

CHURN DETERMINATION AND PREDICTION IN DIGITAL GAME-BASED LEARNING

DR MUDIARASAN KUPPUSAMY AND MAI KIGUCHI

Submitted to:

LIFE IS TECH INC. JAPAN

ASIA PACIFIC UNIVERSITY OF TECHNOLOGY & INNOVATION (APU)

APRIL 2020

ABSTRACT

Digital game-based learning is a part of Educational Technology (EdTech). It is a digital

version of game-based learning, an approach to facilitating learning with gameplay. The

digital game-based learning market has been expanding, and the market revenue is expected

to grow by over $24 billion by 2024. One of the common issues in the EdTech market is the

higher churn rate. However, because the digital game-based learning market is still in the

early stage, few studies related to marketing perspectives. Besides, the education or online

gaming industries approach can be only partially applicable to digital game-based learning.

A popular approach for addressing a higher churn rate is churn prediction. By using a dataset

from a Japanese company providing a digital game-based learning service as a case study, an

approach for the combination of defining churn and churn prediction for digital game-based

learning is proposed. There are four objectives for this project. The first one is the

determination of churn, which is defined by applying an arbitrary time frame for each user.

The determination is done by comparing the recency and average and two standard deviations

of user idle time. The second objective is to clarify the churn rate of the Japanese service.

Using the newly created churn definition, the churn rate became evident at 56.77%. The

third objective is to develop the best churn prediction model by comparing LR, DT, and RF

models. Feature selection, dataset split ratio comparison, and hyperparameter tuning are

conducted to build the best performance models. The LR model has a distinctively highest

accuracy of 0.9185, AUC of 0.9225, and an F1-score of 0.9194. The higher F1 score means

the recall and precision are well balanced. The higher F1 score means the recall and precision

are well balanced. Thus, the results demonstrate the effectiveness of the proposed approach

of churn determination and prediction demonstrated in digital game-based learning.

SECTION 1: INTRODUCTION

Digital game-based learning is one of the narrowed educational technology categories

(EdTech). This chapter starts with some important marketing approaches and the digital

game-based learning market situation. In the next subsection of the problem statement,

EdTech and digital game-based learning are discussed. The subsection of the problem

statement follows the research aims, objectives, scope, and significance.

1.1 Background

The importance of the marketing approach in digital game-based learning has been

increasing due to market expansion. Some of the important key indicators of marketing

approach, retention and churn, and churn prediction will be introduced. After that, the market

situation of EdTech and digital game-based learning in the world and Japan is explained.

1.1.1 Retention and Churn, and Churn Prediction

Customer churn is a percentage of customers who stopped using a service or products in a

certain period (Yang et al., 2018). This is one of the critical metrics for a business to evaluate.

It is important to understand the rates and factors of customer churn to focus on the problems.

Customer retention is another common metric to be used. It is the percentage of customer

relationships, especially maintaining customers using the service or products over time.

Addressing the issues by analyzing customer churn leads to higher customer retention. For

instance, American Express increased 400% of customer retention by changing customer

service to an opportunity to build customer relationships and putting enormous efforts to

improve their issues (Clarke & Kinghorn, 2018). The reason for churn is often because of

consumer switching. According to CallMiner (2019), 85% of adults changed suppliers about

1.81 times on average in a year. These frequent switches cause a tremendous loss to the

companies. An estimated loss of companies in the USA is about $136.8 billion per year

because of avoidable consumer switching. The highest churning sector is communications

companies (including mobile phones, internet, and landline telephone), followed by banks

and property insurance companies. In general, when the business started, the first focus was

to acquire new customers because customer acquisition is an apparent and major part of

revenue growth (Miller, Vonwiller & Weed, 2016). Another less noticeable but significant

factor is customer success, measured by high retention rates. After investing the time and

money to acquire a customer, the business loses the acquisition investment and potential

revenue from the customer if the customer leaves immediately. Besides, the retention cost

for existing users is much lower than the cost of acquiring new users (Suh & Alhaery, 2016;

Fu et al., 2017). By reducing customer churn, in other words, the increased retention rate is a

key to the success of having a robust and faster-growing business. For example, Netflix saved

an estimated $1 billion per year by reducing customer churn with its recommendation system

(Gomez-Uribe & Hunt, 2015).

Churn prediction has been one of the important topics for customer retention and

management because it allows companies to create better marketing strategies to improve

user retention (Fu et al., 2017). For example, sending push notifications or e-mails is one of

the common ideas to prevent “will be churners” users based on the churn prediction.

Therefore, successful churn prediction provides a better retention rate and reduces the cost,

and it will benefit stakeholders such as game developers, advertisers, and platform operators.

1.1.2 Education Technology (EdTech) and Digital Game-Based Learning (DGBL)

Market in the world and Japan

The education market is huge, with expenditure from governments, parents, corporates, and

individuals (HolonIQ, 2019). The education sector is extremely under digitized, with less

than 3% of expenditure is allocated to technology. Nevertheless, it is estimated that the

amount spent on digital will grow to $342 billion by 2025 because of the growth of EdTech.

EdTech is an industry that integrates education and technology advances. The industry

contains wide-ranging services such as online courses, learning (teaching) management,

language, coding, Science, Technology, Engineering, and Mathematics (STEM), and Virtual

Reality (VR).

One of the narrowed down categories of EdTech is called digital game-based learning

(DGBL). The concept of the original non-tech game-based learning (GBL) has gameplay in

a learning context, and digital game-based learning (DGBL) is another specific terminology

for game-based learning with the use of technology (Perini et al., 2018).

The digital game-based learning market is exceedingly fast-growing. According to a report

from Metaari (S. Adkins, 2019), the global five-year compound annual growth rate (CAGR)

for the global digital game-based learning market is 33.2%, and the market is maturing.

Additionally, the market revenue is expected to reach over $24 billion by 2024. Technology

and science advances have a powerful influence on the digital game-based learning

industry. The market growth is highly correlated to the ongoing innovations, which are

advances in psychometrics, neuroscience, augmented reality (AR), virtual reality (VR), and

artificial intelligence (AI).

Another reason for market expansion on top of the technology innovation is the wide range

of customers. The report from Adkins (2019) is split into eight segments: consumers,

preschools, primary education, secondary education, tertiary and higher education, federal

government agencies, other local government, and corporations and businesses. Revenues

will increase more than double among all eight buying segments over the forecast period,

and four of the segments will have four times more revenues. Because of the estimation of

market expansion with having many segments and technology innovation, the digital game-

based learning market gains attention from investors (Adkins, 2019). Private investments in

digital game-based learning have been historical high since 2016. $1.7 billion was funded

into digital game-based learning companies in 2016 and 2017 combined, and $2.25 billion

was invested in 2018.

The market situation in Japan is similar. According to a report from the Nomura research

institute (Kumabe, 2018), the EdTech market in Japan has been expanding, the same as the

global trends. The market size in 2016 was $1.54 billion (¥169.1 billion), and it is expected

to reach about $2.8 billion (¥310.3 billion) by 2023. The market is still at an early stage, so

many companies provide EdTech products or services. Based on the market map from

Studyplus, Inc. (2018) as shown in Figure 1, there are about 115 services in the EdTech

market in 2018. From the learning contents perspective, there are four big categories in

Japan. Compulsory school subjects (Math, Japanese, science, social studies and English),

English conversation, programming, and AI and Robotics. Although there are no statistics

or market maps specifically for digital-game based learning, some of these services use a

digital game-based learning approach. For example, English apps such as Mikan, Manamee,

Eipontan, and others are digital game-based learning apps. Some programming services such

as Life is Tech, Progate, Codeprep use game-based learning or gamification approaches. On

top of the above Japanese services, major game-based learning players such as Code.org,

Scratch, Tynker, Code Combat, and Code monkey from the USA had started providing

Japanese language supports. Thus, the EdTech and digital game-based learning market in

Japan is expanding and highly competitive.

Figure 1. EdTech Market Map in Japan

7

1.2 Problem Statement

The churn rates in EdTech have been higher in common. The Washington Post reported

virtual education in 2019 (Strauss, 2019), noting the difference in graduation rate between

normal and virtual schools. The graduation rate of virtual schools is only 50.1%, whereas

the overall graduation rate in the United States is 84%. Massive open online courses

(MOOCs) have the worst data: only 5% of students finish their courses (Liubov, 2019).

Another statistic of subscription business revealed the average churn rate in nine categories.

Figure 2 illustrates the churn rates by industry, and education is the third-highest among the

nine categories, which is 10.29% (Recurly Inc., 2019). The churn rate is higher in EdTech in

general, and the rate is wide-ranging depending on the report.

The marketing approach is becoming more important to address the issue, especially for the

growing market like digital game-based learning. Churn prediction can help address the

issues and create strategies for churners (Fu et al., 2017). Nevertheless, there is not yet an

established model to address the higher churn by churn prediction in the digital game-based

learning industry due to a lack of research in Japan and the world. Hence research is required.

Research about online gaming and the education industry can be partly applicable to digital

game-based learning because digital game-based learning is a combination of online gaming

and education. The education industry has a lot of research on prediction based on student

demographics and academic information, but few with user behaviour data. On the other

hand, the online gaming industry has much research about churn prediction with user

behaviour, but there are big differences with digital game-based learning.

First, the evaluation time frame is different. The time frame in the online gaming industry is

often 7, 14, or 30 days (Fu et al., 2017). At the same time, education uses a longer time frame

like the entire course period, from weeks to one year (Bote-Lorenzo & Gómez- Sánchez, 2017;

Marquez-Vera, Morales & Soto, 2013). Social interaction is another difference in digital

game-based learning. Online gaming or application tends to have more social interaction

between users, affecting users' churn (Fu et al., 2017). Digital game-based learning products

or services are designed for gameplay, and there is less social interaction during the play

than in the online gaming industry. To summarize the points, EdTech, in general, has a

higher churn rate but has no established model and no studies on churn prediction in the

digital game-based learning industry.

8

AVERAGE CHURN RATE BY INDUSTRY

Current models from different industries (gaming and education) cannot be perfectly

applicable to digital game-based learning. A Japanese company that provides a digital game-

based learning service will be used as a case study in this project. This company has issues

with retention analysis because of the above reasons. For that, an approach for churn

prediction for digital game-based learning is proposed then utilized to address the business

issues for this Japanese company.

Figure 2. Average Churn Rate by Industry - Adopted from (Recurly Inc., 2019)

1.3 Aim and Objectives

This project aims to design and validate a churn determination and a prediction model for

the Japanese digital game-based learning environment. Four objectives are applicable:

1. To identify the determinants of churn in digital game-based learning

2. To clarify the churn rate for the Japanese digital game-based learning product

by analyzing datasets provided by a Japanese digital game-based learning company

3. To develop and find the best churn prediction model based on the defined churn

using Logistic Regression, Decision Tree, and Random Forest.

4. To validate the model in the context of a Japanese digital game-based learning

9

1.4 Scope

There are three scopes which are service, period, and method. Service is focused on digital

game-based learning service in Japan because a Japanese company provided its digital game-

based learning service user data. The company provides one of the biggest digital game-

based learning services in Japan. The period is set to about a year and a half. In general, the

learning period is about a couple of weeks to one year (Xing et al., 2016; Bote-Lorenzo &

Gómez-Sánchez, 2017), and more than one year of data is appropriate for the prediction.

The digital game-based learning service had launched in April 2018, and the longest possible

period is a year and a half. Besides, the method relies on descriptive and predictive analysis.

1.5 Significance of Research

There are no other studies on churn determination and prediction in digital game-based

learning, which will contribute to churn determination and prediction fields and digital game-

based learning sectors. In addition, this will help digital game-based learning or gamification

companies to conduct better marketing analyses on their services or products.

10

SECTION 2: LITERATURE REVIEW

The literature review of three types of categories is examined in this chapter. The first

category is digital game-based learning. Its concepts, past studies, research in Japan and

current trends are inspected. Next is the definition of churn or retention and the method and

evaluation period of retention analysis. These are examined by industries which are education

and online gaming. The final category is churn prediction. The digital game-based learning,

online gaming, and education researches related to churn prediction are reviewed.

2.1 Digital Game-Based Learning

2.1.1 Concept of Digital Game-Based Learning and Past Studies

The use of gameplay in education is not a new idea, but the use has been limited in nursery

school for a long time (Sanchez, 2019). With technological advancement, digital game-based

learning was already employed in the 1970s (Gee, 2003). However, the term “digital game-

based learning (DGBL)” was made popular in the early 2000s by Gee (Gee, 2003) and

Prensky (Prensky, 2001). Digital game-based learning is an approach to facilitating learning

with digital games. Although digital game-based learning is quite different from

gamification, these two are sometimes confused. The difference is that gamification uses

game-like elements such as level, points, and rewards, whereas game-based learning is

learning through gameplay (Khan, Ahmad, & Malik, 2017). Digital game-based learning is

gaining more attention from educators and researchers (Sanchez, 2019). The reason for

widespread attention to digital game-based learning is a combination of three aspects

(Information Resources Management Association, 2015). The three aspects are ongoing

research by digital game-based learning proponents, today’s digital natives who are

disengaged from traditional instruction, and increased popularity in the gaming industry.

There are two main approaches to the digital game-based learning category (Sanchez, 2019).

The first approach is based on the concept of Prensky, “Edutainment”. Edutainment is

entertainment designed to be educational (Prensky, 2001). With the idea of edutainment,

digital game-based learning can improve students' motivation or confidence (Sørensen,

Meyer & Egenfeldt-Nielsen, 2011). Another approach is based on constructivism and

cognitivism (Sanchez, 2019). With this, the educational value of digital game-based

11

learning is the acquired knowledge from decisions and behaviours made by the player to

adjust to challenging situations on top of motivating. In addition to the above two

approaches, many researchers have evaluated the relationships between learning

effectiveness, motivation, different courses, and different gaming design. These researches

disclose that digital game-based learning can enlarge learning interests, enhance motivation,

and increase performance (Information Resources Management Association, 2015).

2.1.2 Digital Game-Based Learning Research in Japan

Digital game-based learning studies in Japan are very limited, and the area of research is

sparsely distributed. Two studies focus on the perspectives on the use of digital games for

learning. One study focused on student perspectives on digital game use for English learning

in higher education (Bolliger et al., 2015). It surveyed college students, and results are

reported that most students have a positive view of the use. Another study analyzed the

educator’s perspective by questionnaire and e-mail interviews. The result indicates that most

educators consider digital game-based learning has a strong impact on students’ motivation,

but not learning outcomes (Franciosi, 2014).

Some studies focus on recent research findings in the world. For example, one paper reported

the current and future development of the educational use of games in informal learning

(Fujimoto & Yamada, 2013). The other study introduced an effective approach to digital

game-based learning for educators (Fujimoto, 2011). Nonetheless, these works are written

by Toru Fujimoto from the University of Tokyo. He also mentioned that research interests

in game-based learning in Japan are not as diverse as overseas (Fujimoto, Shigeta &

Fukuyama, 2016). Hence, the study of digital game-based learning in Japan is narrow and

limited.

2.1.3 Current Trend in Digital Game-Based Learning Research

There are a variety of combinations of subjects, ages, and regions for the research focus;

however, the current trend in digital game-based learning can be provided by the three latest

meta-analyses. The first meta-analysis focuses on heavy game use in education (Zhonggen,

2019). The second meta-analysis scopes for kindergarten to 12th grade (K-12) mathematics

education (Byun & Joung, 2018). The third focuses on digital game-based learning in

elementary science (Hussein et al., 2019).

12

Based on the above meta-analyses, the trend in game-based learning is revealed. The

publishing trend in digital game-based learning has increased for more than a decade.

Hussein et al. (2019) reported that all researches fall into two major categories: motivational

and skills acquisitions and knowledge construction and content understanding outcomes,

which are the same approaches mentioned by (Sanchez 2019). Byun and Joung (2018)

disclosed that the main goal of all research for K-12 mathematics education is to understand

how digital game-based learning affects mathematics students’ achievement. Zhonggen

(2019) examined the meta-analysis in a wide range of research in digital game-based learning.

It reported three influencing factors, positive and negative effects. Influences include gaming

easiness and surprises, relationships between learning attributes and gaming mechanics,

types of games, and learners' age. The effective positive findings include improving the

learning outcomes and teaching, obtaining cognitive abilities, and facilitating a holistic

understanding of concepts.

On the other hand, negative effects are also reported from a couple of research as negative

influences on the learning effectiveness from the aggravated mental workload. As clearly

seen from the above results, both the past study and the current trend of research mostly

focus on the influence of digital game-based learning. Thus, there is no research on

marketing-related topics in digital game-based learning yet. The need for the marketing

approach in digital game-based learning will likely increase soon, considering the current

and expected future market expansion.

2.2 Definition of Churn or Retention, Method and Period of Retention Analysis

As explained earlier in the problem statement section, the churn rate is higher in the EdTech

industry in general. However, the definition of churn or retention can be varied and vague

from two points of view. The first point is the period used for churn or retention calculation.

