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A Sustainable Substitute for Ivory: 
the Jarina Seed from the Amazon
Yinghao Chu, Marc A. Meyers, Bin Wang, Wen Yang, Jae-Young Jung & Carlos F. M. Coimbra

The dried endosperm of the seed of Phytelephas sp is widely used for artisanal work in the Amazon 
region due to its favorable mechanical properties and pleasant appearance that resemble elephant 
ivory. While the seeds have enjoyed popularity and limited use by selected industries (e.g., military 
uniform buttons and piano keys) and handicraft applications, little is known about the mechanical 
properties and structure of this sustainable material. This work is the first to characterize the dried 
Jarina endosperm and to investigate its functionality as a viable substitute for elephant ivory. 
Structural analysis of typical seeds reveals the prevalence of tubules that align in rings and radiate 
from the (usually hollow) core of the seed. This seed, in the absence of a reinforcement structure 
or mineral phase, possesses mechanical properties slightly inferior to elephant ivory and selected 
plastics, while retaining the visual appeal of a naturally occurring material. A synthetic structure 
inspired on the seed is created and suggestions for further development are discussed.

Ivory has been considered as a valuable bio-tissue since prehistoric times. However, excessive trade of 
elephant ivory has contributed to the decline of elephants, particularly from the three subspecies of 
African elephants, which are known for their massive tusks. Because African elephants are critical ele-
ments of the ecosystem in many African habitats, the depletion of elephant populations is of serious 
concern. The population of Africa’s forest elephants has shrunk by 60% in the past decade, and there 
are recent signs of increasing stress on several elephant communities. Most of this stress can be directly 
linked to poaching for the illegal but highly profitable trade of elephant ivory1. Artificial substances like 
celluloid and other plastics have been used as ivory replacement, but they lack the appeal of naturally 
occurring fibers and polymers, and their widespread use brings concerns related to the slow degradation 
rates of plastics in the biosphere. Vegetable ivory (species in the genus Phytelephas, also named “Jarina” 
in the Brazilian Amazon region) resembles closely the appearance of elephant ivory (Fig.  1a), while 
offering many desirable physical characteristics like biodegradability, conformability, carvability, and 
other outstanding mechanical properties. The endosperm is a milky liquid, which is usually sun-dried 
until it turns into a very hard material. Once a popular material in the clothing industry (according 
to Acosta-Solís, 19482, a large share of the buttons of the U.S. military uniforms were made from it 
during World War II), the cultivation and trade of Jarina palm seeds have endured periods of complete 
abandonment in the past few decades. However, in recent years, environmental concerns regarding the 
biodegradability of plastic commodities have motivated the re-discovery of the Jarina seeds3.

The majority of scientific studies relate to the biological taxonomy and chemistry of the Jarina seed. 
Some have discussed its chemical components, mainly focusing on the hydrolysis and extraction of the 
mannose3–5. The main components of the dried cores are hemicelluloses3. When it is hydrolyzed, the 
major component is mannose, which corresponds to about 86 percent of its weight. Other components 
include glucose, galactose, arabinose, xylose, and rhamanose5.

However, no previous attempt has been carried out to quantitatively study the mechanical properties 
of the dried Jarina endosperm, which is essential to the full understanding of this material and the pro-
motion of its cultivation and applications. Mechanical failure of the Jarina seed is further studied using 
a statistical Weibull analysis; its anisotropic behavior is modeled with a stress concentration model. 
The K-R (fracture toughness as a function of crack extension) curve is obtained to analyze its fracture 
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toughness. These structural and mechanical properties are compared, for the first time, with those of 
elephant ivory and plastics to inform on its potential as elephant ivory substitute.

We observed a central lacuna located inside each Jarina seed (in Fig.  1a). The density of vegetable 
ivory is 1.2 ±  0.2 g/cm3 (in Table 1), which is lower than that of natural ivory, hippo tooth, antler bone, 
and celluloid6.

X-ray tomography (Fig. 1b–d) shows that the vegetable ivory is porous. There are cylindrical primary 
tubules from which secondary tubules radiate. The primary tubules show varying diameters (25–50 µ m), 
and are arranged in arrays forming concentric rings, in which the longitudinal axes of these primary 
tubules are perpendicular to the ring radius (Fig.  1b,c); the ring thickness corresponds to the tubule 
length, ~100 µ m). The primary tubules are distributed in hexagonal arrangement in the transverse sec-
tion (shown in Fig. 1f), indicating that the structure of vegetable ivory is similar to a lotus-type porous 
material.

