show that MCF does not
locate edges as sharply as anisotropic diffusion methods do.
Green edges are those marked only by the proposed method.
They are formed as a consequence of the increased flux of
brightness along the preferred directions of the knowledge-
based model, i.e. mostly along the perimeter of the concentric
circles described in Subsubsection 3.3.1. The plateau of
intensity that corresponds to the myocardium, being aligned
with such circles, is gradually reinforced by this flux of
brightness and therefore discriminated from other regions in
the image.

In the case of the top-right section of the epicardium,
however, the algorithms are not so successful. This is most
likely due to the pronounced difference of intensities in a
large region of the myocardium in this area. Although
human vision can easily compensate such intensity variations
and discern an apparently continuous epicardium, attentive
inspection reveals a dark region of the LV near to the
uppermost part of the lung (the lung appears as the darkest
shade of grey in all the images). The effect of this region is to
‘interrupt’ the flux of brightness along the myocardium and
hinder the building of the edge. We will see another example
of this effect in Figure 12.

Mean curvature flow produces visually appealing smooth
and continuous images, however, edges are also blurred
unless the algorithm is used only with few iterations. On
the other hand, the implementation of Perona and Malik’s
algorithm with the adaptive threshold based on Canny’s noise
estimator provides sharper edges and can be used for longer
diffusion times without blurring these edges. Since the
parameters used by both of the anisotropic diffusion schemes
are mostly the same, and because the characteristics of the
images produced by them are similar, it is more meaningful
to compare results of the proposed scheme to those obtained
with standard anisotropic diffusion. For these reasons in the
following figures we omit results of the mean curvature flow
algorithm and focus on the results of the anisotropic diffusion
schemes, thus highlighting the differences introduced by the
knowledge-based method proposed.

4.5. Image sequences
In Figure 11 we analyse the particularly noisy image used
in Figure 8. The images are arranged similarly to those
of the previous figures. The first four columns correspond,
respectively, to the original image, the image diffused with
2-D standard anisotropic diffusion, with 2-D knowledge-
based anisotropic diffusion, and finally, with 3-D (2-D+T)
knowledge-based anisotropic diffusion. The latter was
produced by diffusing together four consecutive images of
the cine sequence. Every diffused image in the figure was
produced using 50 iterations. Images in the fifth and sixth
columns compare the edge-detection performance of these
methods using the GER-RGB device. The colours blue and
red have been assigned to the edges of the original image and
the standard diffusion results respectively. The colour green
was used for 2-D knowledge-based diffusion in the third row
and for the 3-D homologous in the fourth row.

As shown in Figure 11.r3c3, the knowledge-based method
produce a nearly continuous boundary of the myocardium.
The fourth column shows that 3-D data can further improve
the results of anisotropic diffusion. We also notice that
Figure 11.r4c4 shows a double edge for the bottom left-
hand region of the endocardium, one includes and the other
excludes the papillary muscle. This is a result of using
information belonging to consecutive images in which the
myocardium has already relaxed after the contraction and
there is a small gap between the papillary muscle and the
endocardium (see Figure 12.c1). Plausible explanations for
the appearance of the gap in the data sequence are either
that muscle dilation brought them apart, or that due to the
through-plane movement of the heart, the images correspond
to a slightly different section of the ventricle (Sanchez-
Ortiz and Burger, 1995). In either case, effects such as
double-edge enhancing, which are introduced when using
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Figure 11. GER-RGB comparison between images diffused with standard anisotropic diffusion (AD), 2-D knowledge-based (KB) AD, and
3-D KB AD. The third row shows the coloured thresholded gradients for the original, standard and 2-D KB AD image, and its RGB colour
superposition on columns 5 and 6. The fourth row shows analogous results but using the 3-D KB AD image instead of the 2-D KB AD image
shown in the row above. A colour version of this figure can be found on the CD-ROM.

multi-dimensional data, could be minimized using more
detailed knowledge of the system dynamics.

In the colour images of Figure 11.c5 we compare the
results of the knowledge-based method to those of standard
diffusion. In Figure 11.c6, adding the blue component coming
from the gradient of the original image demonstrates that both
methods locate the boundaries accurately (white lines show
overlapping edges), and also that usinga priori knowledge
can help retrieving edges with gradient values lower than the
average noise in the image (as shown by the pure green lines,
where an edge has been detected and there is no ‘blue trace’
of it).