According to Jill Avery, a senior lecturer at Harvard Business School, churn rate is measured

by month, quarter, or year depending on the industry and products (Gallo, 2014). The

introductory period is annual for most companies. Some services that are charged monthly

use the churn rate by month or look at the churn rate monthly due to having a faster churn

rate. There is no doubt for the definition of churn rate, which is a percentage of customers

who stopped using a service (Yang et al., 2018). Nonetheless, what “churn” or “retention”

means differs depending on the services and product.

13

Therefore, past studies should be reviewed for these perspectives. Due to the lack of research

in digital game-based learning, gaming and education research are chosen to be examined to

see the definition of churn and how the churn period is chosen because digital game-based

learning is a combination of gaming and education.

2.2.1 Definition of Churn and Period of Retention Analysis in the Online Gaming

Industry

There is no universally accepted definition of retention or churn because retention analysis

is often used for internal use only (Fu et al., 2017; Suh & Alhaery, 2016). Of course, game

publishers use metrics to calculate but do not share sensitive, detailed information with

others. Though, there is a rough definition in the gaming industry. A study claimed that

online games should use a different definition of churn, unlike other industries like

telecommunication or financial services (Lee et al., 2018). Instead of using the withdrawal

of membership, the inactivity period should be used. More than 13 weeks without any access

to the research is defined as churned. Using inactivity is one of the gaming industry's

common approaches seen in other literature (Hadiji et al., 2014; Xie et al., 2015, Tamassia

et al., 2016).

A work proposed a definition of churn in a different perspective for online casino game

services (Suh & Alhaery, 2016). Instead of using a certain time frame that is easy to

understand and execute, using an arbitrary time frame for each user is suggested. Hence, it

uses three metrics to define churner: each player’s last play, average days between play, and

two standard deviations.

However, the common approach of retention analysis is a combination of the login

frequency and evaluation period in the gaming industry (Fu et al., 2017). The evaluation

period often starts from the first day of the release date or the day a new user joined, and it

is often 7, 14, or 30 days. There are four retention methods: full retention, classic retention,

accumulative retention, and return retention. The method of retention rate calculation is

summarized in Table 1. In the research from Fu et al. (2017), full retention in 10 days is used

to see the overall retention rate. Classifying the method based on Table 1, some other

research fits the methods. For example, a study of churn prediction of freemium mobile

games uses a return retention method and a one-month evaluation period (Banerjee et al.,

14

2019). Another work also used return retention within 14 days after the last activity

(Milošević, Živić & Andjelković, 2017). The four retention methods with user login

frequency or the inactive period are often used to define churn in the online gaming industry.

Many of the approaches fall into one of the four methods, and the common churn evaluation

period is 7, 14, or 30 days due to the higher churn in the first month. These methods are

applied to both PC and mobile gaming.

Table 1. Retention Rate Calculation Methods - Adopted from Fu et al. (2017)

Method Definition Feature

Full retention Count in if players return every single

day during the evaluation period.

Extremely restrictive and

not so widespread.

Classic retention Count in if players return on the

evaluation day.

The easiest way to

calculate, and it is the

most widely used.

Accumulative

retention

Count in if players return days during the

evaluation period, and higher than the

predefined threshold.

Flexible but with a high

computational cost.

Return retention Count in if players return at least once

during the evaluation period.

Least restrictive and often

produces relatively

promising results.

2.2.2 Definition of Churn, and Period of Retention Analysis in the Education

Industry

A more simple retention analysis method is used in the education field than in the gaming

industry. For offline courses, it is clear that students stopped coming to the class means

dropped out (churned). Nevertheless, there was no clear definition of dropout for online

courses, same as the gaming industry. At an earlier stage of the dropout research, a study

claimed that there is no clear definition of dropout, and it proposed the dropout as students

that withdraw from the e-learning courses with financial penalties. Students can drop a

course at the add/drop period with fully refunded (Levy, 2007). Recent research on

retention management for academic online courses seems to use the same definition of

students who stopped coming to the course, which is highly likely not to include the

15

add/drop period dropouts. However, the evaluation period is different depending on the

research because the period is the same as the course duration. For example, one academic

year was used for dropout analysis (Sorensen & Donovan, 2017). Another one used a fall

term of three years (2009, 2010, 2011) at a university for dropout prediction (Bingham &

Solverson, 2016).

This is the same with Massive open online courses (MOOCs). MOOCs are a subset of

educational technology, and it is a popular field of research these days. Retention analysis

on MOOCs uses the same period, course duration, and the same definition of dropout, which

means learners who are uncompleted the course. An analysis of dropout causes used one

academic year of three semesters (Spring, Fall, Summer) of MIT and Harvard courses and

the same dropout definition (Gupta & Sabitha, 2018). Another research that analyzed factors

affecting retention also used course duration, six weeks as a period and the same dropout

(Hone & El Said, 2016). Some courses with multiple weeks use multiple periods for

evaluating dropouts. For instance, a study used eight weeks and checked every week’s drop

out rate (Xing et al., 2016). Few studies defined and used a different definition of dropout.

For example, a study of analysis on dropout reasons for MOOCs uses the entire course

period, and dropout is determined as “not logged in the course for more than 14 days”

without finishing the course (Niu et al., 2018). Another work has tried a different approach

to the retention analysis of MOOCs (Bote-Lorenzo & Gómez-Sánchez, 2017). It used one

semester period data and compared the number of samples based on their defined

engagement indicators between chapters. This is a similar concept as dropout or churn.

Overall, the popular period is course duration. Still, there are variations from weeks to years,

which makes it difficult to determine a certain cutoff like the gaming industry. On the other

hand, the dropout definition is simpler because if the student did not complete the course,

the student is defined as a churner in the educational industry.

2.3 Churn Prediction

Churn prediction has been studied because it is an important topic in various domains (Fu

et al., 2017). With the definition of churn, it becomes possible to predict customer churn.

For churn prediction in general, common techniques used are machine learning with

algorithms such as logistic regression (LR), decision tree (DT), and random forest (RF)

(Yang et al., 2018). The details of the studies are summarized in Table 2 and Table 3.

16

Table 2 contains digital game-based learning and gaming literature. The table has

citations, the purpose of the study, variables used for modelling, models (algorithms), and

results. Table 3 is literature in education and has one extra column, a data source, because

literature in education often uses different data sources.

2.3.1 Retention Prediction in Digital Game-Based Learning

Although there is no research on churn or retention prediction in digital game-based learning,

one research predicts abandonment in online coding tutorials. The work is categorized in the

gaming sector, but the chosen product for the research teaches programming concepts. This

is considered a digital game-based learning category. The research focuses on predicting

learners who are likely to complete the next lesson instead of using the existing churn

prediction approach (Yan, Lee & Ko, 2019). This is because leaving open does not fit the

definition of the end of the course, and the tutorial is before the membership registration. It

does not fit in the definition of withdrawal of membership. Cumulative features such as idle

time, number of execution button clicks, time to spend on reading, and learner features such

as age, gender, registration status, and programming experience are used for the prediction.

The used machine learning classifiers are Logistic regression (LR), Random Forest (RF), and

Gradient Boosting Decision Tree (GBDT), and predicted 61% to 76% of learners who did

not complete the next level with an average AUC of 0.68. However, this approach is too

specialized for a tutorial before registration and is not applicable to game based-learning

products in general.

2.3.2 Churn and Retention Prediction in Online and Mobile Gaming

The churn rate for online gaming industries is relatively high because players do not play

the game until the content is exhausted (Fu et al., 2017). There are many approaches or

combinations of methods, selected data features, and time duration. However, the common

approach is using machine learning with user behaviour data. Some literature mentioned

well- established prediction models are Logistic Regression (LR), Decision Tree (DT),

Random Forest (RF), and Support vector machines (SVM) (Milošević, Živić & Andjelković,

2017; Liu et al., 2018). Earlier works often used the above common machine learning

models. For example, LR, DT, Naive Bayes (NB), and Neural networks predict churn for

freemium games (Hadiji et al., 2014). SVM, DT, and LR are used to predict with general

event frequency data for the versatility of any game (Xie et al., 2015). The Hidden Markov

17

model was used to predict a major game: a shooter and massively multiplayer online game

(Tamassia et al., 2016). For a shorter period of prediction, a one-day churn prediction

algorithm is introduced because more than 70% of new users only play a game for one day

and stop using it the next day (Milošević, Živić & Andjelković, 2017). The study used user

activity features, monetization features, and gameplay style features (e.g. auction usage,

spend on training), and five algorithms are used to predict and compare. The algorithms are

LR, DT, RF, Gaussian Naive Bayes, Gradient Boosting. For a different approach, a work

proposed using an arbitrary time frame to define churn used E-CHAID decision tree

algorithm on SPSS, and 60 features of seven categories are fed the algorithm (Suh &

Alhaery, 2016). The data categories are recency, frequency, monetary value, length of

relationship (e.g. Number of days between the first and last playdates), inter-play (e.g.

average number of days between plays), bonuses/reward, demographic. Another approach

with a deep neural network (DNN) is proposed with technology advancement. A study

proposed a DNN architecture of the inductive semi-supervised embedding model (Liu et al.,

2018). The semi-supervised model predicts and compares with state-of-the-art models such

as LR, DT, RF, and SVM. Three categories of data features are used for this study; play

history (e.g. game title, timestamp of play, wifi connection status, screen brightness), game

profile (e.g. game genre, developer, number of downloads, rating), and user information (e.g.

device model, region, OS version). Nonetheless, the above studies focus on improving

prediction by changing models or the definition of calculation.

On the other hand, some recent studies proposed another different approach to customer

segmentation. Customer segmentation is a growth-oriented tool that Wendell Smith created.

When mass-market strategy became more challenging to succeed due to not satisfying all

customers in the market, customer segmentation was proposed to address the issue (Fu et al.,

2017). It divides a market into distinct customer groups by similarities to create marketing

strategies more efficiently (Smith, 1956). This is considered one of the most effective tools for

marketing to uncover market opportunities, determine customer needs and wants, and

disclose potential markets (Yi, 2017). Therefore, customer segment retention analysis can

illuminate risks or opportunities. For example, research proposed a churn prediction method

by selecting the target and setting a target threshold (Lee et al., 2018). The proposed reason

is that the high churn rate and customer lifetime value is skewed, so focusing on churn

prediction for loyal customers is more cost-effective.

18

In addition, they are setting a threshold to maximize the expected profit rather than

maximizing the accuracy. Hence, the prediction performance results include an expected

profit for each model. This study uses data of in-game activities (e.g. the number of days user

play, playtime, achievement points, amount of money user gain). Similar to the above study,

some research suggests calculating the churn rate for user clusters. A study proposed a

framework with the original joint model, and one part of the framework is the prediction of

dropout probabilities. The model also used K-mean clustering to segment users and then

predicted dropout Probabilities (Banerjee et al., 2019). Another segmentation with a churn

prediction model is proposed by Fu et al. (2017). It first creates user segments by stickiness-

based FCM, then evaluates the retention trend for each cluster. Engagement, performance,

and social features are used. Thus, there are many perspectives and approaches to churn

prediction in gaming. The common approach is that all study use user behaviour data for

prediction, and the different game category (online or mobile) does not affect the approach

that much.

19

Table 2. Summary of Churn Prediction Literatures in DGBL and Gaming

Industries

Citation Category Purpose Variables Used for Prediction Mo

del

Result

(Yan, Lee &

Ko, 2019)

DGBL Prediction of

Abandonment

in Tutorial

Cumulative features (e.g. idle

time, execution button clicks),

Learner features (e.g. age, gender,

registration status)

Logistic Regression(LR),

Random Forest(RF), Gradient

Boosting Decision Tree

(DGBT)

average AUC: 0.68

(Hadiji et al.,

2014)

Online/Mobile

Game

Prediction of

Churn

Number of sessions, Number of days,

average playtime per session,

average playtime between sessions,

etc.

LR, Decision Tree (DT), Naive

Bayes (NB), Neural

Networks (NNs)

Model: DT

F1 Score: 0.916

(Xie et al.,

2015)

Online/Mobile

Game

Prediction of

Disengagement

Event frequency Support vector

machines (SVM), DT,

LR

AUC: 0.5 to 0.7

(Tamassia et

al., 2016)

Online Game Prediction of

Churn

Activities, performance, achievements Hidden Markov Model AUC: 0.77

(Milošević,

Živić &

Andjelković,

2017)

Mobile Games Prediction of

Early Churn

Activity features (e.g. playtime,

session count),

Monetization features (e.g. in-

game money spend),

Gameplay style features (e.g. auction

usage)

LR, DT, RF, NB,

Gradient Boosting

AUC

LR: 0.79

DT: 0.67

RF: 0.8

NB:0.78

Gradient Boosting: 0.83

20

(Suh &

Alhaery, 2016)

Online Game Prediction of

Churn

Recency, Frequency, Monetary value,

Length of Relationships,

Inter-play, Bonuses/Rewards,

Demographic

E-CHAID Decision Tree AUC: 0.88

(Liu et al.,

2018)

Mobile Game Prediction of

Churn

Play history (e.g. timestamp of play)

Game profiles (e.g. game genre,

developer, rating)

User information (e.g. device model, OS

version)

Proposed semi-supervised deep

neural network model, LR, RS,

DT, RF, SVM

Best Model: Proposed

semi- supervised deep

neural network model

AUC: 0.82

(Lee et al.,

2018)

Online Game Prediction of

Churn

In-game activities (e.g. number of days

user play, playtime)

RF, XG Boost (XGB),

Generalized Boosting

Regression (GBM)

For total customers

AUC RF:0.9358

XGB:0.9264

GBM:0.9067

(Banerjee et

al., 2019)

Mobile Game Prediction of

Churn

Activity indicators, Activity time,

Engagement indicators

Proposed joint model (CEZIJ

model)

FP / FN

Activity

Indicators:

5.86%/4.12%

Engagement indicators:

3.54%/1.47%

21

(Fu et al.,

2017)

Online Game Prediction of

Player Lifetime

Engagement features (e.g. login

frequency, average playtime),

Performance features (e.g. level, coins),

Social interaction features (e.g. number

of in-game friends)

Stickiness based FCM for

clustering

NB, Radial basis function (RBF)

network for prediction

Stickiness based FCM

with NB and RBF has

better accuracy

22

2.3.3 Churn and Retention Prediction in Education

In the education industry, student failure or dropout prediction has been a common topic.

Several studies of prediction with machine learning have been reported. Despite having the

same aim, the data used for prediction is different from the gaming industry. The common

data collection is time-consuming questionnaires (Costa et al., 2017). Earlier research has

proposed a prediction of academic failure of on-campus with Educational Data Mining

(EDA), and it used decision trees and induction rules (Marquez-Vera, Morales & Soto,

2013). It used two survey results and a dataset from the school. Therefore, there are many

variables such as demographic data, family information, and academic grades and scores.

This study concluded that prediction models performed with relevant accuracy.

Another study to predict student failure also used three survey data (Khobragade &

Mahadik, 2015). One is for personal and family-related information (e.g. parents'

occupation, income, number of family members), the second is for previous education

(scores of multiple subjects from past education), and the third is for academic factors such

as marks. The selected 11 variables are fed into NNge, OneR, SimpleCart, Random Tree,

and NB to compare the result. Among the five models, NB has the highest accuracy of

87.12%. As for the non-survey data use, a work used non-survey data to predict retention

rate from student enrollment data of a university (Bingham & Solverson, 2016). It focused

on using demographic data such as gender, race and ethnicity, high school rank instead of

academic and social engagement, and LR was chosen as an algorithm. The prediction model

performance is proven with an accuracy of 83.2%.

However, these predictions are for on-campus students and not for online courses. A work

proposed a prediction of online program dropout (Yukselturk, Ozekes & Türel, 2014). It

conducted five surveys for data collection and collected demographic variables such as age,

gender, previous online experience, self-efficacy, readiness for online learning, prior

knowledge about online program courses, and locus of control. It then used DT, NB, Neural

network (NN), K-Nearest Neighbor (KNN) algorithms for prediction. Both AUC and

accuracy were the highest with the KNN algorithm, 0.866 AUC and 87% accuracy. A study

approached an evaluation of the effectiveness of student failure prediction (Costa et al.,

2017). It used non-survey data from two datasets from distance learning and on-campus. On-

campus data contains age, gender, civil status, exam performance, number of correct

23

exercises, amount of exercise performed. Distance learning data contains age, gender, civil

status, the performance of exams, and assignments. This is different from past research

because the data contains user behaviours such as access frequency, participation in the

forum, and blog use.

Nevertheless, this isn't easy to apply digital game-based learning services and products

because it uses on-campus data, which is not available for commercial services and products.

The arrival of MOOCs gave a different approach to predicting churn or dropout by using

more user behaviour data like the gaming industry. The research focused on the early

prediction of dropout of MOOCs (Xing et al., 2016). C4.5 decision tree, general Bayesian

network (GBN), and the ensemble learning method called stacking generalization are

compared. The stacking of C4.5 and GBN outperformed the base algorithm alone. The

average precision of the stacking model is 91.7%, whereas GBN and C4.5 are 89.7% and

89.6%. The average AUC of the stacking model is 90.7%, and GBN and C4.5 are 89.0% and

86.3%.

