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Automated 3-D Echocardiography Analysis
Compared With Manual Delineations
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Abstract—A major barrier for using 3-D echocardiography
for quantitative analysis of heart function in routine clinical
practice is the absence of accurate and robust segmentation and
tracking methods necessary to make the analysis automatic. In
this paper, we present an automated three-dimensional (3-D)
echocardiographic acquisition and image-processing methodology
for assessment of left ventricular (LV) function. We combine global
image information provided by a novel multiscale fuzzy-clustering
segmentation algorithm, with local boundaries obtained with
phase-based acoustic feature detection. We then use the segmen-
tation results to fit and track the LV endocardial surface using a
3-D continuous transformation. To our knowledge, this is the first
report of a completely automated method. The protocol is eval-
uated in a small clinical case study (nine patients). We compare
ejection fractions (EFs) computed with the new approach to those
obtained using the standard clinical technique, single-photon
emission computed tomography multigated acquisition. Errors
on six datasets were found to be within six percentage points. A
further two, with poor image quality, improved upon EFs from
manually delineated contours, and the last failed due to artifacts
in the data. Volume–time curves were derived and the results
compared to those from manual segmentation. Improvement over
an earlier published version of the method is noted.

Index Terms—Left ventricular (LV) volume, quantitative anal-
ysis, three-dimensional (3-D) echocardiography, 3-D functional
imaging.

I. INTRODUCTION

A. Motivation

T HE LAST few years have seen the emergence of three-di-
mensional (3-D) echocardiography acquisition systems in

the market. Methods of acquisition are improving in terms of
spatial and temporal resolution, moving now toward real-time
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volumetric acquisition. However, interpretation and analysis of
the data is more complex and time consuming than for conven-
tional two-dimensional (2-D) echocardiography. As recent re-
search studies have shown—for example, [1]–[3]—automated
three-dimensional analysis provides more precise information
about the pathophysiology of the heart than conventional anal-
ysis of 2-D views ([4]–[6] and references therein) and is of par-
ticular help for volume and ejection fraction (EF) calculation.

A good summary of the state-of-the-art in clinical testing of
3-D cardiac image analysis methods can be found in [7]. Only a
few papers referenced concern echocardiography [1], [8]–[13],
and of these, only [10]–[14] deal with quantitative analysis of
function and performance. Even for volume or ejection fraction
computations, standard clinical routines like conventional
single-photon emission computed tomography (SPECT) and
multigated acquisition [15] (MUGA) are costly and require the
injection of radioactive isotopes. In the specific case of 3-D
echocardiography, automated analysis would seem particularly
hard to achieve because of the inherent difficulty in segmenting
noisy and contrast-variable ultrasound images. Yet, advantages,
such as high temporal resolution, the wide range of cardiac
disorders on which it is used as an important indicator, as
well as other characteristics such as being a safe, noninvasive,
low-cost, portable, and fast procedure, make it ideal for routine
clinical practice and an important topic of research.

For these reasons, the goal of this research was to demon-
strate the feasibility of obtaining good volume estimates from
data derived from a state-of-the-art commercial rotational 3-D
echocardiography transducer using a fully automated image-
processing solution.

B. Related Work

Previous work at the University of Washington has shown
the feasibility of reconstructing a three-dimensional surface of
the heart from sparse view freehand echocardiography [2], [10].
However, in that work, a significant amount of interaction was
required to obtain a reconstruction of the endocardium, and seg-
mentation was performed manually. Clinically, this is a critical
point because manual interaction with 3-D data might be ac-
ceptable for research purposes but is too time-consuming and
tedious to do on a routine basis.

Recent work from the University of Yale [1] is probably the
most advanced heart modeling and analysis method developed
to date for echocardiography imagery. In this approach, a 3-D
finite-element mesh of the left ventricular (LV) myocardium is
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(a) (b) (c)

Fig. 1. (a) A single time frame from a 2-D+ T sequence. The sequence can be treated as a 3-D image with time as the third dimension; (b) shows additional
slices projected through time; (c) shows the position of the 12 slices that form the complete data set.

computed and used to perform myocardial strain analysis. The
approach is interesting. However, the analysis depends on the
high-quality images acquired from an open-chest acquisition
and is obviously not viable for routine clinical practice.