Figure 1. Overall structure of Jarina seed. (a) Overview and cross section of a Jarina seed; there is a 
central lacuna due to the shrinkage of natural drying process. Scale bar, 20 mm. (b) 3-D reconstructed X-ray 
tomography image of the area in red rectangle in (a). The tubules have relatively light color and are arranged 
in rings with their longitudinal axis perpendicular to rings (indicated by blue lines), while the solid area 
shows dark grey as background. Scale bar, 1 mm. (c) 3-D micro-CT image of the area in red triangle in (b) 
with a resolution of 5.0147 µ m. The tubules are shown in golden color and the solid material is set to be 
transparent. Scale bar, 0.5 mm. (d) 3-D micro-CT image of the area in red rectangle in (c) with a resolution 
of 1.0197 µ m. The near-hexagonal arrangement of the primary and secondary tubules can be observed. Scale 
bar, 0.1 mm. (e) Schematic diagram and definition of the directions; there is a lacuna located in the center of 
each seed which we define as the geometrical center of a spherical coordinate system. Plane BCE: transverse 
plane (TP) where we can observe the near hexagonal arrangement of the tubules in transverse section; Plane 
ABC/Plane ABE: radial plane (RP); (f) Optical micrograph taken from TP. Scale bar, 100 µ m. (g) Optical 
micrograph taken from RP. Scale bar, 100 µ m.
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We represented the Jarina nut in a 3-D spherical coordinate system (shown in Fig.  1e). This radial 
distribution of tubules might result in anisotropic mechanical behavior. We defined a transverse plane 
(TP) and a radial plane (RP) based on the orientations of the internal tubules: TP is perpendicular to the 
longitudinal axis of the tubules, and RP is parallel to it. Optical microscopic images for both planes are 
shown in the Fig. 1f,g; the hexagonal distribution of primary tubules is readily seen.

Under UHR SEM (× 40,000), the structures, (e.g. mineral phase or reinforcement fiber) characteris-
tic of ivory at different length scales (ranging from nanometers to micrometers), are absent. The Jarina 
seed is dried from its emulsion state under the sunlight for periods that can extend to a few weeks. 
Considering that hemicellulose is amorphous, we suggest that the seed is a single-phase material, and 
any anisotropic behavior is solely due to the orientation of tubules.

Results of tensile tests are provided in Table  1. The strain to failure is 0.03 ±  0.01. The average 
Young’s modulus is 1.5 ±  0.5 GPa, consistent with a large variation characteristic of biological materials7. 
Mechanical properties of elephant ivory and celluloid are provided in Table 1 for comparison. Vegetable 
ivory shows a Young’s modulus and a work to fracture that are on the same order of magnitude of ele-
phant ivory. They are also comparable to the plastics like celluloid, which has been first widely used as 
an ivory replacement.

The Weibull analysis provides a continuous probability distribution that has been successfully 
employed for statistical analysis of the results for a number of biological materials7–9. It assesses the dis-
tribution of properties through a function, ( )( ) =
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survival at stress σ, σ0 is a characteristic stress, and m is the Weibull modulus that measures the varia-
bility of strength (lower value means higher variability)7,8,10. Weibull analysis on the tensile testing results 
shows that m is equal to 2.2, which confirms that the material has a considerable variability in strength, 
typical for biological materials (metals show m as 10–20, ceramics around 3)10. The stress at 50% prob-
ability of failure is 26 MPa.

The microhardness data are presented in Table  2 and compared to that of elephant ivory11. 
Microhardness in both directions is about one third of those of elephant ivory. Results of nanoinden-
tation tests are shown in Fig.  2a: 378 MPa and 385 MPa on transverse and radial planes, respectively. 
The elastic moduli measured from the nanoindentation tests are 7.8 GPa and 8.2 GPa, respectively. The 
nanohardness is consistently higher than the microhardness because: (1) the tubules at micro-scale can 
affect the microhardness values, but not the nanohardness since these tests are done in the space between 
them; (2) nanoindentation excludes the effects of micro-scale cracks, and other structural defects and 
the values are that for an ideal material. Unlike the microhardness, nanohardness does not show signif-
icant anisotropy. This is consistent with the observation that the nanoindentation is sufficiently small to 
avoid the interference from tubules; thus, the nanoindentation results further confirm the assumption 
that the vegetable ivory is a single phase material and that the anisotropic behavior is only caused by the 
distribution of tubules.