Another study proposed a prediction model on the decrease of engagement with three

different engagement features for MOOCs (Bote-Lorenzo & Gómez-Sánchez, 2017).

Video engagement is the average percentage of videos watched, including partially. The

averaging percentage of exercises calculates exercise engagement. Assignment

engagement is computed by the averaging percentage of the assignments submitted. LR,

RF, SVM, and stochastic gradient descent (SGD) are used as prediction algorithms, and for

all engagement, SGD outperformed other algorithms. Even though there are many

approaches in education, the different data sources (survey, school database, and MOOCs

database) have different purposes and churn definitions. Survey data or on-campus studies

are unsuitable for digital game-based learning services or products. The combination of

MOOCs and the gaming industry seems the best approach for digital game based-learning.

24

Table 3. Summary of Churn Prediction Literatures in Education

Citation Category Purpose Data Source Variables Used for Prediction Model Resu

lt

(Costa et al.,

2017)

Online /

On-

Campus

Early Prediction

of Failure

Online course

and school

Database

On-campus data (e.g. age, gender, civil

status, exam performance)

Distance learning data (e.g. access

frequency, participation in the forum)

Support vector machines

(SVM), DT via J48, Neural

Network, Naive Bayes

(NB)

Best Model: DT

F-measure: 0.82

for the first

exam, and 0.79

for the second

exam

(Yukselturk,

Ozekes &

Türel, 2014)

Online Prediction of

Dropout

Survey Demographic variables, self-efficacy,

readiness, prior knowledge, and locus

of control

k-Nearest Neighbour

(KNN),

DT, NB, and Neural

Network (NN)

Best Model:

KNN AUC:

0.866

Accuracy: 87%

(Bingham &

Solverson,

2016)

On-

Campus

Prediction of

Retention Rate

School database Gender, residency status, ACT

composite score, high school class

rank, race/ethnicity,
student, etc.

Logistic Regression (LR) 83.2% Accuracy

(Marquez-Vera,

Morales &

Soto, 2013)

On-

Campus

Prediction of

Dropout and

Failure

Survey, School

Database

Scores of each subject, level of

motivation, GPA, smoking habits,

physical disability, etc.

JRip, NNge, OneR, Prism,

Ridor, ADTree, J48,

RandomTree, REPTree,

SimpleCart

Accuracy

Prism:

94.4

ADTree: 96.6

SimpleCart: 96.6

(Khobragade &

Mahadik, 2015)

On-

Campus

Prediction of

Failure

Survey Personal and family-related (e.g. age,

parents occupation),

previous education (e.g. scores of

multiple subjects of previous

education),
academic results (e.g. scores)

NNge, OneR, SimpleCart,

Random Tree, NB

Accurac

y NB:

87.12

25

(Xing et al.,

2016)

MOOCs Temporal

Prediction of

Dropout

MOOCs

Database
Clickstream (which pages students

visited and when or how many times

students clicked on certain sources

(e.g., syllabus, modules, quizzes, etc.))

quiz scores and discussion forum data

General Bayesian Network

(GBN), decision tree

(C4.5), Stacking

Model:

Stacking

AUC: 90.7%
Precision:

91.7%

(Bote-Lorenzo

& Gómez-

Sánchez, 2017)

MOOCs Prediction of

Decrease of

Engagement

MOOCs

Database
Video engagement

Exercise engagement

Assignment engagement

LR, stochastic gradient

descent (SGD), RF and

SVM

Best Model:

SGD video

AUC: 0.81
- 0.894

exercise

AUC: 0.837

- 0.906

assignment

AUC: 0.718 -

0.914

26

2.4 Summary of Literature Review

Previous research in digital game-based learning focuses on evaluating the relationships

between learning effectiveness, motivation, different courses, and gaming design. At the

same time, Japan's research is more limited and not as diverse as overseas. The only

digital game-based learning research for churn prediction specialized for tutorial churners

before registration. This means that there are preliminary researches in digital game-

based learning for the churn definition and the common approaches of churn prediction.

Because digital game-based learning combines education and the online gaming

industry, both gaming and education research are reviewed.

The online gaming industry often applies one of the four retention calculation methods

for retention analysis. The four methods are Full retention, classic retention,

accumulative retention, and return retention. With these methods, churn is also

determined depending on the login timing, and the common evaluation period is 7, 14,

or 30 days. On the other hand, the educational definition of churn is simpler than the

student has completed or not during the course duration. Nonetheless, the course

duration varies in education from weeks to years, and the variation makes it difficult to

have a clear evaluation period like the online gaming industry. The common approach

of churn prediction in the gaming industry uses user activity data for machine learning

models. In education, churn prediction for academic purposes uses various data such as

surveys, on-campus records, or family information. However, MOOCs have a similar

approach of using user activity for churn prediction. The common machine learning

models for churn prediction in online gaming and MOOCs are LR and tree-based

models. The combination of MOOCs and the gaming industry seems the best approach

for digital game based-learning. By considering the current and expected market

expansion of the digital game-based learning market, the demands of the marketing

approach will presumably be increased. Nonetheless, the marketing approach in digital

game-based learning is still in the early phase. Lack of churn definition and preliminary

churn prediction research in digital game-based learning makes it difficult for these

companies to have a marketing approach, especially in retention or churn analysis. In

addition, there is a gap between online gaming and education approaches, and the one

industry knowledge is not wholly applicable to digital game-based learning. Thus, the

gap needs to be filled for digital game-based learning.

27

SECTION 3: RESEARCH METHOD

Cross-Industry Standard Process for Data Mining (CRISP-DM) is applied for research

methodology. The CRISP-DM has six steps to structure and guide the DM process and

is used in real environments (Mariscal, Marbán & Fernández, 2010). Because this project

is addressing business issues, CRISP-DM is selected. The six steps are business

understanding, data understanding, data preparation, modelling, evaluation, and

deployment. Python programming language is used for data understanding, preparation,

modelling, and evaluation. The reason for choosing Python is that SAS, R, and Python

are the most common programming languages. Still, Python is the most used in the

technology industry and is the dominant language (69%) among data scientists (Burtch

Works, 2018).

Also, all the steps which require a PC are operated on the following system.

• OS: Mac OS Catalina (version 10.15.4)

• CPU: 2.3 GHz Intel Core i5 Quad core

• RAM: 16GB

• Graphics: Intel Iris Plus Graphics 655 1536 MB

Before starting data selection, setting up the PC with installing the required software and

packages should be operated.

3.1 Method of Data Understanding

3.1.1 Method of Data Collection and Exploration

User data is provided by the Japanese company, which is primary data. The company

gave access to Redash that is an open-source tool to query and visualize the database

contents. Two data types are available: structured data from the customer relationship

management (CRM) database and semi-structured data in a JSON format. By using SQL

through Redash, access to the available data is allowed. Hence, the data collection requires

SQL coding, and the download format is CSV. Data comprehension is crucial before

starting any process. Therefore, data about data should be inspected, such as type,

acceptable values, and range of values. The statistical and graphical approaches are

conducted to see the minimum, maximum, mean, median, standard deviation,

distribution and skewness for numeric data. For categorical data, the frequency

28

distribution and skewness are checked. In this part, Python is used for data

understanding to grasp the information of each variable. This exploration is done after

the data aggregation because the modelling is done on the aggregated values.

3.1.2 Method of Definition of Churn

The majority of the definition of churn is course incompletion in education. Many

academic online course durations are fixed weeks and have assignment submission or

exams at intervals (Xing et al., 2016; Costa et al., 2017). In this case, churners are users

who did not complete the work in the week or by the end of the course. However,

commercial, educational content is often composed of a sequence of chapters or levels,

and it is especially common in MOOCs (Bote-Lorenzo & Gómez-Sánchez, 2017). A

study in digital game-based learning conducted an engagement analysis for each level

(Yan, Lee & Ko, 2019). This also implies the generality of chapters (levels) in game-

based learning. The difficulty of using chapters is that there is no time limitation. This

means it is difficult to define if the player dropped out or not. The gaming industry churn

definition can be more applicable to address this issue, which uses user inactivity duration

after the last login. By using inactivity duration as a cutoff, churn can be defined. A

“churn window (C)” approach, which was claimed by Tamassia et al. (2016), can be used

to define the cutoff. If there is no active data for a player during at least C weeks, the

player is considered churned. The churn window is set based on the scattered plot of total

playtime (sec) vs average absence from the game (in days). In the study set C=4 because

the scattered plot density is much higher when the average absence is less or equal to 28

days (which means 4 weeks). Note that the defined churned users can return to the game

with this calculation. If the above approach does not work well with the provided dataset,

such as the evenly scattered data or no specific cutoff, an arbitrary time frame for each

user is calculated to define churners (Suh & Alhaery, 2016). It uses the number of inactive

days from the last play (recency), average days between play (avg between), and standard

deviation of days between play (std between). These numbers are used to calculate in the

following equation:

• Recency > avg between + 2 * std between

29

3.2 Method of Data Preparation

3.2.1 Method of Selection of Data

Based on past churn prediction studies that use user behaviour, there are some common

categories of variables. Because digital game-based learning has user behaviour data

similar to the gaming industry, most data selection is influenced by the gaming industry.

Some are referred from MOOCs in education. The majority of research in the gaming

industry uses the cumulative number of users such as the number of logins, plays, or

clicks for engagement (Hadiji et al., 2014; Milošević, Živić & Andjelković, 2017; Suh

& Alhaery, 2016; Liu et al., 2018; Lee et al., 2018; Banerjee et al., 2019; Fu et al., 2017).

The average values or duration are commonly used (Suh & Alhaery, 2016; Hadiji et al.,

2014). User activity log variables such as user id, timestamp, and contents should be

selected from the JSON user activity log to calculate these values. In addition,

performance features such as levels and scores are often used (Fu et al., 2017; Suh &

Alhaery, 2016; Xing et al., 2016; Bote-Lorenzo & Gómez-Sánchez, 2017). Levels and

number of coins are selected for the performance features. Demographic information is

commonly used in education and few in the gaming industry (Yukselturk, Ozekes &

Türel, 2014; Costa et al., 2017; Yan, Lee & Ko, 2019; Suh & Alhaery, 2016). So, gender,

date of birth, resident area are selected from CRM data. At last, merging data will be

conducted in the data integration section after data transformation.

3.2.2 Method of Data Cleaning

Since a company provides the dataset, the selected data is expected to be dirty. Data

cleaning is necessary to enhance data quality (Han, Kamber & Pei, 2012). Three types

of data should be detected and cleansed: missing, noisy, and inconsistent data. Noisy data

means having errors or outliers. Inconsistent data has conflicts in the same variables. For

example, having a different data format for the same variables such as “2019/12/25” and

“25/12/2019”. Finding possible outliers can be done by data visualization with boxplot

using DataFrame.boxplot in the Python pandas library. According to the pandas

document (2020), the outlies in the box plot are determined by using Interquartile Ranges

(IQR). If a datapoint is beyond IQR * 1.5, it is illustrated as an outlier. The outliers should

be judged to be removed or not based on the variables. For missing values, if the missing

percentage is greater than 50% for a variable, skipping using the variable is necessary to

avoid the inaccurate result. Else, if the variable is numerical, the common approaches are

filled with single or multiple variables, mean or median. For a normal distribution, the

30

mean can be used. For skewed distribution, the median should be used. If the categorical

variable, the missing value should be replaced by the most frequent value.

3.2.3 Method of Data Aggregation, Transformation, and Integration

For data transformation, Python is used. Discovered inconsistent values and most errors

require data transformation to correct them (Han, Kamber and Pei, 2012). In addition to

errors and inconsistent values transformation, data format and language are expected to

be handled. For example, most of the data are expected to be structured, but some of the

data may be in semi- structured like JSON, requiring transformation. All categorical data

in English and Japanese should be transformed into numerical data. Additionally, data

aggregation is expected to create new variables. The standard calculations and

transformations are as follows.

• Churn status (Target value)

o The player is churned or not for each chapter

• Demographic features

o Age calculated from the date of birth

o Gender from Japanese to English

o Prefecture in English retrieved from postal code

• Engagement features

o The accumulated days of login frequency

o The duration between the data of the new chapter release and when

the user started the new chapter

o The duration between the first and the last login date

o Accumulated number of repetition of the same contents

• Performance features

o Total accumulated time consumption of all contents

o Average time consumption of each login

o Accumulated time consumption for each chapter

o Total accumulated inactive time between logins

o Average inactive time between logins

o Aggregated number of coins gained

o Aggregated exp gained

31

Python library called pandas for data manipulation, and analysis was mainly used for the

aggregation. The datetime library to calculate age, the regular expression operation

library to compare the string, and NumPy library to calculate average wait days are used.

Additionally, to acquire the 47 Japanese prefectures in English, the API called postal-

code-api is used with the python Requests library, which allows making HTTPS requests.

The API returns prefecture, address1, address2, address3, and address4 based on the

postal code in English and Japanese (Miyauchi, Hosoya & Urabe, 2019). After the

aggregation, the variables with outliers then need to be handled. Unless the value is not

important, the variable should be standardized to reduce the impact of outliers. The

function called StandardScaler in the scikit-learn preprocessing library is used for

standardization. The same library is used for label encoding on the categorical variables,

gender and prefecture, to label encode to the numeric values. After data transformation,

the demographic dataset from CRM and user activity dataset will be merged into one

dataset using the user ID.

3.2.4 Method of Feature Selection

After the data aggregation, transformation, and integration, the variables shown in Table

4 are in the generated dataset. However, feature selection may improve model

performance. Many past studies related to churn prediction in gaming and education

industries have used manual feature selection, such as using their experience and original

calculations depending on the variables. Nevertheless, two past studies, which are the

prediction of dropout of MOOCs (Xing et al., 2016) and prediction of the player lifetime

(Fu et al., 2017) used Principal Component Analysis (PCA). PCA is one of the common

feature selection methods. It combines input variables and creates new variables with

greater meaning by retaining the most valuable parts of the input variables (Calabrese,

2019). The PCA function under the scikit-learn Python library is used to determine

principal components in the code. Hence, two datasets which are generated dataset (as

displayed in Table 4) and dataset created by PCA are prepared to see a difference.

32

Table 4. Data Frame Before Feature Selection

Variable Name Category of

Features

Details

Total_login Engagement Total number of logins of the user

entire_period(days) Engagement The engagement period.

Subtract first_login from last_login.

avr_ch_wait(days) Engagement The average period between open and start.

Total wait divided by the number of

chapters played

 replay Engagement Total number of replay per user

total_playtime(min) Performance Total playtime of the user in minutes

total_inactive(min) Performance Total inactive time between logins

average_playtime(min) Performance Average playtime per login. Calculated by

total_playtime divided by total_login

average_inactive(min) Performance The average inactive time between logins.

Calculated by total_inactive divided by

total_login

ch1_playtime(min) Performance Playtime of chapter 1

ch2_playtime(min) Performance Playtime of chapter 2

ch3_playtime(min) Performance Playtime of chapter 3

ch4_playtime(min) Performance Playtime of chapter 4

ch5_playtime(min) Performance Playtime of chapter 5

ch6_playtime(min) Performance Playtime of chapter 6

ch7_playtime(min) Performance Playtime of chapter 7

exp Performance Total exp points per user

coins Performance Total coins per user

gender Demographic Gender in binary 0 or 1 (0=Female and

1=Male)

age Demographic Age of the player

prefecture Demographic Prefecture from 0 to 47

churn_status Target Variable Churn status in binary. 0 or 1 (0=False and

1=True)

33

3.3 Method of Modeling

Python is used for the modelling part as well. The data needs to be split into training,

validation, and test datasets for the modelling. There are three types of common split ratio as

follows.

• 80% training, 10% validation, and 10% test

• 75% training, 15% validation, and 15% test

• 60% training, 20% validation, and 20% test

All three patterns of ratios are prepared and compared to see the performance difference

of the prediction. The best performance split ratio will be chosen for the final modelling.

However, splitting to a fixed ratio can sometimes cause biased results, especially if the

dataset size is smaller. Because the dataset can be smaller after the aggregation, 10-fold

cross-validation is used for performance comparison during the performance and

hyperparameter tuning. Scikit- learn library provides to calculate AUC with 10-fold

stratified cross-validation. If the target variable is binary, it automatically uses stratified

cross-validation. Since the target value of churn prediction is binary, using stratified

cross-validation is applied. To allow cross-validation, the dataset is split into two datasets

by maintaining the common split ratio. The test dataset is kept aside until the final

evaluation.