Following our own experience with other approaches to 2-D
and 3-D echocardiography and ultrasound image analysis (in-
cluding two-dimensional tracking [16] and 3-D freehand acqui-
sitions [17], [18]), we believe that 3-D rotational probe echocar-
diography is the most viable approach for immediate clinical
use, given the current technology. Hence our approach is based
on this type of 3-D ultrasound acquisition.

II. M ETHOD

A. General

The protocol consists of the following steps.

1) A transthoracic rotating 3-D probe is used to obtain 12
equally spaced coaxial 2-D time sequences (what we call
2-D images). See Section II-B.

2) Phase-based boundary detection is applied to each 2-D
image sequence for endocardial border localization.

See Section II-C.
3) In parallel to 2), multiscale fuzzy clustering is applied

to each 2-D image sequence for robust continuous
segmentation of the LV cavity. See Section II-D.

4) A combined filtering and reconstruction algorithm is used
to select candidate endocardial boundary points from the
complete set of candidate boundary points identified by
the phase-based segmentation. This step also combines
the 12 2-D data sets into one 3-D data set. See
Section II-E.

5) Fitting and tracking is performed using the 3-D endocar-
dial cluster as an initialization surface and deforming it
to 3-D filtered boundary candidates at time frame zero.
Then, the resulting surface is used to initialize the sur-
face fit to boundary candidates at the next time frame.
Volume and deformation parameters are then estimated
from the resulting 3-D endocardial surface sequence. See
Section II-F.

On the algorithmic side, new aspects of the work include
step 3), where we introduce a simple geometric and dynamic
model of the LV as part of the clustering algorithm used to ini-
tialize the surface fit, and step 4), the image feature filtering

stage. The other main contribution of this paper is the evalua-
tion of the complete method against MUGA in a small clinical
study, which to our knowledge is the first such study completed
using a fully automated image-analysis method.

B. Image Acquisition

Digital 3-D echocardiographic data were acquired on an
HP SONOS 5500 ultrasound machine (Agilent Technologies,
Andover, MA) using a 3–5 MHz rotating transducer and
respiration and ECG gating. In this machine, data are stored as
2-D images, one for each probe angle [see Fig. 1(b) for an
example of a 2-D image sequence].

Data were acquired at a frame rate of 24 frames per second,
the pixel size being 0.5 0.33 mm . Scanning was performed
on an apical view, i.e., the probe was located at the apex and
roughly aligned with the LV long axis in two orthogonal views
prior to the 3-D acquisition. We used sparse data i.e., 12 coaxial
planes, one every 15[see Fig. 1(c)]. In previous work [3], [19],
we studied the effect of using dense (60 slices, one every 3)
and sparse (7–12 slices) data sets and concluded that 12 was a
reasonable compromise between the speed of image acquisition
and the number of images necessary to obtain a reasonably con-
tinuous sampling of the LV wall.

It is important to point out that the data acquired using current
3-D technology are of lower quality (in terms of spatial and
temporal resolution as well as signal-to-noise ratio) relative to
state-of-the-art standard 2-D probes. In our particular case, we
did not have a second harmonic imaging option on the machine,
which appeared on later versions of this machine. Although the
protocol we present is affected by the quality of data, we show
later that it is robust and can provide good results on data derived
using current 3-D probe technology.