Figure 12 shows the sequence of four images (columns 1
and 2) used to produce the 3-D diffused images of Figure 11,
as well as the results of applying to them the standard
2-D anisotropic diffusion (columns 3 and 4) and the 3-D
(2-D+T) knowledge-based scheme (columns 5 and 6). The

images in the second row are those previously shown in
Figure 11. The results of both methods are similar when
the quality of the original image is good, for instance for
the endocardium and the ventricle chamber in the last two
rows. However, when the image quality is poor, as in the
case of the endocardium and ventricle chamber of the first
two rows, the proposed scheme performs much better. This
is also the case for the bottom region of the epicardium in
the last two rows. Figure 12.r3c1 shows particularly low
intensity values of the bottom region of the myocardium,
which result in low contrast for the epicardium. There, we
can also see a small ‘intensity notch’ in the epicardium.
The effect of the notch is to diminish the flux of brightness
along the myocardium and hinder the enhancement of the
edge, in a manner similar to that described previously when
discussing Figure 10. However, although the low contrast
and the notch in the edge severely affect the performance
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Figure 12. Results on a sequence of density MR images of the myocardium. Each row corresponds to a different time during the sequence.
The original images are shown in the first column. The third and fifth columns show the images diffused with 2-D Perona and Malik, and 3-D
knowledge-based anisotropic diffusion respectively. Even columns show the enhanced magnitude of the intensity gradients of the images on
the previous column.

of standard diffusion (see Figures 12.r3c3 and 12.r3c4), 3-D
knowledge-based diffusion enhances the edge as expected
(see Figures 12.r3c5 and 12.r3c6).

4.6. Volumetric data
Figure 13 shows the isosurface volume rendering of the
LV endocardium produced from density-encoded data after
five (left) and 50 (right) iterations of the proposed diffusion
process. The data used for this figure has a long-axis
resolution somewhat higher than that used in the other figures
(14 planes instead of eight).

Figure 14 shows the isosurface volume rendering of a
diffused cine sequence of the LV endocardium. In this case
8 planes and 16 time frames were used. We believe that
the results are encouraging for a data set with low resolution

in the vertical axis and for the very simple method used for
reconstructing the volumes. Section 6 describes the animated
sequences shown in the CD-ROM made from this volumetric
cine sequence.

4.7. Velocity data
The evaluation of diffusion results for multi-feature data is
a complex subject. As we mentioned in Subsection 3.4,
velocity data is normally diffused for short periods in order to
preserve information about the local non-rigid motion of the
myocardium; therefore sophisticated methods are necessary
to assess its efficiency (Meyeret al., 1996; Sanchez-Ortiz
et al., 1996a). For this reason we present only qualitative
results that highlight the advantages of using our scheme for
noise reduction, and leave the thorough analysis of velocity
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Figure 13. Volume rendering of the LV endocardium produced from density-encoded data after five (left) and 50 (right) iterations of the
proposed diffusion process.

data for a forthcoming article in which we also make more
extensive use of the dynamic information provided by the
velocity vector field.

Figure 15 shows the results of knowledge-based
anisotropic diffusion applied to a sequence of density- and
velocity-encoded data. Even rows (2, 4 and 6) show the
diffused version of the original images shown in the rows
above (1, 3 and 5 respectively). Time frames of the sequence
are arranged in normal English reading order. They begin
with early-systole (top rows), continue with end-systole
(middle rows) and finish with diastole (bottom rows). The
same values of the diffusion rate constantsl n have been used
for all feature images; hence, the diffused density images
give good indication of the short diffusion time used on the
velocity data (10 iterations).

Arrows show the direction of the in-plane components of
the velocity vectors at some points of the myocardium. Few
points were used in order to avoid cluttering the image with
arrows. The points selected for sampling the velocity field
are homogeneously distributed on the perimeter of an ellipse.
The (nearly circular) ellipse was arbitrarily selected in an
interactive manner in order to guarantee that it was fully
contained in the region of the myocardium. For a given time
frame, the same points of the myocardium were selected on
the original and diffused data.