• 90% training (includes 80% training and 10% validation), and 10% test

• 85% training (includes 70% training and 15% validation), and 15% test

• 80% training (includes 60% training and 20% validation), and 20% test

As for algorithms, the three common algorithms for churn prediction are selected based

on the literature. The algorithms are Logistic Regression (Milošević, Živić &

Andjelković, 2017; Bote-Lorenzo & Gómez-Sánchez, 2017; Yan, Lee & Ko, 2019; Liu

et al., 2018; Hadiji et al., 2014; Xie et al., 2015), Random Forest (Milošević, Živić &

Andjelković, 2017; Bote-Lorenzo & Gómez-Sánchez, 2017; Yan, Lee & Ko, 2019; Liu

et al., 2018), and Decision Tree (Milošević, Živić & Andjelković, 2017; Xing et al.,

2016; Liu et al., 2018; Hadiji et al., 2014; Xie et al., 2015).

34

This literature uses user behaviour data in both the gaming and education industries.

Logistic Regression (LR) is a probabilistic algorithm for binary classification (Milošević,

Živić & Andjelković, 2017). LR has been used to predict historical data since the 1980s

(Pokorná & Sponer, 2016). The mathematically clear output is one of the reasons for the

popularity. The problem of LR is the difficulty with interpretation (Xie et al., 2015).

On the other hand, a Decision Tree (DT) is one of the most interpretable models by a

human. DT is a classification algorithm used for supervised learning problems and

generates a rule-based hierarchical tree (Milošević, Živić & Andjelković, 2017). The tree

displays the features connected to the terminal nodes, so the interpretation is simpler.

Random Forest (RF) is another tree-based classification algorithm that consists of many

decision trees. RF constructs multiple decision trees by randomly sampling, and each tree

conduct classification and the result. The RF then collects the outcomes from the trees

and select the best result as a final result by voting (Mao & Wang, 2012). These are

popular algorithms not only for churn prediction in gaming or education. Yang et al.

(2018) also mentioned that the DT, RF and LR are the common techniques used in churn

prediction. Therefore, the DT, RF, and LR are used for modelling.

35

3.4 Method of Evaluation

Using the 20% test data that was kept aside, the model is tested to prove validity. ROC

AUC will compare the performance of the models. ROC curve is a probability curve of

sensitivity, specificity, and performance measurement for classification (Jeni, Cohn &

De La Torre, 2013). AUC is the area under the curve, and a higher AUC close to 1 means

a larger area, representing a better classifier. Many studies used AUC as a metric to

compare the prediction models in both gaming and education industries (Milošević, Živić

& Andjelković, 2017; Yan, Lee and Ko, 2019; Xie et al., 2015; Tamassia et al., 2016;

Suh & Alhaery, 2016; Liu et al., 2018; Xing et al., 2016; Bote-Lorenzo & Gómez-

Sánchez, 2017). Using ROC AUC is assumed that the common performance metrics

accuracy is affected by the imbalanced data, whereas ROC AUC is not influenced by the

imbalanced distribution (Jeni, Cohn & De La Torre, 2013). Because the proportion of

the target value churn_status (0 and 1) is expected to be imbalanced due to having more

churners in general, performance metric ROC AUC fits the case.

As mentioned in the previous subsection, mean AUC was calculated based on the 10-

fold stratified cross-validation results. The 10-fold cross-validation is selected because it

is the most popular evaluation in the past studies related to churn prediction in gaming or

education (Tamassia et al., 2016; Yan, Lee & Ko, 2019; Hadiji et al., 2014; Xing et al.,

2016). In addition, to improve the performance of each model, hyperparameter tuning is

conducted. There are five hyperparameters selected for DT tuning: criterion, splitter,

max_depth, min_samples_split, and min_samples_leaf. These hyperparameters tend to

have a strong influence on DT. Similar to RF, three hyperparameters of the max_depth,

min_samples_leaf, and min_samples_split are the same as DT. Another hyperparameter

n_estimators is RF specific. For LR, there are two hyperparameters selected: penalty and C.

These hyperparameters are checked by AUC performance with 10-fold stratified cross-

validation to evaluate the difference.

36

SECTION 4 – IMPLEMENTATION

In this chapter, the whole implementation process is explained in detail.

4.1 Data Collection

Data collection was conducted through Redash web UI by using SQL. There are two

types of data: semi-structured user log data in a JSON format and structured data from

customer relationship management (CRM). Redash web UI allows accessing both

datatypes by SQL. However, combining multiple tables data by the join statement and

displaying the results in Redash web UI caused heavy CPU load. The process hangs the

Redash web UI due to the limitation of the server specification. In addition, the simple

select statements from the user activity and lesson log are too huge to even process with

the web UI. The following operation was suggested by consultation with an engineer in

the Japanese company.

• Smaller table size: download CSV file per table by using Redash

• Big table size: Given in the form of SQL-format dump files

Downloaded data are summarized in Table 5. The learning contents of the Japanese

service are split into seven chapters, and the next chapter is accessible after about seven

days to a couple of weeks after finishing the previous chapter. Therefore, each player

has a different chapter release, start and finish dates. Each user's chapter-related dates

are stored in two files (ID 1 and 2). ID 1 hold the timestamp of release, start, and finish

dates. ID 2 contains chapter 7 finish dates stored in a different table from ID 1. In

addition, each chapter contains many small lessons, and players acquire coins and

experience points called exp by finishing lessons. This obtaining history of exp and coins

are stored in ID 3. If a player repeats the same chapter, the history of repetition data, such

as chapter number and timestamp, are stored in ID 4. ID 5 file contains user demographic

information from CRM.

Table 5. Downloaded CSVs

ID File Name Number of

Observations

Description

1 player_chapter_waiting 6,973 Chapter related dates such as release,

start and finish dates

37

2 ch7_fin 514 Chapter 7 finish date

3 player_exp_coins 478,700 Historical exp and coins acquirement

data

4 player_replay 1,496 Historical user replay data

5 crm_players 3,982 CRM data. Contains demographic

information such as user name, email,

address, birth date, and gender

The other user behaviour related log data are gained in the form of the SQL-format dump

file. The given SQL file is compatible with AWS Relational Database Service (RDS)

and MySQL. Thus, MySQL server and client are installed on the local computer, as

shown in Figure 3. After the installation, a database is created, and the SQL file is loaded

using a source query (demonstrated in Figure 4). After the loading, the data is exported

to CSV files, as displayed in Figure 5. The exported two files are summarized in Table 6.

ID 6 contains all user activity logs except for learning lessons. For instance, logs are

recorded when the user moved to a different area, gained a new item, or got access to a

new area. The lesson log contains the user activity log related to learning, such as the

start and finish time of a lesson. Therefore, a total of seven CSV files are collected and

are aggregated in the next subsections.

Figure 3. MySQL Installation Command

38

Figure 4. Creating a Database and Loading the SQL file

(a part of the file name is masked due to the information of the development code

name)

Figure 5. Exportation of the Two Tables into CSV file

(table name is masked due to the information of the production environment)

39

Table 6. SQL-format dump data

ID File Name Number of

Observations

Description

6 account_log 8,587,940 User log of all activities except for learning

contents related.

7 lesson_log 562,581 User log in the learning contents such as start

and finish date-time of a lesson

4.2 Data Preparation

In this section, the implementation of data preparation before modelling is explained. It

starts with data aggregation, then EDA and data cleaning, and the last is feature selection.

The overview of the data preparation flow is illustrated in Figure 6. All the programming

code is written in Python, and some graphical plots are by Tableau. The entire Python

code is attached in Appendix A as Figure 44.

40

Figure 6. The Overview of Data Preparation Flow

4.2.1 Data Aggregation

There are many steps to complete the data aggregation part, including data transformation

and data integration. Hence, each step is explained in the following subsections.

4.2.1.1 User Activity and Lesson Log Integration

First, ID 6 and ID 7 logs are similar data: a user behaviour log with the action and

timestamp. Both of them only contain the same variables, which are account_id,

timestamp, and action of rough category. These two files should be combined to calculate

more accurate aggregated values such as playtime and the number of logins. In Python

code, a function named create_player_log handles this integration. First, both CSV files

are imported as a data frame by setting variable names, as shown in Table 7. ID 6 contains

the player’s activity log, but the action named “crm_update_player” is a player’s parent

41

log of changing the player’s CRM information. The parent account can manage the

player’s information and payments for miners who do not have credit cards. The parent

log is excluded because this is not the player’s behaviour. After that, two data frames are

merged by ID and sorted by in the order of ID then timestamp, so the merged data contains

all logs related to players. The merged data frame is exported as

“1_combined_player_log.csv”. After this process, all player activities and lesson logs are

combined into one data. This data will be used for aggregation to calculate playtime, idle

time, and the number of logins in the player data aggregation process.

Table 7. Variables in 1_combined_player_log.csv

Variables Data Type Details Example

id string Unique ID for each user a0b12345-c67d-8901-234e-

f5g6789hi01k

timestamp string The date and time of

action

2018-05-19 10:07:36

action string Categorical rough action lesson_finished

4.2.1.2 Exp, coins, and replay Data Aggregation

Secondly, exp, coins, and a number of replays need to be aggregated and calculated the

total value for each user. The create_exp_rep_aggregated function in python code

handles this part. ID 3 CSV file contains nine variables, and three variables are imported

to calculate aggregated exp and coins (shown in Table 8). The ID 4 CSV file has seven

variables, and two are imported (displayed in Table 9). Since the original data contains a

history of obtaining exp and coins, the total values of each user are calculated by using

pandas group_by. For replay, the nunique function calculates how many times the user

did replay. Figure 7 shows the part of aggregation code from create_exp_rep_aggregated

function. These aggregated values (exp, coins, and replay) are merged into one data

frame as displayed in Table 10 and stored in “2_aggregated_exp_rep_coins.csv”. The

aggregated data of exp, coins, and replay for each user is created from this process. This

data will be merged with other aggregated data at the data integration step.

42

Table 8. Imported Variables from ID 3 player_exp_coins.csv (Before

Aggregation)

 Variable

Name

Data Type Details Example

account_id string Unique ID for each user a0b12345-c67d-8901-234e-

f5g6789hi01k

exp int Gained exp points per

lesson

100

coins int Gained coins per lesson 200

Table 9. Imported Variables from ID 4 player_replay.csv (Before

Aggregation)

Variable Name Data Type Details Example

account_id string Unique ID for each user a0b12345-c67d-8901-234e-

f5g6789hi01k

START int The start time of replay 2018-11-14T04:25:25

Figure 7. Python Code: id, exp, and replay Aggregation

Table 10. Variables in 2_aggregated_exp_rep_coins.csv (After Aggregation)

Variable Name Data Type Details Example

id string Unique ID for each user a0b12345-c67d-8901-

234e-f5g6789hi01k

exp int Total exp points per user 35600

coins int Total coins per user 37305

replay float Total number of replay per user 2.0

aggregate exp and coins per id, then merge them

exp_df.set_index("id")

exp_agg_df = exp_df.groupby(["id"])["exp"].sum()

coins_agg_df = exp_df.groupby(["id"])["coins"].sum()

exp_df = pd.merge(exp_agg_df, coins_agg_df, on="id", how="left")

count how many times replay, then merge with exp_df

rep_df = rep_df.groupby("id")["replay"].nunique()

exp_agg_df = pd.merge(exp_df, rep_df, on="id", how="left")

43

4.2.1.3 CRM Data Transformation

Next, ID 5 CRM data needs to be transformed. The original data have 18 variables and seven

imported variables (Table 11). The transform_crm_log function deals with the transformation

process. The gender is transformed from Japanese to English, and age is calculated based on

the birthday in the calculate_age function, which uses a datetime library. The prefecture is

retrieved in postal_2_en_pref function by using an open-source API. The Python code is

presented in Figure 8. The request library allows HTTPS requests and the API named postal-

code-api returns the prefecture information. The returned values are in Japanese and English,

and JSON format. So, the English prefecture name is obtained from the returned JSON. After

transforming the three variables, test accounts should be removed from the CRM data. The

player_email, parent_email, and address are used to differentiate and remove test accounts

by comparing the string. The three variables are then dropped from the data frame, and the

remaining variables summarized in Table 12 are stored in “3_crm.csv”. The test accounts are

saved to “4_test_accounts.csv” for later test account removal processes (as shown in Table

13). This transformation process altered gender from Japanese to English, calculated age from

birthdate, and retrieved English prefecture from postal code. These transformed data will be

merged with other aggregated data at the later data integration process.

Table 11. Imported Variables from ID 5 crm_players.csv (Before Transformation)

Variable Name Data Type Details Example

account_id string Unique ID for each user a0b12345-c67d-8901-234e-

f5g6789hi01k

player_email string Player’s email address example@example.co.jp

parent_email string The email address of parent

account (If exist)

example@example.co.jp

gender string Gender in Japanese (Male or

Female)

男性

birthday string Birthday of the player

(yyyy/mm/dd)

1997/03/12

postal string Postal code of Japanese

address

100-0001

address string The player’s address 東京都千代田区千代田 1-1

mailto:example@example.co.jp
mailto:example@example.co.jp

44

Figure 8. Python Code: Postal Code Transformation Function with API

Table 12. Variables in 3_crm.csv (After Transformation)

Variable

Name

Data Type Details Example

account_id string Unique ID for each user a0b12345-c67d-8901-

234e-f5g6789hi01k

gender string Gender in English (Male or

Female)

Male

age int Age of the player 36

prefecture string Prefecture name in English Tokyo

Table 13. Variables in 4_test_accounts.csv

Variable Name Data Type Details Example

account_id string Unique ID of test accounts a0b12345-c67d-8901-

234e-f5g6789hi01k

4.2.1.4 Chapter Progress Data Aggregation

The next process is chapter progress data aggregation. ID 1 contains the variables shown

in Table 14, which has the timestamp of open, start, and finish times for each chapter.

The number of records per user depends on the progress, and it does not have the finish

date of chapter 7. Chapter 7 is the last chapter of the learning contents, and the finish date

is stored in ID 2 (shown in Table 15). Combining it with the other chapter status is

necessary to grasp how many users have finished playing the entire content.

get English prefecture name from postal code

def postal_2_en_pref(postal):

Using API to get English information

response = requests.get("https://madefor.github.io/postal-code-

api/api/v1/" + postal[:3] + "/" + postal[4:8] + ".json")

if response.ok:

results = response.json()["data"]

prefecture = results[0]["en"]["prefecture"]

else:

prefecture = None

return prefecture

45

This process is managed in the function create_chapter_aggregated. It reorganizes the

contents in ID 1 and ID2 CSV files for each user and calculates average wait days. Also,

timestamp variables sometimes contain a character T and Z in the string, so these

characters are replaced with space. The function outputs the created data frame in CSV

named “5_aggregated_chapter.csv” which is summarized in Table 16. After the chapter

aggregation process, the test accounts are removed from the files below in the

remove_test_data function.

• 1_combined_player_log.csv

• 2_aggregated_exp_rep_coins.csv

• 5_aggregated_chapter.csv

After this process, the aggregated chapter progress data without test accounts are

generated, and the data will be integrated with other aggregated data in the data

integration process.

Table 14. Imported Variables in ID 1 player_chapter_waiting CSV file

Variable Name Data Type Details Example

account_id string Unique ID for each user a0b12345-c67d-8901-

234e-f5g6789hi01k

chapter int Chapter number 3

cleared string The date the user finished the

previous chapter

2019-03-05T17:49:05

opened string The date the chapter is released

(available) to the user

2019-03-15T19:00:00Z

begined string The date the user started playing

the chapter

2019-03-15T23:52:37

days_wait float The period between cleared and

opened

10.0486

days_begin float The period between opened and

begined

0.2028

Table 15. Imported Variables in ID 2 ch7_fin CSV file

Variable Name Data Type Details Example

46

account_id string Unique ID for each user a0b12345-c67d-8901-

234e-f5g6789hi01k

chapter int Chapter number. All chapter is 8 in

this CSV file.

8

cleared string The date the user finished the

previous chapter (means chapter 7)

2019-03-05T17:49:05

Table 16. Variables in 5_aggregated_chapter.csv (After Aggregation)

Variable Name Data Type Details Example

id string Unique ID for each user a0b12345-c67d-8901-

234e-f5g6789hi01k

ch1_fin string Timestamp when the user

finished chapter 1

2019-02-02 07:57:00

ch2_open string Timestamp when chapter 2 is

available to the user

2019-02-08 15:44:05

ch2_start string Timestamp when the user started

chapter 2

2019-02-18 19:00:00

ch2_fin string Timestamp when the user

finished chapter 2

2019-02-28 19:00:00

ch3_open Same as ch2_open

ch3_start Same as ch2_start

ch3_fin Same as ch2_fin

ch4_open Same as ch2_open

ch4_start Same as ch2_start

ch4_fin Same as ch2_fin

ch5_open Same as ch2_open

ch5_start Same as ch2_start

ch5_fin Same as ch2_fin

ch6_open Same as ch2_open

ch6_start Same as ch2_start

ch6_fin Same as ch2_fin

47

ch7_open Same as ch2_open

ch7_start Same as ch2_start

ch7_fin Same as ch2_fin

ch2_wait(days) float The period between open and

start for the chapter

3.0283

ch3_wait(days) Same as above

ch4_wait(days) Same as above

ch5_wait(days) Same as above

ch6_wait(days) Same as above

ch7_wait(days) Same as above

avr_ch_wait(days) float The average period between

open and start.