Fourteen patients [12 males, two females, age range 39–71,
average age 58 ( )] with suspected coronary artery disease
and with good acoustic windows when imaged using standard
2-D techniques were invited to return to participate in a study of
3-D echocardiography at the John Radcliffe Hospital, Oxford,
U.K. These patients had already undergone a routine MUGA
within the previous month (average two weeks). Local ethic ap-
proval was obtained for this study. Nine patient datasets were
selected from these, which had the best image quality, as as-
sessed by the clinician when looking at the sequence as a whole
in 3-D.
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C. Phase-Based Image Feature Extraction

A phase-based feature detection method was used to find can-
didate endocardial border points [6]. Briefly, the idea is to de-
tect endocardial border points according to their phase signa-
ture (edge shape) rather than intensity gradient information. The
reason for this choice is that the acoustic reflection from the en-
docardial border varies according to the relative angle between
the boundary and the transducer. The net effect is to produce a
border with variable intensity contrast around its length. This
makes it difficult to detect the endocardial border using an in-
tensity-gradient-based approach. This problem is even more of
an issue in 3-D echocardiography, since some 2-D acquisition
planes might be nonoptimal because they are determined auto-
matically once the first plane position has been chosen. In the
current implementation, we used a single scale version of the
feature detection method and feature asymmetry as the feature
measure. The method is described in [6], and the performance
of the technique is tested in detail on clinical data in [20] within
the context of 2-D echocardiographic image tracking.

D. Cluster-Based LV Region Extraction

To reliably perform LV surface fitting and tracking without
human intervention, boundary feature points need to be present
at reasonable intervals all over the LV surface. Phase-based seg-
mentation provides well-localized features but also detects a
large number of nonendocardial boundary points in practice. In
order to select only points close to the endocardial surface, we
have developed a novel cluster-based method for identifying the
LV region. The identified region is used both in the definition of
a mask to select good candidate endocardial feature points and
to initialize the surface fitting method described in Section II-E
and -F, respectively.

Unlike the phase-based method, the fuzzy-clustering-based
algorithm does not rely exclusively on the local differential
structure of the image but takes into account its global intensity
distribution and a model of the LV that incorporates a priori
knowledge. In this way, a continuous approximation of the LV
cavity boundary is provided even in image regions with low
contrast and low signal-to-noise ratio, such as where the LV
wall is parallel to the insonification beam. This also diminishes
the effect of outliers detected by the phase-based method that
correspond to noise and other anatomical structures.

The new method is based on standard fuzzy clustering but
works iteratively at different levels of a scale space (the scale
space is created using anisotropic diffusion and the fuzzy clus-
tering itself). A model of the objects of interest in the image
(in this case the LV) is used as a constraint, i.e., to incorporate
useful a priori information. As the new method, which is based
on our prior work [21], [22], has not appeared in the literature
before, the theory underlying the method is described next. We
then discuss how it is applied in our specific application.

1) Theory: Briefly, we use a generalization of Bezdek’s
fuzzy c-means clustering algorithm [23] to provide a fuzzy
partition of a possibly multivalued image in which
every pixel of a -dimensional image domain is classified
according to the attribute vectors specified by the feature space
function . In general, the feature spacecould be a function

of position and values of the multidimensional image and of any
other higher level interpretations of it (texture, for instance), or
simply be a simple scalar function, as in the common case of
classification based exclusively on image intensity.

Based on information provided by the feature space
function , the algorithm assigns each pixel a membership
grade to each of the regions in which the image is
assumed to be divided. The membership function
specifies how strongly is correlated with each region

of the image partition. In fact, the membership func-
tion , where

and , is computed using the
feature space function and is therefore, in a strict sense, also
a function of . However, since its final result is to assign a
vector value to each pixel of the image domain, we write it
as a function exclusively of .

To create a fuzzy partition, must satisfy the following
constraints:

(1)

A set of membership functions that satisfy these constraints is
given by

(2)

where is the distance in the feature
space representation between the pixeland the center of
the region (or cluster) and is a real number greater than
one that controls the overlap between different fuzzy regions.
The center of each cluster is computed using the expression

(3)

The fuzzy c-means algorithm tries to group the pixel attributes
by using an iterative process to approach a local minima of the
function

(4)

Equation (4) measures the similarity between the attribute
vectors and the cluster centers of each region.is minimized
by iterating (4) and monitoring the norm of until its change
between iteration goes below a prespecified threshold value
(the cluster centers and membership functions are recomputed
every iteration). We use , and the algorithm is initialized
distributing the cluster centers homogeneously over the
feature space (by dividing the dynamic range of each of the
feature space axes into equal-sized segments over the identity
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line). To measure the probability that two neighboring pixels
belong to the same cluster, we need to define a similarity
measure between the fuzzy cluster membership functions of
two given pixels. We use the maximum component difference
with an extra component [24], as defined by

(5)

where is the cluster membership index that de-
termines the largest cluster membership of(i.e., maximizes
the function ) and is the Kronecker delta function.