We can see that the velocity vectors in the diffused images
show much more coherence than those in the original images.
Randomly directed arrows have been eliminated, however the
enhanced velocity vectors are not completely aligned with

each other and thus provide information about the non-rigid
motion of the cardiac muscle.

5. CONCLUSIONS

Two fundamental aspects of this model are introduced by
defining the conductance function as a second-rank tensor
and as an explicit function of position and time. First,
an explicit function of position and time can treat the
space as intrinsically heterogeneous and anisotropic, while
incorporating availablea priori knowledge about the system.
Secondly, defining the conductance as a second-rank tensor
allows the model to bias different directions in the coordinate
space, making the diffusion truly anisotropic and permitting
the use of known symmetries of the system to improve the
identification of the image boundaries.

Most of thea priori knowledge that we have incorporated
in this application relies on the simple realization that the LV
has nearly cylindrical symmetry. We have used weighting
functions that encourage diffusion in the directions where it
is most likely to find pixels of the same tissue type, i.e. along
concentric circles in the 2-D images. When diffusing image
sequences the weights have been adjusted to compensate for
inhomogeneous data sampling using knowledge about the
rates of contraction during the different phases of the cardiac
cycle.

The model could be made more realistic either by using an
ellipsoid, super-ellipsoid (Bardinetet al., 1996), or incorpo-
rating detailed information about the ongoing movement and
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Figure 14. Volume rendering of a cine sequence of the LV endocardium after 80 iterations of the proposed diffusion process.

deformations of the heart as assessed by non-rigid motion
analysis methods (Sanchez-Ortiz and Burger, 1995; Park
et al., 1996; Sanchez-Ortizet al., 1996a). For instance, we
are currently studying the effect of using velocity data to track
regions of the heart in a cine sequence in order to correlate
them during the diffusion process. Also, the knowledge-

based weights could explicitly depend on the type of feature
data in order to exploit the specific characteristics of each type
of images.

Although Canny’s noise estimator is a simple and effective
way to set a value for the parameterskm, a histogram
computed over the whole image misses gradients below the
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Figure 15. Results of diffusion on a cine sequence of density- and velocity-encoded images. Odd and even rows show the original and diffused
data respectively.
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critical value and therefore hinders the detection of faint
edges. Knowledge-based diffusion improves the detection
of such edges, however, a local measure of the noise would
further improve the performance of the scheme.

The subject is rich in promising possibilities and we are
at present expanding this work in several directions. Among
them are the use of velocities to extract information about the
complex motion of the heart, and the use of adaptive weights
produced by fuzzy clustering coupled with the diffusion
process (Sanchez-Ortiz, 1998). Also, preliminary results
show that the scheme can be successfully adapted to other
imaging environments like ultrasound images of the prostate.

6. CONTENTS OF CD-ROM VIDEO

Contents of the video sequence:

(i) Cine volumetric data before diffusion. Animation of
the isosurface volume rendering of the cine volumetric
data discussed in Subsection 4.6, after 10 iterations of
the diffusion process.

(ii) Cine volumetric data after diffusion. Animation of
the isosurface volume rendering of the cine volumetric
images shown in Figure 14, Section 4.6, after 80
iterations of the diffusion process.

(iii) Volumetric data during diffusion. Animation of the
isosurface volume rendering of early systole volumetric
data during the diffusion process.

(iv) Surface rendering of cine volumetric data. We
show the surface rendering of a cine sequence of the
LV endocardium. The data was first pre-segmented
using the proposed diffusion scheme, then automatically
segmented using a 3-D tracking algorithm (Rueckert and
Burger, 1997) based on deformable models, and finally
rendered as a sequence of surfaces. The value of the
parameter that controls the rigidity of the deformable
model was set high in order to include the papillary
muscle within the LV chamber. The abrupt changes seen
in some regions of a surface are due to the low resolution
of the data in the vertical axis (eight planes). We believe
the results are encouraging for an automated method in
which the only parameters to control are the diffusion
time and the rigidity of the deformable model.
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APPENDIX A. DISCRETIZATION SCHEME