Total wait divide by the number

of chapters played

0.2028

4.2.1.5 Player Data Aggregation

The last aggregation is conducted on the player log data, which was created in the subsection

4.2.1.1 (User Activity and Lesson Log Integration). The file contains three variables: id,

timestamp, and actions, sorted by id then timestamp. To calculate playtime and number of

logins, two timestamps are compared, and the difference is aggregated as playtime or idle

time. A function called create_player_aggregated operates this player data aggregation. The

churn status of each user is also defined in this function. Churn determination's trial and error

approach is explained in chapter 5.1 (Churn Determination) with details. The following rules

are applied to determine whether the user is still playing or has left.

• If the difference between two timestamps is equal to or less than 60 minutes, consider

the user still playing. The difference is treated as playtime.

• If the difference between the two timestamps is greater than 60 mins, consider the

player has left. The difference is treated as idle time and increment the number of login

by one.

In addition, the playtime of each chapter is calculated by using “5_aggregated_chapter.csv”

data. For instance, if the timestamp is after the chapter 7 start date, the playtime is considered

48

As chapter 7 playtime, the variables shown in Table 17 are generated by this process and

exported to “6_aggregated_play.csv” Consequently, the data after this process have

aggregated playtime, inactive time, number of logins and the entire period of the total

average, or by chapter. The data will be integrated with the aggregated data in the previous

subsections.

Table 17. Variables in 6_aggregated_play.csv (After Aggregation)

Variable Name Data Type Details Example

id string Unique ID for each user a0b12345-c67d-

8901-234e-

f5g6789hi01k

total_playtime(

min)

float Total playtime of the user in

minutes

6249.23

total_login int Total number of logins of the user 117

total_inactive(mi

n)

float Total inactive time between logins 659481.57

average_playtim

e(min)

float Average playtime per login.

Calculated by total_playtime

divided by total_login

53.41

average_inactive

(min)

float The average inactive time between

logins. Calculated by total_inactive

divided by total_login

5636.6

first_login string The first login timestamp. This also

means the start day and time of

chapter 1.

2018-10-04 21:54:32

last_login string The last login timestamp. 2020-01-10 05:25:20

entire_period(da

ys)

int The engagement period.

Subtract first_login from last_login.

462

churn_status string Boolean churn status. True or False True

ch1_playtime(mi

n)

float Playtime of each chapter 522.03

ch2_playtime(mi

n)

float Playtime of each chapter 1341.38

49

ch3_playtime(mi

n)

float Playtime of each chapter 716.85

ch4_playtime(mi

n)

float Playtime of each chapter 1026.03

ch5_playtime(mi

n)

float Playtime of each chapter 655.58

ch6_playtime(mi

n)

float Playtime of each chapter 634.33

ch7_playtime(mi

n)

float Playtime of each chapter 1353.02

4.2.1.7 Data Integration

After the player data aggregation, all aggregated data and CRM data are merged in the

merge_dfs function. As presented in Table 18, since the number of observations (unique

IDs) is slightly different for each data, the join type needs to be considered. A part of

merge_dfs function is shown in Figure 9. First, the exp_agg_df is left joined to agg_df

because it is adequate to have users having no exp, coins, and replay data. The ch_agg_df

has one more observation than agg_df, which means the player only has chapter progress

status but no playtime-related data. This is not valuable, so the ch_agg_df is left joined to

agg_df. Lastly, the crm_df is left joined to the merged data frame due to having the latest

user information than other data. This merged data frame is exported to

“7_aggregated.csv”. Consequently, this integrated data contains 3,701 players, all types

of data, including playtime, obtained score, chapter progress, and demographic related

information. The data will be succeeded to the next EDA and modelling process before

modelling.

Table 18. Number of Unique ID per File

File Name Variable

Name in

the Code

Number of

observations

Details

50

2_aggregated_ex

p_rep_coins.csv

exp_agg_df 3,623 Less number of users because players who

just started playing do not have exp, rep,

and coin data until a certain point.

3_crm.csv crm_df 3,837 The CRM data contains more users

because the data contains all users until

March 28th, 2020.

5_aggregated_c

hapter.csv

agg_df 3,702 Number of all users until January 27th,

2020

6_aggregated_pl

ay.csv

ch_agg_df 3,701 Number of all users until January 27th,

2020

Figure 9. Python Code - Merge Data Frames

4.2.2 EDA and Data Cleaning

The dataset is ready for EDA and data cleaning. First, EDA in the show_plots function

was conducted. All variables for modelling are printed statistical information with the

describe function of the pandas library. The result table is split into two tables as

presented in Tables 33-1 and 33-2 in Appendix C. It outputs the number of observations,

mean, standard deviation, the percentile of 25%, 50%, and 75%, minimum and maximum

values for numeric variables. Categorical variables show the number of observations, the

unique number of observations, the most common values (top), and the frequency of the

most common values. The describe function does not include the number of missing

values, so the isnull function detects variables with missing values. In addition to the

describe function, a graphical approach is also operated. Box plot for numeric variables

and bar chart for the categorical variables are used. The meaning of the box plot is the

whiskers as the most extreme non- outlier data, boxes as the quartiles, median as green

horizontal lines, means as green triangular points, and fliers as outliers (McKinney &

Pandas Development Team, 2020). The results are as shown in Figures 45 until 58 in

merge agg and ch_agg

agg_df = pd.merge(agg_df, exp_agg_df, on=”id”, how=”left”)

agg_df = pd.merge(agg_df, ch_agg_df, on=”id”, how=”left”)

agg_df = pd.merge(agg_df, crm_df, on=”id”, how=”left”)

51

Appendix B. Based on the outputs above, data cleaning has been done in the

preprocess_data function. Imputation of missing values is the first step. Six variables

have missing values; exp, coins, replay, gender, age, and prefecture. According to the

Japanese company, the observations with missing values are checked manually because

there should not be data with missing values. The observations with missing values have

the same patterns with no demographic information such as age, gender, prefecture, and

no play log after chapter 1. However, some accounts seem to play replay, which should

be available after chapter 3—having a replay log but no log after chapter 1 should not

exist. It turned out there are 144 trial accounts created in terms of marketing for schools

and campaigns. These trial accounts lack more than 70% of data and do not have reliable

values because it uses debug features for test accounts to skip chapters or lessons to see

different components. Therefore, these 144 accounts that do not have a gender variable

are removed from the dataset. exp, coins, and replay values exist only for players who

have played until a certain area in chapter 1, so newer players do not have this data.

Hence, these missing values are filled as 0. For the prefecture, “Tokyo” is the most

frequent prefecture based on the statistical results. NaN is replaced with “Tokyo”. The

prefecture is categorical values, so label-encoded by using labelEncoder. The value is

set in alphabetical order. After imputation of missing values, gender and churn_status

are label-encoded to the binary values. Female is 0, Male is 1 for gender, and False is 0,

and True is 1 for churn_status.

Next, highly impossible values in age are handled. Highly impossible age is found based

on the describe output and box plot. The minimum age is 0 and the maximum is 2010.

Research about reading ability age was reviewed to determine the lowest possible age

for the younger age. According to Japanese research, 60% of four-year-old children can

read 80% of Hiragana even though the learning level varies depending on the family or

day-care environment (Utashiro, Hashimoto & Hayashi, 2015). 80% of the reading

ability of Hiragana is not perfect for playing the service because there are other two more

types of characters in Japanese (Katakana and Kanji).

Nevertheless, it is possible to start playing with parents' help. This implies that the ages

below 4 should have less reading ability, making it more difficult to play the service.

Thus, the ages below 4 are replaced by the median of 26. On the other hand, the ages

52

above 100 are 119, 825, 972, 2002, 2004, 2009, 2010. The oldest age in January 2020 in

Japan was 117 years old (Beachum, 2020), so the ages above 100 are also replaced with

the median 26. Lastly, outliers need to be handled. Based on both statistical and graphical

outputs, many variables have outliers. These outliers should not be deleted or replaced

because these are the real values, such as playtime. Nonetheless, outliers have a strong

impact on the modeling, so standardisation should reduce the impact. The standardization

of the variables with outliers is conducted for these variables. The original dirty data

frame is overwritten by the cleaned data frame and saved to

“8_aggregated_after_preprocess.csv”. After this process, the data is clean and is ready

to be used for modelling.

4.2.3 Feature Selection

The dataset contains 3,557 observations of 21 variables classified into three categories

of engagement, performance, demographic features, and a target variable. The

engagement features are total_login, entire_period, avr_ch_wait, and replay. The

performance features are playtime related variables such as total_playtime, inactive

variables such as total_inactive, and experimental variables such as exp. This category

includes playtime for each chapter. The third category is demographic, age, gender, and

prefecture. The target variable is churn_status. These 21 variables are summarized in

Table 4 (in section 3.2.4 Method of Feature Selection). Except for the churn_status, 20

variables are processed for feature selection. The PCA function under the scikit-learn

library is used. The number of components (n_components) is set to “mle” to find the

best number of components by Minka’s MLE (Minka, 2000). The generated principal

components are 19, and these components are named from “PC-1” to “PC- 19”. The

output of the explained variables is summarized and split into two tables of Table 34-1

and 34-2 in Appendix C. These principal components are stored as x_features_pc data

frames. As a result, there are three datasets which are x_features, x_features_pc, and

y_target as shown in Table 19. The x_features is the cleaned aggregated data without

PCA, and x_features_pc is the principal component of x_features. Both datasets are used

for modelling to compare the influence in performance in the next subsection.

53

Table 19. Data Frame Used for Modeling

Data Frame

Name

Details Variable Name

x_features 20 variables from the

original dataset except

for ID and churn_status.

Independent variables.

Total_login, total_playtime(min),

total_inactive(min), average_playtime(min),

average_inactive(min), entire_period(days),

ch1_playtime(min), ch2_playtime(min),

ch3_playtime(min), ch4_playtime(min),

 ch5_playtime(min), ch6_playtime(min),

ch7_playtime(min), avr_ch_wait(days),

exp, coins, replay, gender, age, prefecture

x_features_pc 19 principal components.

Independent variables.

PC-1, PC-2, PC-3, PC-4, PC-5, PC-6, PC-7,

PC-8, PC-9, PC-10, PC-11, PC-12, PC-13,

PC-14, PC-15, PC-16, PC-17, PC-18, PC-19

y_target One variable. Churn

status of binary values

(1=True and 0=False).

Target variable.

churn_status

4.3 Modelling

After the feature selection, data frames are split into training, test, and validation datasets.

The related past studies do not discuss the data splitting percentage. Hence, three patterns

of data splitting are tried on both the original dataset (x_features) and PCA selected

dataset (x_features_pc). The first pattern is 80% training, 10% validation, and 10% test.

The second is 70% training, 15% validation, and 15% test. The last is 60% training, 20%

validation, and 20% test. The validation data should be merged to training to use

stratified 10-fold cross-validation for performance comparison of dataset and

hyperparameter tuning. Thus, the splitting ratio of the training and test is modified. For

example, 80% training, 10% test, and 10% validation is 90% training and 10% test for

the optimization purpose. This splitting was handled in split_data to specify the above

patterns. The split data are 6 patterns, and the example variable names and its details are

summarized in Table 20.

54

To find out the best dataset and splitting percentage for modelling, creating a classifier

and checking the performance with the function cross_val_score from the scikit-learn

library was conducted in the function DT_cross_val, LR_cross_val, and RF_cross_val.

The three machine learning models are chosen based on the popularity in past studies.

The training datasets, including the validation dataset part, are used for cross_val_score

to calculate AUC with 10-fold stratified cross-validation. The only hyperparameter

specified for data selection is random_state which means the seed used by the random

number generator is fixed. DT example is shown in Figure 10. This setting brings the

same result every time running the same code. The accuracy is one of the common

metrics to compare the performance, but the proportion of churn_status (0 and 1) are

imbalanced because there are more churners. Therefore, another performance metric

ROC AUC is selected because it is not affected by the imbalanced distribution (Jeni,

Cohn & De La Torre, 2013).

The 6 data patterns of the dataset and split ratio are sent to each function, and the

accuracy and AUC are compared as summarized in Table 21. The bold column shows

the highest performance of the same dataset. Four out of six highest AUC are from the

same pattern using principal components and the data split ratio of 80% training, 10%

test, and 10% validation. Thus, this data pattern (ID 11 and 12 in Table 20) is used for

the modelling and hyperparameter optimization for all three machine learning

algorithms. The 10% test dataset is put aside until the last modelling evaluation.

Table 20. Split Variables and its Details

ID Variable Name Examples Category Dataset Used

for Splitting

Splitting

Percentage

1 x_train80 for general,

x_train90 for cross-validation

Independent

Variables

Original 80%

Training,

2 y_train10 Target Variable Original 10% Test,

10%

Validation

3 x_train70 for general,

x_train85 for cross-validation

Independent

Variables

Original 70%

Training,

55

4 y_train15 Target Variable Original 15% Test,

15%

Validation

5 x_train60 for general,

x_train80 for cross-validation

Independent

Variables

Original 60%

Training,

6 y_train20 Target Variable Original 20% Test,

20%

Validation

7 x_train80_pc for general,

x_train90_pc for cross-

validation

Independent

Variables

Principal

Components

80%

Training,

10% Test,

8 y_train10_pc Target Variable Principal

Components

10%

Validation

9 x_train70_pc for general,

x_train85_pc for cross-

validation

Independent

Variables

Principal

Components

70%

Training,

15% Test,

15%

Validation

10 y_train15_pc Target Variable Principal

Components

11 x_train60_pc for general,

x_train80_pc for cross-

validation

Independent

Variables

Principal

Components

60%

Training,

20% Test,

20%

Validation

12 y_train20_pc Target Variable Principal

Components

Figure 10. Default Setting in the DT_cross_val Function

def DT_cross_val(x_train, y_train, tree_dpt, criteria, split):

if tree_dpt == “”: # no hyperparameter setting. Use default.

Dt = DecisionTreeClassifier(random_state=1).fit(x_train, y_train)

train the decision tree classifier

accuracy = cross_val_score(dt, x_train, y_train, cv=10,

scoring=’accuracy’)

roc_auc = cross_val_score(dt, x_train, y_train, cv=10,

scoring=’roc_auc’)

print(“Accuracy of DT: “, accuracy.mean())

print(“ROC AUC of DT: “, roc_auc.mean())

56

Table 21. Performance Results for 12 Data Pattern

ML

Algorithm

Dataset Performance

Metric

60-20-20% 70-15-15% 80-10-10%

Decision

Tree

Original Accuracy 0.7164 0.7287 0.7129

Decision

Tree

Original AUC 0.7106 0.7213 0.7081

Decision

Tree

Principal

Components

Accuracy 0.8370 0.8439 0.8529

Decision

Tree

Principal

Components

AUC 0.8345 0.8410 0.8492

Logistic

Regression

Original Accuracy 0.4455 0.6059 0.6114

Logistic

Regression

Original AUC 0.7150 0.7207 0.7222

Logistic

Regression

Principal

Components

Accuracy 0.7309 0.7207 0.7263

Logistic

Regression

Principal

Components

AUC 0.7832 0.7708 0.7808

Random

Forest

Original Accuracy 0.7730 0.7714 0.8869

Random

Forest

Original AUC 0.8617 0.8571 0.9605

Random

Forest

Principal

Components

Accuracy 0.8848 0.8809 0.8869

Random

Forest

Principal

Components

AUC 0.9582 0.9584 0.9605

4.4 Summary of Implementation

In chapter 4, the implementation flow and detail in the three sections. The data

understanding and collection section are collected from the database and stored into 7

CSV files. The next is the data preparation section. These collected data are then

57

preprocessed including data transformation, aggregation and are merged into one file after

the process. There are 20 independent variables for each player. The independent variables

are classified into three demographic, engagement, and performance features. Feature

selection is conducted on the dataset using PCA, and two types of datasets (the original

and PCA) are prepared for the modelling. The last step is modelling. Each of the created

datasets is split into three datasets: training, validation, and test by using three types of

ratios. The three types of ratio are 80% - 10% - 10%, 70% - 15% - 15%, and 60% - 20%

- 20%. These dataset and split ratio patterns are sent to the three machine learning

algorithms of DT, RF, and LR. For the performance metrics, accuracy and AUC are used

and compared. The selected combination is using principal components and 80% - 10%

- 10% split ratio.

58

SECTION 5: RESULTS AND ANALYSES

In this chapter, results and analyses are conducted. There are four subsections. The first

subsection is churn determination to define a user is a churner or not and identify the

churn rate for the case study product to see the validity. The second one is descriptive

and retention analysis based on the defined churn. These are specific for the case study

services, and it helps the company create new marketing strategies and improve

curriculums to increase the retention rate. The third one is hyperparameter optimization

because the model created in the previous chapter uses the default setting, and it is

possible to have better performance by tuning. The last subsection is about churn

prediction and its performance results. There are three machine learning models: DT, RF,

and LR. The results of these models with the best hyperparameters are compared.