Vegetable 
Ivory 

(Jarina)

Elephant 
Ivory 
(Dry) Celluloid

Density (g/cm3) 1.2 ±  0.2 1.7~1.9 ~1.4

Young’s Modulus (GPa) 1.5 ±  0.5 ~12.5 1.38~1.73

Strength (MPa) 26 ±  10 36~110 39~47

Work to fracture (MPa) 0.65 ±  0.4 0.49~0.87

Table 1. Tensile Test Results6,8. The errors provided for vegetable ivory represent the 1.96 times the 
standard deviation.

Indentation Test 100 g (MPa) 200 g (MPa)

Vegetable Ivory (Jarina)

 —Transverse Plane 124 ±  25 129 ±  17

 —Radial Plane 100 ±  35 103 ±  33

Elephant Ivory11

 —Circumferential Plane 390 350

 —Radial Plane 310 270

Table 2. Micro Hardness. The errors provided for vegetable ivory represent the 1.96 times the standard 
deviation. The elephant ivory data11 mention that their maximum standard error is less than 12%.
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Two compressive loading directions were applied: normal to the transverse plane (defined as TP ori-
entation) and the radial plane (defined as RP orientation). The compression curves of the samples exhibit 
three stages: elastic deformation, plastic deformation, and failure (without densification). Anisotropic 
behavior is observed: TP orientation shows a higher elastic modulus but lower strain to failure than RP. 
The strain to failure ranges from 0.2 to 0.35 for TP and from 0.18 to 0.4 for RP. The results of the tests 
are presented in Table 3.

A stress concentration model is applied to explain the anisotropy. Schematics of compressive loading 
perpendicular and along to the tubules are shown in Fig. 2b. The lower strength of the RP orientation 

Figure 2. The mechanical response of Jarina seed. (a) Hardness histogram chart including micro and 
nano hardness values of Jarina seed from TP and RP. The error bars represent the 1.96 times the standard 
deviation. (b) Typical load-deformation curves of Jarina seed for two stress orientations: TP and RP.  
(c) Weibull distribution results from both TP and RP groups, the blue line and dots represent TP and the 
red line and dots represent RP. (d) Weibull plot to obtain m for TP (3.56) and for RP (2.76). (e) Schematic 
of the flexural testing in different orientations illustrated by the loading and the arrangement of cylindrical 
tubules. (f) K-R resistance curves for vegetable ivory (in shaded blue color), and representative K-R 
curves of elephant ivory16 and human corticalbone18 are also presented. Black and blue markers represent 
orientation 1 and 2, respectively.

Direction of 
Indentation

Tests Density 
(g/cm3)

Elastic 
Modulus 

(GPa)

Max 
Strength 

(MPa)
Strain to 
fracture

Work to 
fracture 
(MPa)

Transverse plane 1.20 ±  0.05 1.68 ±  0.7 158 ±  40 0.26 ±  0.06 25 ±  8

Radial Plane 1.20 ±  0.05 1.34 ±  0.4 146 ±  50 0.29 ±  0.07 27 ±  10

Table 3. Anisotropic Compression Test Results of Vegetable Ivory (Jarina). The errors provided for 
vegetable ivory represent the 1.96 times the standard deviation.
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test results is caused by the higher stress concentration when loading is applied perpendicular to the 
cylindrical tubules12; this stress concentration is lower if loading is aligned with the tubules13. Therefore, 
vegetable ivory is more resistant to stress normal to the TP than normal to the RP. The cracks tend to 
propagate along the RP rather than the TP. Compressive behavior from both orientations was evaluated 
through Weibull analysis (Fig. 2c,d). The m for TP (3.56) is significantly higher than m for RP (2.76). 
The stress at 50% probability of failure for loading perpendicular to the TP is 160 MPa and for loading 
perpendicular to the RP is 140 MPa.