2) The Spatiotemporal Model:To guide the clustering algo-
rithm without overconstraining the segmentation, we introduce
model-based knowledge in the form of a simple approximate
geometric and dynamic model of the LV.

Specifically, we use a general a priori model derived from the
following simple approximations:

1) an approximately sinusoidal contraction of the LV during
a heart beat, which represents thedynamicsof the model;

2) an approximately ellipsoidal shape of the LV cavity as the
3-D geometricmodel of the heart.

The geometricparameters of the model are those related to
the ellipsoidal shape of the LV cavity. These, together with the
dynamic part of the model, can be written as thetransformation
of coordinates

where is defined by

(6)

Here describes the sinusoidal heart contraction where
the sampling points in time () are fixed by the frame rate of the
ultrasound machine. , , and are projections onto the
particular slice of the ellipsoid center and the angle of its main
axis. is the eccentricity of the projected ellipsoid andis
a scaling constant.

Since is only a function of the coordinates and not of, we
write the feature space functionas the composition of func-
tions ( )

where can further be decomposed into two components
such that

with the weights for each function defined as

Here and are the maximum intensity and radial
position computed from each image and used to normalize the
feature space and used to weight intensity versus geometry.

Although varying can improve the segmentation results, we
found that a value of gave good results in general, and
we used this value in the results reported here. In our study, we
set the ellipse minor axis to be two-thirds the size of the major
axis ( ). The orientation and center of the ellipse were
set from the image coordinate system: the major axis in the ver-
tical direction ( ) was aligned with the ultrasound probe
as using a standard 3-D echocardiography imaging protocol for
the apical view; one tries to center the LV in the field of view.
The center ( ) was set to the origin of coordinates, first
placed in the geometric center of the image and thereafter com-
puted from the clustering results as the center of the cluster cor-
responding to the LV.

3) Model-Based Clustering:A simple and computationally
efficient way to introduce a spatiotemporal model into the
fuzzy-clustering equations is via the feature space. The image
attributes of the feature space used are intensity and position in
a cylindrical coordinate system, which is a natural choice for
the 2-D LV long-axis images.

The LV model is introduced using to deform the feature
space, stretching the isocontours of the 2-D space to em-
brace ellipses of different sizes in the 2-D space dimensions and
sinusoidal lines instead of straight lines in the time dimension.
The origin of the cylindrical coordinate system is first placed in
the center of the image, and then the position is refined by com-
puting the center of mass of the LV cluster. The cluster corre-
sponding to the LV cavity is automatically identified as the one
with the lowest intensity and position closest to the center of the
image. In case some pixels belonging to this cluster are scattered
around the image (which rarely happens after the image has
been smoothed, as described in the next section), the largest con-
nected component is computed to select only the cluster points
belonging to the LV cavity.

There are two parameters in the clustering method: the
number of clusters and the geometry-intensity weight. Experi-
mental evaluation has shown that the algorithm is insensitive to
either parameter. For all nine datasets (108 2-D images),
using either five or six clusters and gave satisfactory
results. We found that small variations to these values slightly
changed how close the cluster approximated the LV cavity,
but did not, for instance, fuse the cavity and the background
clusters. In our application, a cluster that approximates the
LV cavity is sufficient. If a precise identification of the LV is
required, these parameters could be useful for weighting the
belief in the geometry versus intensity in images with poor
contrast or boundary definition.