5.1 Churn Determination

Churn determination is done by checking a scatter plot of total playtime and average

inactive time. If the first plan does not indicate the distinctive churn spot, then the second

plan calculates an arbitrary time frame for each user to define churn. The

“6_aggregated_play.csv” is imported to Tableau to visualize. Two variables

total_playtime(min) and average_inactive(min) are used. To convert the unit

of average_inactive(min) from minutes to days, a calculated field named “[Approach1]

Average Inactive (Days)” was created (Figure 11). The total_playtime(min) is set to Rows

(axis x), and the created field is set to columns (axis y). Both variables are set to

“Dimension” from “Attribute” as indicated in Figure 12. The generated scatter plot is

illustrated in Figure 13. The plot is less dense around 100 days, or the more obvious spot is

between 150 and 180. However, this is not a convincing cutoff value due to the volume of

churners. Even if the cutoff is set at 100 days, the number of churned players is 28,

covering only 0.75% of the population. And there is no strong reason to set a cutoff on

other days.

Next, another calculation of the average inactive has been applied to see the difference.

The average inactive in a day “[Approach2] Average Inactive(Hours)” is calculated as

shown in Figure 14. Figure 15 displays the scatter plot based on the average. The second

plot is harder to find less dense areas after the higher dense hours.

59

The potential reason for the issue is that digital game-based learning has a long inactive

period. The spread-out plot makes it less recognizable than the online gaming industry

data. These scatter plot approaches can be concluded that may not be suitable for digital

game-based learning.

Figure 11. Screenshot of Calculated Field [Approach1] Average Inactive (Days)

Figure 12. Setting Change to Dimension

60

Figure 13. Scatter plot 1 with Average Inactive (Days) and Total Playtime

Figure 14. Screenshot of Calculated Field [Approach2] Average Inactive (Hours)

61

Figure 15. Scatter plot 2 with Average Inactive in a Day (Hours) and Total Playtime

Therefore, the second approach of calculation of arbitrary time frame is conducted. The

calculation part is shown in Figure 16, which is a part of the create_player_aggregated

function. To compute the time frame, three values are required. Recency (recency),

average inactive time between logins (avr_inactive), and standard deviation of inactive

(std_inactive). Because average inactive had already been calculated in the function

create_player_aggregated, computation of recency and standard deviation should be

added. The recency is the time between the last login and the current day. Because the

date of the dataset given is January 27th 2020, the current day is set as January 28th 2020.

With the current date, the recency is calculated. For the standard deviation for each user, a

list named inactive_list and Python library called statistics are used. The inactive_list

contains inactive time in seconds between logins for the user for the calculation. The

personal_cutoff has been determined from the addition of avr_inactive and double of

std_inactive. If the recency is bigger than the personal_cutoff, the user is defined as

churned, and churn_status is set to True.

62

The defined churners are plotted to see the percentage of churners (as plotted in Figure

17). 56.77% of the population are churners based on the value True in churn_status. The

calculation and the proportion is acceptable compared to the first approach. Hence, it is

concluded that the retention rate is 43.23% for the product.

if log_idx < (len_log - 1): # if it’s not the last object in a

list last = pl_log_df.at[log_idx, "timestamp"]

avr_play = round((t_play_sec / 60 / t_login), 2)

current = datetime.strptime("2020-01-28 0:00:00", fmt) # the next

date of the data collected

recency = (current - datetime.strptime(last, fmt)).total_seconds()

if (pl_log_df.at[log_idx, "id"] != pl_log_df.at[log_idx + 1,

"id"]): log_idx = log_idx + 1

recency = round((recency / 60), 2)

try: # calcurate standard deviation of inactive time

std_inactive = round(statistics.stdev(inactive_list) /

60, 2)

except

statistics.StatisticsErr

or: std_inactive = 0

if ch_idx != []: # the id is in ch_agg_df

ch7 is not finished and total login is not one time,

add the inactive period till now

if ch_agg_df.at[ch_idx[0], "ch7_fin"] == "0" and t_login

!= 1: t_inactive = (t_inactive + recency)

avr_inactive = round((t_inactive / 60 / t_login),

2) # add the time between now and the

last play as inactive

personal_cutoff = avr_inactive + (2 * std_inactive)

if recency > personal_cutoff: # determine if the player

is churned or not

churn = True

else: # finished playing, so not churned

avr_inactive = round((t_inactive / 60 /

t_login),

2) # add the time between now and the

last play as inactive

churn = False

Figure 16. Python Code: Calculation of Churn Determination

63

Figure 17. The Proportion of Churners (True) and Non-Churners (False)

64

5.2 Retention Analysis

In this subsection, descriptive analysis for overview and retention analysis by chapter

was conducted with the case study company data. The descriptive analysis is to grasp the

overview of user activities by using the company's data. The dataset used for the analysis

is “1_combined_player_log.csv” which contains the combined user activity log and

lesson log. For the retention analysis, “8_aggregated_after_preprocess_ret_analysis.csv”

was used which was generated to have cleaned aggregated data without label encoding

in the function named preprocess_retention. Tableau was used for generating new

variables and plotting the graphs for both analyses.

5.2.1 Descriptive Analysis of the User Logs

To comprehend the current situation of the case study service, monthly active users

(MAU) and popular hours and days of the week are plotted. The MAU is displayed in

Figure 18. The MAU had generally increased during the first year. Then it settled around

1,000. Since the number of users has increased since the service launch, the MAU

settlement should be concerned. Next, the popular hour and days of the week are

illustrated in Figure 19. The expected popular hour was after office hours until midnight

as many web services, and the day of the week is the weekend.

Nevertheless, between 1 PM to 9 PM has bigger access than other hours, and access

drops after 8 PM. In addition, there is no difference between the weekdays and weekends

unexpectedly. The assumption for the popular hour and day of the week is that more

students than adult workers are. They can access the service earlier after school, and

bedtime is also earlier, so the access starts decreasing after 8 PM. Considering that the

mean age is 29.6 and the median is 26 (as shown in Table 19-2 in Appendix C), a certain

part of the registered age could be the player’s parent’s age.

65

Figure 18. Monthly Active Users (MAU)

Figure 19. Popular Hour and Day of the Week

66

5.2.2 Retention Analysis by Chapter Using the Aggerated Data

After understanding the overview of user behaviour, the chapter's retention analysis was

conducted using the newly defined churn status and aggregated data. First, how long the

users spend each chapter on average is checked. The calculated fields for each chapter

are created to eliminate 0 from the playtime variables and convert from minutes to hours.

Figure 20 shows an example in chapter 1. The median of playtime (hour) per chapter is

plotted to grasp the general playtime in Figure 21. The reason for using the median is to

reduce the impact of the outliers who have an extremely long playtime. The shortest

playtime is spent in chapter 1, and the longest is chapter 2 in general. To see the difference

in churn status, the bar chart is created for the median playtime (hour) per chapter by the

churn status (Figure 22). Considering that 56.77% are churners and 43.23% are non-

churners based on the churn determination, there is a recognizable difference between

churners and non-churners. Overall the churners play less than non-churners, but the

playtime gap depends on the chapters. Table 22 shows the median playtime (hour)

difference for each chapter. Next, to see the completion rate of each chapter, two

calculated fields are created for each chapter. Examples of chapter 2 are displayed in

Figures 23 and 24. Figure 23 counts the number of finished users of chapter 2, and Figure

24 calculates the completion percentage of the current chapter from the previous chapter

completion. These percentages are then plotted in Figure 25. The completion percentage

for non-churners are generally high, but not 100%. This means that a certain percentage

of users are currently playing the chapter. This percentage can be used as a benchmark

for churners. The difference in completion rate is summarized in Table 23. By comparing

the results in Tables 22 and 23, the five interesting points are discovered.

• Chapter 1 does not have a big difference between churners and non-churners. So

this could be possibly the churners have almost played the entire contents of

chapter 1, and stopped coming back.

• Chapter 2 has the longest playtime for both churners and non-churners. However,

the playtime difference between them is almost 2 hours. Also, the completion rate

decreased from 75.22% of chapter 1 to 50.35% of chapter 2. This means many

users had dropped in chapter 2. It may improve by shortening or simplifying the

lesson content.

• Chapter 3 has only one hour difference between churners and non-churners, but

67

the gap of completion rates is huge, which is 17.61%. This implies the churners

possibly dropped out later in the chapter lesson. The later contents may need to be

examined the necessity of update.

• Chapter 4 has the second-highest playtime for churners and non-churners. And

the difference of playtime is larger. The gap indicates that the churners had

stopped returning at the earlier lessons in chapter 4. The churners may have lost

interest by longer playtime. Same as chapter 2, shortening or simplifying lesson

content may boost retention.

• Chapter 5 and 6 have a bigger difference of completion rate and chapter 6 and 7

has bigger playtime difference between churners and non-churners. This may be

caused by the smaller number of records that the latest data can enhance.

Figure 20. Tableau Setting

68

Figure 21. Median Playtime per Chapter (hour)

69

Figure 22. Median Playtime per Chapter by Churn Status (hour)

Table 22. Median Playtime (hour) Difference by Churn Status

 Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7

Non-

Churners

5.96 12.46 8.15 11.79 8.17 10.20 11.27

Churners 5.70 10.52 7.13 9.94 6.86 7.00 6.62

Difference 0.26 1.94 1.02 1.85 1.31 3.2 4.65

70

Figure 23. Calculated field of Count Finished Users

Figure 24. Calculated field of Completion Rate

71

Figure 25. Chapter Completion Rate by Churn Status (%)

Table 23. Chapter Completion Rate Difference by Churn Status

 Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7

Non-

Churners

71.92 67.01 82.93 76.53 81.11 80.82 89.49

Churners 75.22 50.35 65.32 62.40 58.39 38.83 0

Difference -3.3 16.66 17.61 14.13 22.72 41.99 N/A

5.3 Hyperparameter Optimization

Hyperparameters are the parameters set before learning, and tuning hyperparameters

affects the performance outcome of the model. Default settings are used for the previous

data selection, and it is important to tune hyperparameters for each model to create a

better performance model possibly. For the categorical options of the hyperparameters,

the scikit-learn cross_val_score function is used to compare AUC with 10-folds

72

stratified cross-validation. For the numeric hyperparameter options, there are two steps.

First, plot the mean AUC performance by 10-fold stratified cross-validation with various

values and make a general estimation. Second, to discover the best hyperparameter

values, check more specific values by using cross_val_score same as the categorical

values.

5.3.1 Decision Tree

To optimise the decision tree, five hyperparameters are modified to see the performance

difference. The five hyperparameters are criterion, splitter, max_depth,

min_samples_split, and min_samples_leaf. The criterion is a function to measure the

quality of a split, and there are two criteria: "gini” and “entropy”. The default is set to

“gini” for criterion. Therefore, both “gini” and “entropy” are run for comparison. The

splitter is the strategy used to select the split at each node and have two “best” and

“random” choices. The “best” is set as the default hyperparameter, and these two choices

are set to see the difference. The max_depth is the maximum depth of the tree, and the

default is set to “None”. For max_depth, from 1 to 32 trees are set and see the difference.

A part of the code gaining AUC is shown in Figure 26, almost the same as other

numerical hyperparameters.

The min_samples_split is the minimum number of samples required to split. The default

is 2. The 0.01 to 0.5 are set for the comparison, using 1% of data to 50% of data. Thirty

evenly spaced values between 0.01 and 0.5 are created and evaluated. The

min_samples_leaf is the minimum number of samples required to be a leaf node. The

default is 1, and 30 values between 0.01 and 0.5 are set as min_samples_leaf. 0.01 and

0.5 mean the same as the min_samples_split. These hyperparameter evaluations and

outputting the text and graphical plots are conducted in the function named the

DT_find_best_param. The results of the criteria and splitter are revealed in Figure 27.

The “entropy” criterion has better AUC, and the “best” splitter is better than “random”.

So, the criterion needs to change for “entropy” and the splitter is left as default. The

max_depth plot of AUC and the tree depth is illustrated in Figure 28. After around 6

tree depth, the model performance decreases, and after 10 tree depth, the performance

is about the same. This means that a bigger tree depth causes lower performance even

though the computing cost is higher. So, between 4 and 8 are set as max_depth and

73

tested again to see the AUC with the DT_cross_val function. Because the criterion

“entropy” has better accuracy, the criterion hyperparameter is set to “entropy” for this.

The outcome is summarized in Table 24. Both accuracy and AUC are the highest at

max_depth 6, so the best value for max_depth is set to 6. As for minimum samples of

splits and leaf have a similar pattern (as illustrated in Figures 29 and 30). Generally, the

higher the hyperparameter value, the lower AUC is output. This is understandable

because more data is used for the minimum samples of the splits or leaf. The split should

be rougher. For minimum_sample_leaf, the best performance is the smallest value, so

the default should be used. Nevertheless, the minimum samples of split-plot is not

convincing because the AUC reaches a peak of around 5% (around 0.05 in Figure 29).

The 5% of data is 142 by considering the number of observations of the training dataset

for cross-validation is 2,846. Thus, from 25 to 200 increases by 25 are tested with cross-

validation. The result of accuracy and AUC are shown in Table 25. Accuracy and AUC

are the highest at min_samples_split 50, so DT's best value is set to 50. The summary

of hyperparameters and the final best performance values are summarized in Table 26.

The best value for max_depth is 6, and min_samples_split is 2. Other hyperparameters

are preferred as the default setting.

Figure 26. DT - AUC calculation for max_depth

Figure 27. DT - Criteria and Splitter Results

Find the best max_depths ---------------------------

cross_val_results = []

max_depths = np.linspace(1, 32, 32, endpoint=True) # create evenly spaced

32 values between 1 to 32 trees

for max_depth in max_depths:

dt = DecisionTreeClassifier(random_state=1,

max_depth=max_depth).fit(x_train,y_train) # train DT dclassifier

roc_auc = cross_val_score(dt, x_train, y_train,cv=10,scoring='roc_auc')

cross_val_results.append(roc_auc.mean())

74

Figure 28. DT - AUC Plot of Tree Depth

Table 24. DT - Maximum Depth and the Performance Difference

max_depth 4 5 6 7 8

Accuracy 0.8376 0.8472 0.8616 0.8613 0.8610

AUC 0.9182 0.9286 0.9290 0.9286 0.9289

75

Figure 29. DT - AUC Plot of Minimum Samples of Splits

Figure 30. DT - AUC Plot of Minimum Samples of Leaf

76

Table 25. DT - Minimum Samples of Split

min_split 25 50 75 100 125 150 175 200

Accuracy 0.863

 0.8626 2 0.8588 0.8616 0.8616 0.8557 0.8460 0.8454

AUC 0.933

 0.9317 3 0.9320 0.9329 0.9290 0.9284 0.9258 0.9262

Table 26. DT - Summary of The Hyperparameters and the Best Values

Hyperparameter name Default Options Best Value

criterion gini gini, entropy entropy

splitter best best, random best

max_depth None integer values 6

min_samples_split 2 integer or float values 50

min_samples_leaf 1 integer values 1

5.3.2 Random Forest

Next, tuning the random forest model is similar to the decision tree because there are

many same parameters. The max_depth, min_samples_split, min_samples_leaf are the

same ones, and the different hyperparameter is n_estimators. The n_estimators is the

number of trees in the forest and the default is 100 trees for n_estimators. The other

hyperparameters have the same default values as the decision tree: "None” for

max_depth, 2 for min_sample_split, and 1 for min_sample_leaf. The function named

RF_find_best_param handles applying the various values for each hyperparameter and

outputs the results. As presented in Figure 31, the number of n_estimater is set to 1, 2,

4, 8, 16, 32, 100, 150 to see the difference. The result of AUC with different

n_estimators is illustrated in Figure 32. The AUC reaches closest to 1 about 100

n_estimators. To see the precise value of AUC with cross-validation, the values 25, 50,

75, 100, and 120 are tested again for n_estimators. The result is shown in Table 27. The

AUC is the highest at the number of n_estimator 100, and it does not improve after 100

according to the plot. Having more trees requires more computing cost. Therefore, the

best value for n_estimator is 100, the same as the default. Next, the performance of the

77

max_depth is illustrated in Figure 33. The AUC reaches the maximum of around 10. So

the max_depth value is set from 7 until 13 and the n_estimators are set to 100. The

outcome is in Table 28. The max_depth at 10, the AUC is the highest which is acceptable

by considering the earlier AUC plot. So, 10 is the best value for max_depth. The other

two hyperparameters min_samples_split and min_samples_leaf have a similar pattern

as the decision tree model. The results are displayed in Figures 34 and 35. Both

min_samples_split and min_samples_leaf have the same pattern in which the AUC

decreases as the value increases. Thus, the best value is the smallest value, the same as

the default. The hyperparameters and the final setting are summarized in Table 29. The

max_depth need to be specified to 10, but default is the best for other hyperparameters.