The anisotropic property of porous material can be expressed by a semi-empirical equation14,15:

σ σ= ( − ) , ( )p1 1k
0

s

where σ0 is the strength of the nonporous material, p is the porosity, and ks is a stress concentration 
factor that depends on the radius and height of the idealized cylindrical tubules in the porous material:
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a and b are the traverse and longitudinal dimensions sections of the idealized cylindrical tubules. For 
stress application parallel to longitudinal direction of tubules, b approaches infinity and ks =  1, while for 
stress perpendicular to the longitudinal direction of tubules, a = b and ks =  3.

The measured porosity is 0.17. According to the stress concentration model, strength with loading 
perpendicular to the TP has a stress concentration ks =  1 while on RP has a ks =  3. The theoretical ratio 
of strengths (TP to RP ratio) is therefore 1.45. The experimental TP/RP ratio of average microhardness 
is 1.24 and the average compressive strength is 1.25. The difference between predicted and measured 
ratios may come from the non-ideal hexagonal distribution of cylindrical tubules and finite length of 
each tubule (this leads to ks <  3 for RP). Therefore, the value of ks shall be higher than 1 on the TP and 
less than 3 on the RP. This leads to a smaller experimental ratio than the predicted ratio. The analysis 
suggests that the fully dense material should have an elastic modulus larger than 2 GPa, which is closer 
to that of elephant ivory.

The fracture toughness (K, critical stress intensity factor, MPa·m0.5) is an important material property, 
and quantifies the ability of a material with a pre-existing crack to resist fracture. K values are influenced 
by intrinsic and extrinsic mechanisms16. The intrinsic mechanisms involve the inherent resistance of a 
material ahead of a crack tip, and determine K values for crack initiation. The extrinsic mechanisms 
operate at or behind the crack tip, and are correlated with shielding of the crack tip to reduce stress 
intensity (e.g. bridging). They depend on the size of the crack extension. The R-curve (K-crack propa-
gation curve) is frequently used to characterize the fracture toughness of a material16–18. The schematic 
illustrations of flexural tests and sample orientations are shown in Fig. 2e.

The K-R curves for vegetable ivory are plotted in Fig. 2f and compared with those of elephant ivory 
and human cortical bone. SENB samples obtained from Jarina nuts are much smaller than their coun-
terparts from elephant ivory. Therefore, to make the K-R curves comparable, a normalized crack exten-
sion ∆ a/b0 is used as the x-axis. The initial stress intensities of vegetable ivory are about 1 MPa·m0.5 for 
samples of both orientations, and are very similar to the initial stress intensities of elephant ivory and 
human cortical bone. The K-R curves of vegetable ivory do not present an obvious positive slope as those 
of elephant ivory. These results indicate that the vegetable ivory does not have significant extrinsic tough-
ening mechanisms. The K values from samples in two orientations do not show significant difference.

Scanning electron micrographs of the crack extension (Fig.  3a,b,e,f) show that the cracks tend to 
propagate along the primary tubules and therefore path deflection occurs. This phenomenon is observed 
for samples of both orientations, and the deflection can be higher than 45 degrees due to the tendency 
to propagate through neighboring tubules (exemplified in Fig. 3b,f). The fracture surfaces for two orien-
tations are illustrated in Fig. 3c,d,g,h. Due to crack deflection, they show a step-like morphology, which 
is very different from the flat regions ahead of the notches or pre-cracks. A schematic illustration of the 
fracture surface is shown in Fig. 3d,h. For orientation 1, because the tubules are not perfectly parallel to 
the crack plane but at an acute angle, the pre-crack region is relatively smooth and shows tilted ellipsoi-
dal sections of the tubules. The step-like morphology of crack surface is the result of crack deflection. 
Each step represents a ring of primary tubules aligned in approximately one plane. The cracks tend to 
propagate along the longitudinal direction (along the primary tubules) because less energy is required.

The fracture surface of orientation 2 samples shows similar deflection and step-like morphology 
(shown in Fig.  3h). In contrast with orientation 1, we observe micro-cracks for orientation 2 along 
the longitudinal direction of tubules (near the main cracks). However, these cracks are also observed 
before the flexural tests (shown in Fig.  3e). Therefore, they are unlikely to be generated during the 
flexural tests and function as extrinsic toughening. On the samples, we do not observe any evidence of 
micro-cracking, and the tiny crack-like features are secondary tubules.