4) Model-Based Multiscale Fuzzy Clustering:To overcome
the problematic effect of intensity fluctuations of the noisy ul-
trasound images, the clustering process is performed at different
levels of resolution in a scale space of the image [25].

The scale space is generated using a knowledge-based
anisotropic diffusion (KBAD) algorithm [22], where the con-
ductance term of the diffusion process is a tensor and an explicit
function of the position (in 2-D in our image domain),
the image intensity, and its gradient, i.e., .
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This scheme also introduces a probabilistic measure of the
image intensity distribution [26].

The combined diffusion-clustering algorithm is implemented
as follows. The first clustering is done after some iterations of
the diffusion. The clustering is then updated at regular inter-
vals during the diffusion process (i.e., at different levels of the
scale space), and the initially coarse segmentation of the image
is gradually improved until it converges to a meaningful region
partition, as the smoothing action of the diffusion process re-
duces noise. The computational expense of repeating the clus-
tering at different scales of resolution is not high because en-
ergy minimization is faster in the lower dynamic range of the
smoothed image. Since we are only interested in obtaining an
approximate clustering segmentation, the process is performed
on subsampled images (reduced by a factor of eight), making
processing time shorter (a 2-D image can be processed in
under 30 s on an SGI O2 workstation).

E. Filtering

A geometric filtering method is used to extract a reduced
set of candidate boundary points from the complete set of fea-
ture asymmetry boundary points to be used in the surface fit-
ting method discussed in Section II-F. Geometric constraints are
used to discard points that clearly do not belong to the endocar-
dial surface—for example, spurious responses in the LV cavity,
features on the epicardium, or right ventricle features.

We assume that the left ventricle forms a closed surface, i.e.,
ignore the effect of the mitral valve. We also assume that the
LV cavity appears mainly dark, while the myocardium appears
mostly light (this follows from the appearance of ultrasound im-
ages). A filter based on both the position of a boundary point and
the direction of its normal is defined as follows.

For each volume corresponding to an instance in time,
an approximation to the center-of-gravity and major axis of
the LV cavity is known from the fuzzy-clustering algorithm
(Section II-D). Now, consider a point that is a member of
the set of candidate boundary points, and consider two lines

(7)

(8)

where and are scalars. In (7), is the line passing through
the point in the direction of the normal of the point . In (8),
the line is the major axis of the ventricle, defined by the
center of the LV and the direction of its major axis .

Using simple vector geometry, the points of closest approach
on the two lines and are
defined by particular values of the scalar constants and

, respectively, where

(9)

(10)

Here, denotes the cross product. The values ofand are
used to filter out image feature points in the following way. First,
points with normals pointing into the left ventricle are selected.
Secondly, from this subset, points that result in the pointlying

within the ventricle are selected. Thirdly, points are filtered out
based on their distance from the major axis by placing upper
and lower bounds on acceptable values of. Mathematically,
these three constraints can be encapsulated as

(11)

(12)

where is related to the length of the ventricle, while and
are related to the width of the ventricle. These values are

estimated from the LV cluster for a given time frame and vary
over the cardiac cycle, depending on the length and width of the
cluster; hence the region of search contracts with the cluster.

A different filtering system is employed at the apex and base
of the ventricle (the end zones). This is based on experimental
experience, which showed that too many points were being fil-
tered out in these areas. To solve this, we define a cone aligned
with the major axis with its apex at the center-of-gravity of the
LV cavity and a user-defined cone-angle. Within this cone
image, features are accepted if either they satisfy the above cri-
terion [(11) and (12)] or if the following two conditions are
met. Let be the vector from the image feature point to
the center-of-gravity and be the normalized version of this
vector. A point is assumed to be in an end zone if

(recall that is the major axis direction vector). Then
it follows that

(13)

(14)