Figure 31. RF - AUC Calculation for n_estimators

Figure 32. RF - AUC Plot of n_estimators

Find the best n_estimators ---------------------------

n_estimators = [1, 2, 4, 8, 16, 32, 64, 100, 150]

cross_val_results = []

for estimator in n_estimators:

rf = RandomForestClassifier(random_state=1,

n_estimators=estimator).fit(x_train, y_train) # train the random forest

classifier

roc_auc = cross_val_score(rf, x_train, y_train,cv=10,scoring='roc_auc')

cross_val_results.append(roc_auc.mean())

78

Table 27. RF - Performance Difference with Different n_estimators

n_estimator 25 50 75 100 125

accuracy 0.8869 0.8828 0.8850 0.8869 0.8878

AUC 0.9605 0.9570 0.9590 0.9605 0.9603

Figure 33. RF - AUC Plot of Tree Depth

Table 28. RF - Performance Difference with Different max_depth

max_depth 7 8 9 10 11 12 13

accuracy 0.8779 0.8850 0.8869 0.8910 0.8888 0.8844 0.8885

AUC 0.9565 0.9594 0.9591 0.9610 0.9609 0.9605 0.9607

79

Figure 34. RF - AUC Plot of Minimum Samples of Splits

Figure 35. RF - AUC Plot of Minimum Samples of Leaf

80

Table 29. RF - Summary of The Hyperparameters and the Best Values

Hyperparameter Name Default Options Best value

n_estimator 100 integer values 100

max_depth None integer values 10

min_samples_split 2 integer or float values 2

min_samples_leaf 1 integer values 1

5.3.3 Logistic Regression

The logistic regression has two main hyperparameters, which are penalty and C. The

penalty is a type of normalization used in penalization, and there are three options. The

options are “l1”, “l2”, and “None”, and the default is “l2”. The C is an inverse of

regularization strength, and the smaller value means stronger regularization. The default

is 1.0 for C. First, performance with three types of penalty are checked, and the results

are displayed in Figure 36. The “l1” has distinctively high AUC, whereas “l2” and None

are about 0.19 lower than “l1”. Therefore, “l1” is chosen for the penalty for the dataset.

Another hyperparameter C is also plotted. Thirty evenly spaced values between 0.01 to

1.5 are set to C with default setting and checked AUC. The resulting plot is illustrated in

Figure 37. The AUC reaches the highest around 1.0, and the AUC does not change after

that. To make sure what value is the best with precise value, the LR_cross_val function

is used to check AUC. The AUC value at 0.8, 0.9, 1.0, 1.1, and 1.2 are evaluated and the

results are summarized in Table 30. The AUC is the same for all C values and small

differences for accuracy. The accuracy with 0.9 is the best, so the best hyperparameter C

is chosen as 0.9. The hyperparameters and the final choices are shown in Table 31. The

best hyperparameter values are “l1” for penalty and 0.9 for C.

Figure 36. LR - AUC of Different Penalty

81

Figure 37. LR - AUC Plot of Hyperparameter C

Table 30. LR - Performance Difference with Different C

C 0.8 0.9 1 1.1 1.2

Accuracy 0.9206 0.9210 0.9206 0.9203 0.9200

AUC 0.9745 0.9745 0.9745 0.9745 0.9745

Table 31. LR - Summary of The Hyperparameters and the Best Values

Hyperparameter name Default Options Best Value

penalty L2 L1, L2, None L1

C 1 float value 0.9

5.4 Churn Prediction and Model Evaluation

The final model of each algorithm was created with the best hyperparameters. For the

last evaluation, the dataset used for modelling is the same split ratio of 80% training and

10% validation and 10% test. Still, the training and validation sets are combined as a

82

training dataset. Also, the principal components are used. The difference is that the

evaluation was conducted in the DT_evaluation, RF_evaluation, and LR_evaluation

functions to output other metrics for deeper analysis and validation. These functions

output AUC, confusion matrix, and classification report, which outputs accuracy,

precision, recall, and F1-score. The reason for checking the other metrics is that the

accuracy and ROC AUC does not cover the whole factors behind them. Precision means

the ratio of correctly predicted positive cases to the total of predicted positive cases, and

recall is the proportion of actual positive observations that are correctly predicted positive

observations. Generally, the precision and recall are in tension. So, improving one metric

causes reducing the other. F1-score is a metric to see the balance between precision and

recall. According to Power (2011), the ROC analysis ignores recall even though data

mining and machine learning consider recall is important. Because the distribution of

churn_status is not even, these values are inspected to justify the accuracy and AUC.

First, the confusion matrix of each model is plotted as illustrated in Figures 38, 39, and 40.

True Positive (TP) correctly predicts an actual churner as a churner, and True Negative

(TN) correctly predicts an actual non-churner as a non-churner. The overall prediction

results of the three models can be said that predictions are mostly correct because the

number of TP and TN are the more than majority without checking other metrics. The

number of TP is greater than TN which is due to the imbalanced target value. This applies

to the relationship of False Negative (FN) and False Positive (FP).

Next, by using the classification report, specific values are checked. The reports are

shown in Figures 41, 42, and 43. According to the result, the total observation is 356, the

churners (1 in the report) are 232, non-churners (0 in the report) are 124. This means that

65.16% of test data are churners higher than the actual percentage of the whole data of

56.7%. Therefore, the results will be more biased. There are “macro avr” and “weighted

avr” in the classification report. The “weighted avr” considers the imbalanced proportion

and calculates the precision, recall, and F1-score with weight. Since the proportion of the

target is not balanced, the “weighted avr” is chosen to be compared for evaluation.

The summary of the metrics of the three models is presented in Table 32. For precision,

recall, and F1-score are taken from “weighted avr”. The LR model is the highest accuracy

of 0.9185 and AUC of 0.9225, and the F1-score of 0.9194 is also high which means the

83

recall and precision are well balanced. Although DT and RF have good performance of

AUC which is 0.8452 and 0.8493, the prediction performance is lower than the LR

model. Tree-based algorithm characteristics may cause the similarity of results of DT

and RF. Considering the prediction performances of past other studies, the AUC and F1-

score are in a higher range. Most studies used AUC for the performance metrics, and the

popular range is between the late seventies and early nineties, summarized in Tables 2

and 3. As for the F-1 score, a study conducted churn prediction for freemium games

measured F1-score as a performance metrics, and the highest model of F1-score was DT

with 0.916 (Hadiji et al., 2014). Thus, the LR model has a great prediction performance

even considering the other studies in the gaming and education industries.

Figure 38. DT - Confusion Matrix

84

Figure 39. RF - Confusion Matrix

Figure 40. LR - Confusion Matrix

85

Figure 41. DT - Prediction Results

Figure 42. RF - Prediction Results

86

Figure 43. LR - Prediction Results

Table 32. Summary of Results

Metrics/Algorithms DT RF LR

Accuracy 0.8399 0.8427 0.9185

Precision 0.8522 0.8557 0.9228

Recall 0.8399 0.8427 0.9185

F1-Score 0.8425 0.8453 0.9194

AUC 0.8452 0.8493 0.9225

5.5 Discussion

The combination of churn determination and prediction presented above showed the

effectiveness of the approach proposed in digital game-based learning. The defining

churn based on the arbitrary time frame for each user can apply to many digital game-

based learning services even if there are various course duration or no specified course

duration. This is because the recency and inactive time between logins of each user should

be available or calculatable for most of the services. In addition, this approach allows us

to have the flexibility to define churners even if the users are playing in mid-course.

Since having a fixed evaluation time and cutoff like the online gaming industry or having

a clear definition of a drop-off with various evaluation periods was difficult to apply

digital game-based learning, the applicability and flexibility of the proposed churn

determination can address the issues. Thus, this determination approach is beneficial to

87

digital game-based learning industry. The churn prediction with the best performance LR

model used the three categories of input variables. The categories are demographic,

engagement, and performance which are common values for digital game-based

learning, online gaming and MOOCs. Although the detailed variables can differ from

service to service, the input categories for better churn prediction in digital game-based

learning were identified.

A limitation of the proposed approach is that the defining churn is not suitable for the users

who just have started playing. The calculation requires the mean inactive time and standard

deviation inactive time, so users with only a couple of logins might lead to less reliable

results. The prediction of early churn will not be suitable with this approach. Another

limitation is data size. The number of observations used for the churn prediction model is

3,557. This is considered a smaller dataset. The LR was the best performance model with

the case study, but other tree-based algorithms had good results. This implies that the

other models can improve the performance with different dataset sizes and input

variables. Hence, the proposed prediction model may produce different results if the large

dataset size.

Considering the above two limitations, the procedure can be further developed. Defining

the early churn determination and prediction for shorter courses is one possible future

work. As for the larger dataset, RF may have better performance. Or, different models

such as neural networks and deep neural networks can be tested. Another approach with

a bigger dataset is to try chapter-based churn prediction, which helps create more specific

marketing strategies for each chapter churner.

88

SECTION 6: CONCLUSION

Digital game-based learning is a narrowed down category of EdTech, and digital version

of game-based learning is an approach to facilitate learning with gameplay. The digital

game-based learning market has been growing, and the market revenue is expected to

reach over $24 billion by 2024. The market expansion has been supported by the

innovation of technology such as AR, AI, and a variety of customers from preschool to

corporations. One of the common issues in the EdTech market is the higher churn rate.

Retention and churn rate are common performance key indicators for business. Customer

churn is a percentage of customers who stopped using a service or products in a certain

period, and retention is the percentage to maintain customers using the service or

products over time.

Keeping customers brings more profit because it is less expensive than acquiring new

customers, and loyal customers tend to spend more money on the service. Therefore,

understanding and analyzing retention and churn is important for a business. The

reported churn rate in EdTech is wide-ranging depending on the source, such as a 49.9%

churn rate for a virtual school or a 95% churn rate for MOOCs. The only thing clear is

that the churn rate is on a higher side for EdTech compared to other industries. To address

the issue, a marketing approach is becoming more important. However, because the

market is still in the early stage, there are few studies related to marketing perspectives

even though there are great EdTech and digital game-based learning industries. The

digital game-based learning market situation in Japan is similar. The market is growing

and there are more than 100 services in the EdTech industry. The studies related to the

field are extremely limited compared to overseas. In addition, the approach in education

or online gaming industries can be only partially applicable to digital game-based

learning because of the difference in the definition of churn, evaluation time frame for

churners, and social interaction. One of the popular approaches for retention management

is churn prediction.

Churn prediction allows companies to create better marketing strategies to improve user

retention. Using a dataset from a Japanese company providing a digital game-based

learning service as a case study, an approach for churn prediction for digital game-based

89

learning is proposed. There are four objectives for this project. The first one is the

determination of churn, which is defined by applying an arbitrary time frame for each

user. The calculation compares the recency and average and two standard deviations of

user inactive time. The second objective is to clarify the churn rate of the Japanese service.

Using the defined churn definition, the churn rate became evident as 56.77% with the

case study data. In addition, the descriptive analysis and retention analysis were

conducted. The descriptive analysis uncovered the users' MAU and popular dates and

time.

The retention analysis reveals the different behaviour of churners and non-churners per

chapter. The third objective is to develop the best churn prediction model by comparing

LR, DT, and RF models. Feature selection, dataset split ratio comparison, and

hyperparameter tuning are conducted to build the best performance models. The LR

model has a distinctively highest accuracy of 0.9185, AUC of 0.9225, and an F1-score of

0.9194. The higher F1-score means the recall and precision are well balanced. The

0.9225 of AUC is on the higher side than the AUC of past churn prediction studies in

online gaming and education industries. Consequently, the results indicate the proposed

approach's effectiveness in determining churn and churn prediction in digital game-based

learning.

90

REFERENCES

Banerjee, T., Mukherjee, G., Dutta, S. and Ghosh, P. (2019) A Large-Scale

Constrained Joint Modeling Approach for Predicting User Activity, Engagement, and

Churn With Application to Freemium Mobile Games. Journal of the American

Statistical Association. [Online] p. 1-

29. Available from: https://doi.org/10.1080/01621459.2019.1611584 [Accessed 19

December 2019].

Beachum, L. (2020) World’S Oldest Person Breaks Her Own Record By Turning

117. [Online] The Washington Post. Available from:

https://www.washingtonpost.com/world/2020/01/06/worlds-oldest-woman-breaks-

her-own- record-by-turning/ [Accessed 23 April 2020].

Bolliger, D., Mills, D., White, J. and Kohyama, M. (2015) Japanese Students’

Perceptions of Digital Game Use for English-Language Learning in Higher Education.

Journal of Educational Computing Research. [Online] 53(3). p. 384-408. Available

from: https://journals.sagepub.com/doi/10.1177/0735633115600806 [Accessed 19

December 2019].

Bote-Lorenzo, M. and Gómez-Sánchez, E. (2017) Predicting the decrease of

engagement indicators in a MOOC. In: Proceedings of the Seventh International

Learning Analytics & Knowledge Conference on - LAK '17. [Online] New York,

NY, USA: ACM, p. 143-147. Available from:

https://dl.acm.org/doi/10.1145/3027385.3027387 [Accessed 19 December 2019].

Byun, J. and Joung, E. (2018) Digital game-based learning for K-12 mathematics

education: A meta-analysis. School Science and Mathematics. [Online] 118(3-4). p.

113-126. Available from: https://doi.org/10.1111/ssm.12271 [Accessed 19 December

2019].

Calabrese, B. (2019) Data Reduction. Encyclopedia of Bioinformatics and

Computational Biology. [Online] 1. p. 480-485. Available from:

https://www.sciencedirect.com/science/article/pii/B9780128096338204603

[Accessed 18

April 2020].

CallMiner (2019) US CallMiner Index: Consumers Switch By Sector, The Reasons

http://www.washingtonpost.com/world/2020/01/06/worlds-oldest-woman-breaks-her-own-
http://www.washingtonpost.com/world/2020/01/06/worlds-oldest-woman-breaks-her-own-
http://www.sciencedirect.com/science/article/pii/B9780128096338204603
http://www.sciencedirect.com/science/article/pii/B9780128096338204603

91

and the Impact of Call Centers. [Online] Available from:

https://learn.callminer.com/whitepapers/callminerindex-us-consumers-switch-by-

sector [Accessed 19 December 2019].

Clarke, D. and Kinghorn, R. (2018) Experience is everything: here's how to get it

right. [Online] PwC. Available from:

https://www.pwc.com/us/en/services/consulting/library/consumer-intelligence-

series/future- of-customer-experience.html [Accessed 11 December 2019].

Costa, E., Fonseca, B., Santana, M., de Araújo, F. and Rego, J. (2017). Evaluating the

effectiveness of educational data mining techniques for early prediction of students'

academic failure in introductory programming courses. Computers in Human Behavior.

[Online] 73(8).

p. 247-256. Available from:

https://www.sciencedirect.com/science/article/pii/S0747563217300596 [Accessed 19

December 2019].

Fu, X., Chen, X., Shi, Y., Bose, I. and Cai, S. (2017) User segmentation for

retention management in online social games. Decision Support Systems. [Online]

101(9). p. 51-68. Available from:

https://www.sciencedirect.com/science/article/pii/S0167923617301008 [Accessed

19 December 2019].

Fujimoto, T. and Yamada, M. (2013) Review of Educational Games Research for

Informal Learning： Research Frameworks and Evaluation Methods. Japan Society for

Educational Technology NII-Electronic Library Service J. [Online] 37(3). p. 343-351.

Available from: https://doi.org/10.15077/jjet.KJ00008987694 [Accessed 19 December

2019]. (in Japanese)

Fujimoto, T. (2011) Toward Effective Approaches to Educational Use of Digital

Games. Computer & Education. [Online] 31. p. 10-15. Available from:

https://doi.org/10.14949/konpyutariyoukyouiku.31.10 [Accessed 19 December

2019]. (in Japanese)

Fujimoto, T., Shigeta, K. and Fukuyama, Y. (2016) The Research Trends in Game-

Based Learning and Open Education. Educational technology research. [Online]

39(1). Available from: https://doi.org/10.15077/etr.41038 [Accessed 19 December

2019].

http://www.pwc.com/us/en/services/consulting/library/consumer-intelligence-series/future-
http://www.pwc.com/us/en/services/consulting/library/consumer-intelligence-series/future-
http://www.sciencedirect.com/science/article/pii/S0747563217300596
http://www.sciencedirect.com/science/article/pii/S0167923617301008

92

Gallo, A. (2014) The Value of Keeping the Right Customers. [Online] Harvard

Business Review. Available from: https://hbr.org/2014/10/the-value-of-keeping-

the-right-customers [Accessed 19 December 2019].

Gee, J. (2003) What video games have to teach us about learning and literacy.

Basingstoke, UK: Palgrave Macmillan.

93

Gomez-Uribe, C. and Hunt, N. (2015) The Netflix Recommender System. ACM

Transactions on Management Information Systems. [Online] 6(4). p. 1-19. Available

from: https://dl.acm.org/doi/10.1145/2843948 [Accessed 19 December 2019].