In contrast with dentin16, we do not observe uncracked ligaments or bridging structures that are 
considered as a major contribution to its toughness. Therefore, as the crack grows, crack deflection is 
the primary extrinsic toughening mechanism and does not result in a significantly increase in the crit-
ical stress intensity factor for vegetable ivory. This observation is consistent with the R-curve plot from 
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Figure 3. Crack propagation for fractured samples in orientations 1 (a-d) and 2 (e-h), and structure of a 
freeze-casted scaffold (i-k). (a) A representative crack path of orientation 1. Scale bar, 100 µ m. (b) Deflection 
of crack path due to the existence of primary tubules. Scale bar, 25 µ m. (c) Fracture surface showing the 
regions of notch, pre-crack and crack that are generated during flexural test. Scale bar, 100 µ m. (d) Step-like 
morphology of the fracture surface. Scale bar, 50 µ m. (e) Side view of a SENB sample of orientation 2 before 
flexural test. Scale bar, 100 µ m. (f) Deflection of crack path due to the existence of primary tubules. Scale 
bar, 100 µ m. (g) Fracture surface showing the regions of notch, pre-crack and crack that are generated during 
the flexural test. Scale bar, 250 µ m. (h), Step-like morphology of the fracture surface. Scale bar, 100 µ m. 
A schematic illustrating the step-like morphology observed from completely fracture SENB samples from 
orientation 1 and 2 is overlaid in (d,h), where the blue cylinders represent the tubules and are aligned in each 
step. (i), Sample of spherical freeze-cast scaffold. Scale bar 1 mm. (j), Transverse cross section of the spherical 
scaffold. Scale bar, 100 µ m. (k), Longitudinal cross section of the spherical scaffold, Scale bar, 100 µ m.
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mechanical testing, indicating that vegetable ivory does not possess the complex extrinsic toughening 
mechanisms of elephant ivory or bones.

In addition to its elegant appearance, carvability, and moldability with controllable drying process, 
vegetable ivory possesses outstanding mechanical properties. This material, especially taking the density 
into consideration, is competitive with elephant ivory and celluloid. Together with the appeals from envi-
ronmental protection and sustainability it affords, vegetable ivory has the potential to substitute elephant 
ivory as well as several kinds of plastics for a broad range of applications like sculpture, buttons, handles, 
chopsticks, piano keyboards, etc.

Elephant ivory has cylindrical tubules that are embedded in a matrix formed by the mineralized col-
lagen fibers; these are the result of odontoblast cell movement during dentin formation16,17. The collagen 
fibers that orient along the main axis of the tusk form a fabric reinforcement structure, with the organic 
phase occupying about 30% of its weight. The other 70% of its weight are hydroxyapatite-like crystals 
embedded in the organic matrix. The inorganic mineral provides the strength and the organic collagen 
provides the toughness19. Several significant extrinsic toughening mechanisms were observed by Kruzic16 
as contributing to the fracture toughness of dentin: crack deflection, micro-cracking, crack bridging by 
collagen fibrils, and uncracked ligaments. Due to the presence of extrinsic toughening mechanisms, the 
fracture toughness of ivory shows a rising R-curve (see Fig. 2f).

Controlled solidification of the liquid Jarina endosperm extracted from either single or multiple seeds 
in molds could be used to manufacture the Jarina products with generic shapes and desired sizes. This 
proposed method is capable of producing uniform material with improved mechanical properties by 
eliminating the central lacuna due to rapid drying and the internal tubules. Therefore, in terms of man-
ufacturing and processing, the vegetable ivory is superior to elephant ivory and is competitive with 
plastics.

Powder of vegetable ivory is a useful raw material for synthesis and fabrication. In this work, freeze 
casting, which has not been employed for biological/polymer powders to the authors’ knowledge, is used 
to fabricate porous scaffolds using micro-sized Jarina powder. These scaffolds are brittle and soft with 
a tactility that is similar to cotton (shown Fig. 3h). During the freezing, Jarina particles are placed and 
trapped between growing lamellar ice crystals and form a structure with interconnected ice channels. 
Once the ice is removed via sublimation through lyophilization, the freeze-cast scaffolds show pores 
on both transverse and longitudinal sections (shown in Fig. 3j,k). The Jarina scaffolds can be infiltrated 
with second phases to form a new composite material and to acquire varying/particular properties for 
multiple applications (e.g. toys, handles, keyboards).