F. Surface Fitting and Motion Tracking

The filtered phase-based feature points are reconstructed into
3-D for each instance in time (i.e., slices are placed coaxially).
In addition, at each time frame, the LV cluster boundary is re-
constructed in 3-D in the same manner and a mesh surface fit
to the cluster boundary points. The end-diastolic cluster-based
surface is used as the surface initialization for fitting a surface
to the 3-D set of phase-based feature points of the first volume.
The LV cavity shape is then sequentially estimated by using the
surface fit of the previous frame to initialize the fit in the current
frame using a variant of the method described in [27]. Namely,
at each time frame, the distance between a point on the model
mesh surface and a data point is computed. This is cal-
culated as

where

( was used in the examples shown in this paper.) The
surface is then deformed—either globally, by translation,
rigid, or affine; or locally, using a B-spline transformation
to minimize the cost function subject to certain
constraints. Computation of the local B-spline transformation
is iterated until convergence is achieved. Details of the subset
selection and minimization process are outlined in [27].
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(a) (b) (c) (d)

Fig. 2. (a) Example of low-quality ultrasound image with phase-based edges overlaid. (b) Clustering results of the same image. (c) and (d) show the cluster
superimposed on the original image in 2-D+ T and in 3-D.

(a) (b) (c) (d)

Fig. 3. Steps in surface fitting: (a) 3-D dataset with 12 planes; (b) 3-D reconstructed boundary of the LV cavity cluster; (c) cluster’s ellipsoid of inertia deformed
onto the cluster; and (d) surface from (c) deformed onto phase-based image feature points.

G. Illustration of Processing Steps

Fig. 2 illustrates steps in the clustering algorithm. Fig. 2(a)
shows a typical phase-based feature detection result on a low-
quality image. Fig. 2(b) shows the resulting clusters within one
frame of one slice; the large central cluster corresponds to the
left ventricle cavity. The boundary of this cluster was extracted
in each slice over all time frames and smoothed to give a contin-
uous 2-D contour [Fig. 2(c)]. It was then combined with the
contours from other slices to create a three-dimensional contour
at each time frame [Fig. 2(d)].

Fig. 3 illustrates surface fitting. The distribution of image
planes in 3-D is shown in Fig. 3(a). Boundary points on a cluster
are shown reconstructed in 3-D in Fig. 3(b). The surface fit to
these points, i.e., the fitting surface initialization, is shown in
Fig. 3(c). Fig. 3(d) shows the result after deforming the surface
shown in (c) to the phase-based image feature points.

H. Comparing User-Guided and Fully Automatic Processing

Three processing protocols were compared on each of the
nine data sets.

1) Manual segmentation performed by an expert.
2) Automatic tracking using an ellipsoid initial surface man-

ually placed by an expert with the help of a 3-D graphic
interface and without geometric filtering of image fea-
tures. Below, we refer to this method as the user-guided
method.

3) The new method including geometric filtering of image
features and automatic surface fitting, as described in Sec-
tion II-A–II-F. We refer to this method as the fully auto-
matic processing method below.

TABLE I
AVERAGE AND STANDARD DEVIATION OF ERROR IN VOLUMES (IN cm )

OVER ALL PATIENTS AND TIME FRAMES (202 VOLUMES IN TOTAL)
WITH RESPECT TOMANUAL DELINEATIONS

Volume-time plots and EFs were calculated for each method.
Errors in volumes were calculated between the manually de-
rived surfaces and the user-guided method and the fully auto-
matic processing method, respectively.

III. RESULTS AND DISCUSSION

Table I compares the average and standard deviation of errors
in volume over all data sets. It can be seen that compared to
the user-guided method, the fully automatic processing method
gives a closer match to contours drawn by a clinician, although
the standard deviation () in the difference between the volumes
is still high.

Fig. 4(a) shows the volume–time curve obtained by each
method on a typical data set. Note that in this case, the fully au-
tomatic processing method and manually tracked volumes give
similar results, showing that fitting based on automatic cluster
initialization can give as good a result as manual segmentation.
However, the overestimation observed here is not a general
result. Fig. 4(b) shows, for all volumes, a volume scatter plot
of the volumes from both automatic methods plotted against
the volume from manually delineated contours. Thevalues
are 0.3898 for the user-guided method and 0.3163 for the fully
automatic processing method, i.e., both low.
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Fig. 4. (a) A typical volume–time curve computed from the fitted surface.
(b) A scatter plot for all volumes, comparing automatically computed volumes
to those from manually drawn delineations. (c) A Bland–Altman plot of the
automatically calculated and MUGA EFs.