Equation (15) can be discretized on a hyper-cubic lattice (the
4-D analogous of a 2-D square lattice), where the data value
is associated with the vertices, and conduction coefficients
with the arcs. Using a 4-D extension of the four-nearest-
neighbours discretization scheme employed by Peronaet al.
(1994), we obtain the following scheme:

Fτ (p)
∣∣τ=i+1
p=p0

= Fτ (p)
∣∣τ=i
p=p0

+λn

(∑
d∈D

Cd(p,F)111dFτ (p)

)∣∣∣∣∣
τ=i

p=p0

. (A1)

These are in fact four coupled equations sinceF → Fn,
wheren ∈ {ρ,Vx,Vy,Vz}. The computations are carried out
for every pointp0 = (x0, y0, z0, t0) of the data domain. The
new value ofF (the diffused data) is calculated for the next
iteration step (τ = i + 1) from the data at the present stage
(τ = i ).

Since the matrixC is diagonal, we simplify the nomen-
clature by introducing the direction indexd. Then, the
summation takes place over all the eight neighbouring
directionsD = {E,W,N,S,U,D,A,B} where the letters
stand for East and West (E,W) on the x-axis, North and
South (N,S) on they-axis, up and down (U,D) on thez-axis,
and after and before (A,B) on thet-axis. The indexn that
showed the dependence ofC on the type of feature data has
been directly attached to the coefficientsλn that control the
intensity flux described for Equation (A13).
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The following definitions hold for the present scheme:(
111dFτ (p)

)∣∣∣τ=i

p=p0
= Fτ (p)

∣∣τ=i
p=p0+dpd − Fτ (p)

∣∣τ=i
p=p0

(A2)

where

dpd = (δEd−δWd, δNd−δSd, δUd−δDd, δAd−δBd) (A3)

andδ is the Kronecker delta defined as

δi j =
{

1 if i = j
0 if i 6= j .

(A4)

The conductance function is computed as

Cd(p,Fτ ) = Wd(p) gd(‖∇Fτ (p)‖∗d) (A5)

wheregd is that of Equation (18), and Equation (19) becomes

‖∇Fτ (p)‖∗d =
(∑

n

(
sn1

d Fτn (p)
)2)1/2

, (A6)

for all d ∈ D and n ∈ {ρ,Vx,Vy,Vz}. 1d is defined for
the single-valued functionsFn in a fashion similar to that of
its vector homologous of Equation (A2). In this notation, the
weights functions can be expressed as

Wd(p) = ∣∣Wd
xx(x, y)+Wd

yy(x, y)+Wd
zz(z)+Wd

tt (t)
∣∣, (A7)

where

Wd
xx(x, y) = (δEd + δWd)

× sin
(
θ(x + 1

2(δ
Ed − δWd), y)

)
, (A8)

Wd
yy(x, y) = (δNd + δSd)

× cos
(
θ(x, y+ 1

2(δ
Nd − δSd))

)
, (A9)

Wd
zz(z) = (δUd + δDd)

× sin
(
ωz(z+ 1

2(δ
Ud − δDd))+ φz

)
, (A10)

Wd
tt (t) = (δAd + δBd)

× cos
(
ωt (t + 1

2(δ
Ad − δBd))+ φt

)
, (A11)

and

θ(x, y) = arctan

(
y− yorigin

x − xorigin

)
. (A12)

The angleθ(x, y) is that defined by the virtual polar
coordinate system whose origin is located at(xorigin, yorigin).
The constantsωz, ωt , φz, φt are the frequencies and phases

described in relation toW and used to fit the weight functions
to the data sets. For instance, the value ofωt can be set
to 2π/τtotal whereτtotal is the time length of the heart cycle
(in this case the number of cine images for a heart cycle
during the acquisition), andφt would be set to zero if the
data acquisition began with early systole (i.e. when the heart
was at rest).

The constantsλn of Equation (A1) are used for keeping
the model numerically stable. They are computed using the
feature flux control constantsl n of Subsection 3.4, and the
average values̄wd of the weightsWd over their entire range
of values:

λn = l n∑
d∈D w̄d

≈ l n

8 · 2/π =
π

16
l n. (A13)
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