In summary, the Jarina seed has a very pleasant appearance with comparable feel to the touch than 
the highly sought out properties of elephant ivory. However, the Jarina seed can be cultivated sustainably 
with processing methods that are competitive with plastics. This work presents original results on the 
microstructure and mechanical behavior of the Jarina seed, which include the following findings:

It has a hexagonal lotus-type porous structure with a porosity of 0.17, and the primary cylindri-
cal-like tubules arranged in rings and aligned in the radial direction.
The anisotropic behavior of vegetable ivory results from the existence of tubules because: (a) no 
hierarchical structure is observed in the fracture surface; (b) its main component, hemicellulose, is 
amorphous; (c) nano-indentation without the interference of tubules does not show significant dif-
ference in hardness along the transverse and radial planes.
While Jarina seeds have lower density, they show lower mechanical properties (Young’s modulus, 
1.5 GPa, tensile strength, 26 MPa, and toughness, 0.65 MPa) than those of elephant ivory. Higher 
density seeds seem to be achievable by controlled processes.
The anisotropic mechanical behavior of the Jarina seeds was studied using a spherical coordinate 
referential system that distinguishes the transverse (TP) and radial plane (RP); both microhardness 
and compressive strength in transversal plane are higher than those in the radial plane. Based on a 
stress concentration analysis, the elastic modulus ratio TP/ RP is 1.25, which validates this model, 
and further explains that the lower strength in RP is caused by stress concentration generation when 
stress is applied perpendicular to the cylindrical tubules.
The K-R curve suggests that the initial fracture toughness of vegetable ivory (0.5–1.3 MPa.m0.5) is 
close to that of elephant ivory. The primary tubules play an important role as crack arresters, and the 
crack path deflection is observed as the major extrinsic toughening mechanism.

This sustainable material shows very good potential as an alternative to elephant ivory as well as to 
several other plastics, especially since no attempt has been made to enhance its mechanical properties 
artificially. Controlled solidification and freeze casting are suggested to process the raw material into 
intermediate goods with improved properties. In addition, it would be worthwhile to develop, through 
selective breeding, larger seeds, and tailored compositions in order to provide greater flexibility in man-
ufacture. Processing of the hemicelluloses by introducing a mineral phase should increase the strength 
and match that of ivory, while retaining its favorable appearance. Future work should focus on depolym-
erizing, adding HAP crystals, and repolymerizing to obtain a novel bio-inspired material with superior 
mechanical properties.
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Methods
Specimen preparation. The Jarina seed is only slightly soluble in water, so a water-assisted diamond 
saw was used to obtain the test samples from sun-dried bulk endosperm nuts. The samples are further 
dried at room temperatures for at least 24 hours before mechanical testing. Natural drying initiates from 
the surface of the nut to the center, so that in most seeds a lacuna is formed at the center; thus, all sam-
ples were obtained relatively far from the central lacuna.

Microstructure characterization. X-ray micro-tomography was performed on a thin slice sam-
ple by Xradia MicroXCT-200 using 40 keV monochromatic X-rays. The voxel sizes are 5.0147 µ m and 
1.0197 µ m, and the tomography data were reconstructed into 3-D images by XMReconstructor (Amira). 
In addition, an Axio-fluorescence microscope was employed to analyze samples prepared for mechanical 
testing. Fracture surfaces of the samples from fracture toughness tests were examined by a Phillips XL30 
environmental scanning electron microscope (ESEM) and a FEI SFEG XL30 (UHR SEM) microscope 
to investigate the morphologies as well as the fracture mechanism. To avoid the unexpected growth 
of cracks under the vacuum chamber of SEM, critical point drying was performed using Tousimis 
AutoSamdri 815A. These samples were pre-coated with iridium by Emitech K575X Sputter Coater with 
a time interval of 7 seconds for SEM analysis.