The ejection fractions calculated using the three methods
were also compared with those obtained from a clinical MUGA
study performed on the same patients. Table II summarizes
these results where the data sets, ranked by image quality,
aregood (1–6,9) and medium (7,8). The results show that
the fully automatic processing method has a lower mean
error (0.70%) than both manual contours (1.98 ) and the
user-guided method (7.61 ). The standard deviation (9.14%)
in the error for the fully automatic processing method is slightly
higher than for the user-guided method (7.68%), but with a
small sample set, it is difficult to draw strong conclusions from
this. For data sets of good quality (1–6), the fully automatic
processing method calculates ejection fractions within six
percentage points of the MUGA value.1 The image quality
of data sets 7 and 8 was not as good, and manual delineation

1The literature [15] states that five percentage points is the clinical reprodu-
cablity of MUGA.

was more difficult. Hence, the estimates of EF for both manual
and automatic methods were not as good. Data set 9 was
rated a good quality dataset. This allowed for a good manual
segmentation and a good estimate of ejection fraction by the
manual protocol. However, the papillary muscles were very
evident in this data set, which confused the automatic methods,
leading to a poor volume estimate.

The mean and standard deviation for the good quality cases
(i.e., omitting data sets 7, 8, and 9) are shown in the last row
of Table II. These show that on good quality images, the fully
automatic processing method provides a more reliable estimate
of EF than the user-guided method and a similarly good estimate
to the manual protocol.

Fig. 4(c) shows a Bland–Altman plot of calculated ejection
fractions from manual contours and the user-guided and fully
automatic processing methods when compared to ejection frac-
tions from MUGA. Note that the manual method has the largest
2 range and shows a slightly negative mean ( ). The
user-guided method shows a smaller 2range and a definite
negative bias ( ). On the other hand, the fully auto-
matic processing method has a lower 2range than the manual
result and a low positive bias ( ). Although the small
number of data sets analyzed means that strong statistically
based conclusions cannot be drawn from this part of the work,
the results indicate that the fully automatic processing method
is consistently comparable in performance to the manual and
user-guided methods.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have described an automatic method
of tracking endocardial boundaries from 3-D transthoracic
ultrasound data. We first used multiscale clustering to provide
an approximate segmentation of the LV cavity. This estimated
shape was used to initialize a 3-D fitting and tracking algo-
rithm, which tracked candidate boundaries derived from a
feature asymmetry-based segmentation method followed by a
geometric filtering postprocessing step. The combination of
these three techniques overcomes the sensitivity that tracking
has to the initial shape by using local and global information
from the 3-D image sequences.

On good quality data sets, we obtained similar tracking results
for a manually traced surface and the fully automatic method.
For these data sets, ejection fractions were within six percentage
points of the value obtained from MUGA. Although our results
are preliminary and further validation is required, from this part
of the work, we draw the conclusion that the new method is
suitable for clinical research use. Performance was less good on
low-quality data, which shows that further work is needed to
improve the methods for routine clinical use.

There are a number of ways in which the current volume esti-
mation method could be improved. The low quality of transtho-
racic image sequences today is a major issue. We have been in-
vestigating image-processing-based methods of enhancing the
quality of 2-D images to improve feature detection [28].
Future work will also be based on using MRI as the gold stan-
dard, which is more accurate than SPECT MUGA. This was not
available at our institution at the time of this research. Finally,
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TABLE II
EJECTION FRACTIONS COMPUTED FOR THE NINE PATIENTS USING MANUAL CONTOURS,

THE USER-GUIDED METHOD, AND THE FULLY AUTOMATIC PROCESSINGMETHOD

the approach we have developed could be changed with minor
modification to work on real-time 3-D echocardiography.
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