Tensile testing. The tests were carried out on INSTRON 3342 universal testing system equipped with 
a 500 N load cell at a strain rate of 10−3/s. The strains were measured by a SATEC strain gauge. Samples 
for tensile testing were cut and machined into a dog-bone shape using a steel mold. The dimensions are: 
whole length 15 ~ 25 mm, gauge length ~8 mm, width ~2 mm and thickness ~1.3 mm. Eight samples were 
used for statistical analysis of Young’s modulus, strength, and work to fracture.

Micro and nanoindentation. Both the micro and the nanoindentation tests were conducted at room 
temperature. Sample sections were mounted in epoxy and polished. Vickers geometry 100 g and 200 g 
loads were applied with the LECOM400H1 Micro Hardness Test Machine and Hysitron nanoindentator. 
The microhardness values obtained represent the mean value of 10 indentations. Nanohardness test was 
carried out by a CSM Instruments Nanoindentation Tester (NHTX S/N: 0100005) with an indenter of 
Berkovich geometry (S/N BL09). The nano-indents avoid the tubules to eliminate their effects on the 
mechanical properties. The maximum load applied was 30 mN and the loading rate was 1 mN/s. The 
nanohardness value in this case is represented by the mean of 11 indentations.

Compression testing. The compression tests were performed in an INSTRON 3367 at a strain rate 
of 10−3/s. The samples were cut into cubic shapes with side lengths of about 3 mm. At least 8 samples 
were tested to obtain statistically relevant values of the anisotropic mean elastic modulus, maximum 
strength, and toughness.

Fracture toughness. Under linear-elastic conditions, a pre-existing crack will start to grow when the 
stress intensity at the crack tip exceeds the critical value, K (fracture toughness). We tested samples with 
two nominal crack growth directions: Orientation 1 in which loading is parallel to the transverse plane 
(TP), and Orientation 2 in which the loading is parallel to the radial plane (RP). The fracture tough-
ness K was obtained from three-point bending tests on pre-cracked Single edge notch bending (SENB) 
samples using an INSTRON 3367 at a strain rate of 10−3/s. Based on the fracture toughness standards 
(ASTM E399 and E561) and the available equipment, we designed a sequential loading method, which 
records a series of points with crack length and flexural loads to obtain the R-curve This method can be 
summarized in five steps:

1. Three-point-flexural test is first carried out on one sample. Once the maximum load is reached, 
stop the test and unload the test sample. The decrease of the load beyond the maximum indicates 
the onset of propagation of Mode I (tension) crack.

2. The size of the crack is immediately measured with Axio-fluorescence microscope.
3. The sample is tested again after measuring the crack length.
4. Repeat steps 1, 2 and 3 for this sample 3, 5 or 7 times.
5. Analysis and calculation of K are performed for each flexure test (loading cycle) for each sample. 

Crack propagation path and fracture surface are observed using ESEM.

K is obtained from the following equation:

= ( / )
( )

K
P

B W
f a W

3
Q

where PQ is the critical load that is obtained using a 5% secant line (a line from origin with a slope 
equal to 95% of the initial elastic loading slope), and f(a/W) is a polynomial fit of a/W recommended 
in ASTM E 399:
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SENB samples for two orientations were prepared to verify possible anisotropy. The samples were 
machined with depth (W) ~ 7.5 mm, thickness (B) ~ 3 mm, and length ~ 30 mm (loading span (S) ~ 
24 mm). An initial blunt notch was cut with a diamond blade and sharpened by a razor blade for each 
sample. The resulting notches had a length ~ 3 mm. The orientation of a sample was determined by 
observing the region near the notch tip using optical microscope.

Freeze casting. First, micrometer-size Jarina powder was obtained through 24-hour alumina ball 
milling. Second, the powder is mixed with 1 wt% of polyethylene glycol, polyvinyl alcohol, and ammo-
nium polymethacrylate anionic dispersant, Darvan 811 to form an aqueous slurry. Third, the slurry with 
15 vol% of Jarina powder is frozen at a constant rate of approximately 10 K/min using liquid nitrogen 
controlled by a PID controller. After freezing, the porous scaffolds are generated through lyophilization 
using a Labconco freeze dryer at 233 K and 350 Pa for 72 hours. More details about theory and procedure 
of freeze casting can be found in literature20,21.
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