Gupta, S. and Sabitha, A. (2018) Deciphering the attributes of student retention in

massive open online courses using data mining techniques. Education and

Information Technologies. [Online] 24(3). p. 1973-1994. Available from:

https://doi.org/10.1007/s10639-018-9829-9 [Accessed 19 December 2019].

Hadiji, F., Sifat, R., Drachen, A., Thurau, C., Kersting, K. and Bauckhaget, C. (2014)

Predicting player churn in the wild. In: 2014 IEEE Conference on Computational

Intelligence and Games. [Online] Piscataway, New Jersey, US: IEEE. Available from:

https://ieeexplore.ieee.org/document/6932876 [Accessed 19 December 2019].

Han, J., Kamber, M. and Pei, J. (2012) Data mining: Concepts and Techniques.

3rd ed. Amsterdam, Netherlands: Elsevier/Morgan Kaufmann. p. 83-124.

HolonIQ, H. (2019) 10 charts that explain the Global Education Technology Market.

[Online] Holoniq.com. Available from: https://www.holoniq.com/edtech/10-charts-that-

explain-the- global-education-technology-market/ [Accessed 19 December 2019].

Hone, K. and El Said, G. (2016) Exploring the factors affecting MOOC retention: A

survey study. Computers & Education. [Online] 98(6). p. 157-168. Available from:

https://www.sciencedirect.com/science/article/pii/S0360131516300793 [Accessed 19

December 2019].

Hussein, M., Ow, S., Cheong, L., Thong, M. and Ale Ebrahim, N. (2019) Effects of

Digital Game-Based Learning on Elementary Science Learning: A Systematic

Review. IEEE Access [Online] 7. p. 62465-62478. Available from:

https://ieeexplore.ieee.org/document/8713478 [Accessed 19 December 2019].

Information Resources Management Association (2015) Gamification: Concepts,

Methodologies, Tools, and Applications. [Online] Hershey, PA, USA: Information

Science Reference. Available from: https://www.igi-global.com/book/gamification-

concepts- methodologies-tools-applications/121154 [Accessed 19 December 2019].

Franciosi, S. (2014) Educator Perceptions Of Digital Game-Based Learning In The

Instruction Of Foreign Languages In Japanese Higher Education. Michigan, USA:

ProQuest LLC, pp.1 - 166.

http://www.holoniq.com/edtech/10-charts-that-explain-the-
http://www.holoniq.com/edtech/10-charts-that-explain-the-
http://www.sciencedirect.com/science/article/pii/S0360131516300793
http://www.igi-global.com/book/gamification-concepts-
http://www.igi-global.com/book/gamification-concepts-

94

Jain, S., Shukla, S. and Wadhvani, R. (2018) Dynamic selection of normalization

techniques using data complexity measures. Expert Systems with Applications.

[Online] 106(16). p. 252-

262. Available from:

https://www.sciencedirect.com/science/article/pii/S095741741830232X [Accessed 19

December 2019].

Jeni, L., Cohn, J. and De La Torre, F. (2013) Facing Imbalanced Data--

Recommendations for the Use of Performance Metrics. In: 2013 Humaine Association

Conference on Affective Computing and Intelligent Interaction. [Online] Piscataway,

New Jersey, US: IEEE. p. 245–

251. Available from: https://ieeexplore.ieee.org/document/6681438 [Accessed 14 April

2020].

Khan, A., Ahmad, F. and Malik, M. (2017) Use of digital game based learning and

gamification in secondary school science: The effect on student engagement, learning

and gender difference. Education and Information Technologies. [Online] 22(6). p.

2767-2804. Available from: https://dl.acm.org/citation.cfm?id=3174821 [Accessed 19

December 2019].

Khobragade, L. and Mahadik, P. (2015) Students’ Academic Failure Prediction

Using Data Mining. International Journal of Advanced Research in Computer and

Communication Engineering. [Online] 4(11). p. 290-298. Available from:

https://ijarcce.com/wp- content/uploads/2015/12/IJARCCE-65.pdf [Accessed 19

December 2019].

Kumabe, D. (2018) Current Situation and Issues of EdTech Market. [Online] Nri.com.

Available from: https://www.nri.com/-

/media/Corporate/jp/Files/PDF/knowledge/publication/it_solution/2018/06/ITSF18060

5.pdf?l a=ja-JP&hash=D06155068CA89444E1336B1784D38EA1FE8D9B0E

[Accessed 19

December 2019]. (in Japanese)

Lee, E., Kim, B., Kang, S., Kang, B., Jang, Y. and Kim, H. (2018) Profit Optimizing

Churn Prediction for Long-term Loyal Customer in Online games. IEEE

Transactions on Games. [Online] 10. p. 1-1. Available from:

https://ieeexplore.ieee.org/document/8485736 [Accessed 19 December 2019].

http://www.sciencedirect.com/science/article/pii/S095741741830232X
http://www.nri.com/-

95

Levy, Y. (2007) Comparing dropouts and persistence in e-learning courses.

Computers and Education. [Online] 48(2). p. 185-204. Available from:

https://www.sciencedirect.com/science/article/pii/S0360131505000096 [Accessed

19

December 2019].

Liu, X., Xie, M., Wen, X., Chen, R., Ge, Y., Duffield, N. and Wang, N. (2018) A

Semi- Supervised and Inductive Embedding Model for Churn Prediction of Large-

Scale Mobile Games. In: 2018 IEEE International Conference on Data Mining

(ICDM). [Online] IEEE.

http://www.sciencedirect.com/science/article/pii/S0360131505000096

96

Piscataway, New Jersey, US. Available from:

https://ieeexplore.ieee.org/document/8594852 [Accessed 19 December 2019].

Liubov, L. (2019) Students churn prediction task in MOOC. Journal of Computer

Science Research. [Online] 1(1). p. 29-35. Available from:

https://ojs.bilpublishing.com/index.php/jcsr/article/view/537 [Accessed 19 December

2019].

Mao, W. and Wang, F. (2012) Chapter 8 - Cultural Modeling for Behavior Analysis

and Prediction. New Advances in Intelligence and Security Informatics [Online] p. 91-

102. Available from:

https://www.sciencedirect.com/science/article/pii/B9780123972002000087 [Accessed

18 Apr. 2020].

McKinney, W. and Pandas Development Team (2020) Pandas.Dataframe.Boxplot —

Pandas

1.0.3 Documentation. [Online] Pandas.pydata.org. Available from:

https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.DataFrame.boxplot.html [Accessed 18 April 2020].

Mariscal, G., Marbán, Ó. and Fernández, C. (2010) A survey of data mining and

knowledge discovery process models and methodologies. The Knowledge Engineering

Review. [Online] 25(2). p. 137-166. Available from:

https://doi.org/10.1017/S0269888910000032 [Accessed 19

December 2019].

Marquez-Vera, C., Morales, C.R. and Soto, S.V. (2013) Predicting School Failure and

Dropout by Using Data Mining Techniques. IEEE Revista Iberoamericana de

Tecnologias del Aprendizaje. 8(1). p. 7–14. Available from:

https://ieeexplore.ieee.org/document/6461622 [Accessed 19 December 2019].

Miller, A., Vonwiller, B. and Weed, P. (2016) Grow fast or die slow: Focusing on

customer success to drive growth. [Online] McKinsey & Company. Available from:

https://www.mckinsey.com/industries/technology-media-and-

telecommunications/our- insights/grow-fast-or-die-slow-focusing-on-customer-

success-to-drive-growth [Accessed 11

December 2019].

Milošević, M., Živić, N. and Andjelković, I. (2017) Early churn prediction with

http://www.sciencedirect.com/science/article/pii/B9780123972002000087
http://www.mckinsey.com/industries/technology-media-and-telecommunications/our-
http://www.mckinsey.com/industries/technology-media-and-telecommunications/our-

97

personalized targeting in mobile social games. Expert Systems with Applications.

[Online] 83(17). p. 326-

332. Available from:

https://www.sciencedirect.com/science/article/abs/pii/S0957417417303044

[Accessed 19 December 2019].

http://www.sciencedirect.com/science/article/abs/pii/S0957417417303044
http://www.sciencedirect.com/science/article/abs/pii/S0957417417303044

98

Miyauchi, T., Hosoya, T. and Urabe, H. (2019) Madefor/Postal-Code-Api. [Online]

GitHub. Available from: https://github.com/madefor/postal-code-api [Accessed 18

April 2020].

Niu, Z., Li, W., Yan, X. and Wu, N. (2018) Exploring causes for the dropout on

massive open online courses. In: Proceedings of ACM Turing Celebration Conference -

China on - TURC '18. [Online] New York, NY, USA: ACM. p. 47-52. Available from:

https://dl.acm.org/citation.cfm?doid=3210713.3210727 [Accessed 19 December 2019].

Perini, S., Luglietti, R., Margoudi, M., Oliveira, M. and Taisch, M. (2018) Learning

and motivational effects of digital game-based learning (DGBL) for manufacturing

education – The Life Cycle Assessment (LCA) game. Computers in Industry.

[Online] 102(9). p. 40-49. Available from:

https://www.sciencedirect.com/science/article/abs/pii/S0166361517300398

[Accessed 19 December 2019].

Pokorná, M. and Sponer, M. (2016) Social Lending and Its Risks. Procedia -

Social and Behavioral Sciences. [Online] 220(5). p. 330-337. Available from:

https://www.sciencedirect.com/science/article/pii/S1877042816306073

[Accessed 13

December 2019].

Prensky, M. (2001) Digital game-based learning. Mcgraw Hill Book Company: McGraw-

Hill.

Recurly Inc (2019) Benchmarks for Subscription E-Commerce. [Online]

Available from: https://info.recurly.com/research/benchmarks-for-subscription-

ecommerce [Accessed 19

December 2019].

S. Adkins, S. (2019) The 2019-2024 Global Game-based Learning Market.

[Online] Seriousplayconf.com. Available from:

https://seriousplayconf.com/newtest/wp-

content/uploads/2019/11/Metaari_2019-2024_Global_Game-

based_Learning_Market_Executive_Overview.pdf [Accessed 19 December

2019].

Sanchez, E. (2019) Game-Based Learning. 2nd ed. Cham, Switzerland: Springer.

http://www.sciencedirect.com/science/article/abs/pii/S0166361517300398
http://www.sciencedirect.com/science/article/pii/S1877042816306073

99

Smith, W. (1956) Product Differentiation and Market Segmentation as Alternative

Marketing Strategies. Journal of Marketing. [Online] 21(1). p. 3-8. Available from:

https://www.jstor.org/stable/1247695. [Accessed 19 December 2019].

Sorensen, C. and Donovan, J. (2017) An examination of factors that impact the

retention of online students at a for-profit university. Online Learning. [Online] 21(3).

p. 206-211.

Available from: http://dx.doi.org/10.24059/olj.v21i3.935 [Accessed 19 December 2019].

http://www.jstor.org/stable/1247695
http://dx.doi.org/10.24059/olj.v21i3.935

100

Sørensen, B., Meyer, B. and Egenfeldt-Nielsen, S. (2011) Serious Games in Education:

A Global Perspective. Aarhus, Denmark: Aarhus University Press.

Strauss, V. (2019) New report on virtual education: ‘It sure sounds good. As it turns

out, it’s too good to be true.’. [Online] Washington Post. Available from:

https://www.washingtonpost.com/education/2019/05/29/new-report-virtual-education-

it-sure- sounds-good-it-turns-out-its-too-good-be-true/ [Accessed 19 December 2019].

Studyplus, Inc. (2018) EdTech Market Map in Japan. [Online] Studyplus.

Available from: https://info.studyplus.co.jp/2018/04/02/815 [Accessed 19

December 2019]. (in Japanese)

Suh, E. and Alhaery, M. (2016) Customer Retention: Reducing Online Casino Player

Churn Through the Application of Predictive Modeling. UNLV Gaming Research &

Review Journal. [Online] 20(2). p. 63-84. Available from:

https://digitalscholarship.unlv.edu/grrj/vol20/iss2/6/ [Accessed 19 December 2019].

Tamassia, M., Raffe, W., Sifa, R., Drachen, A., Zambetta, F. and Hitchens, M. (2016)

Predicting player churn in destiny: A Hidden Markov models approach to predicting

player departure in a major online game. In: 2016 IEEE Conference on

Computational Intelligence and Games (CIG). [Online] Piscataway, New Jersey, US:

IEEE. Available from: https://ieeexplore.ieee.org/abstract/document/7860431

[Accessed 19 December 2019].

Utashiro, M., Hashimoto, S. and Hayashi, A. (2015) Research on Acquisition of

Hiragana in Normally Developing Children. Bulletin of Tokyo Gakugei University.

Division of comprehensive educational science. [Online] p. 397-402. Available from:

https://ci.nii.ac.jp/naid/110009890163 [Accessed 21 April 2020]. (in Japanese)

Xie, H., Devlin, S., Kudenko, D. and Cowling, P. (2015) Predicting player

disengagement and first purchase with event-frequency based data representation. In:

2015 IEEE Conference on Computational Intelligence and Games (CIG). [Online]

Piscataway, New Jersey, US: IEEE. Available from:

https://ieeexplore.ieee.org/document/7317919 [Accessed 19 December 2019].

Xing, W., Chen, X., Stein, J. and Marcinkowski, M. (2016). Temporal predication of

dropouts in MOOCs: Reaching the low hanging fruit through stacking generalization.

Computers in Human Behavior. [Online] 58(6). p. 119-129. Available from:

http://www.washingtonpost.com/education/2019/05/29/new-report-virtual-education-it-sure-
http://www.washingtonpost.com/education/2019/05/29/new-report-virtual-education-it-sure-

101

https://www.sciencedirect.com/science/article/pii/S074756321530279X [Accessed 19

December 2019].

http://www.sciencedirect.com/science/article/pii/S074756321530279X

102

Yan, A., Lee, M. and Ko, A. (2019) Predicting abandonment in online coding

tutorials. In: 2017 IEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC). [Online] Piscataway, New Jersey, US: IEEE. p. 191-199.

Available from: https://ieeexplore.ieee.org/document/8103467 [Accessed 19

December 2019].

Yang, C., Shi, X., Jie, L. and Han, J. (2018) I Know You'll Be Back. Proceedings of

the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining (KDD '18). London, United Kingdom: ACM. p. 914-922.

Yi, Z. (2017) Marketing services and resources in information organizations. 1st ed.

Oxford, United Kingdom: Chandos Publishing.

Yukselturk, E., Ozekes, S. and Türel, Y.K. (2014) Predicting Dropout Student: An

Application of Data Mining Methods in an Online Education Program. European

Journal of Open, Distance and E-Learning. 17(1). p. 118–133. Available from:

https://doi.org/10.2478/eurodl-2014-0008 [Accessed 19 December 2019].

Zhonggen, Y. (2019) A Meta-Analysis of Use of Serious Games in Education over a

Decade. International Journal of Computer Games Technology. [Online] 2019. p. 1-8.

Available from: https://doi.org/10.1155/2019/4797032 [Accessed 19 December 2019].

103

APPENDIX

Appendix A - Entire Python Code

1. import pandas as pd

2. import re
3. import numpy as np
4. from datetime import datetime
5. import requests

6. import statistics
7. import matplotlib.pyplot as plt
8. from matplotlib.legend_handler import HandlerLine2D
9. from sklearn import preprocessing
10. from sklearn.decomposition import PCA

11. from sklearn.ensemble import RandomForestClassifier
12. from sklearn.metrics import classification_report,

roc_curve, auc, plot_confusion_matrix

13. from sklearn.model_selection import train_test_split, cross_val_score
14. from sklearn.tree import DecisionTreeClassifier
15. from sklearn.linear_model import
LogisticRegression 16.

17.

18. #

===

==

=========================

19. # Functions
===

==

===============

20. # import csv files into a dataframe
21. def import_log_files(path, header):
22. if header == "None": # No header in the csv. attach the specified

header

23. df = pd.read_csv(path, header=None, names=["id", "timestamp",
"action"])

24. elif header == "Have": # Have header in the csv. read the file

25. df = pd.read_csv(path)

26. else:

27. df = pd.read_csv(path)

28. ret

urn df 29.

30.

31. # combine user game activity log and user lesson log into one player log

32. def create_player_log():
33. print("***** BEGIN creating player log by merging player and lesson logs

*****")

34. # import account_log

35. path_al = "/Users/maikiguchi/Desktop/cp2/ORIG_account_logs.csv"

36. ac_df = import_log_files(path=path_al, header="None")

37. index_names = ac_df[ac_df["action"] == "crm_update_player"].index
removing parent account log

38. ac_df.drop(index_names, inplace=True)

39. ac_df =

ac_df.reset_index(drop=True) 40.

41. # import lesson_log

42. path_ll = "/Users/maikiguchi/Desktop/cp2/ORIG_lesson_logs.csv"

43. le_df = import_log_files(path=path_ll,

header="None") 44.

45. # join the two dataframe, then sort

46. pl_log_df = pd.concat([ac_df, le_df], join="outer")

47. pl_log_df = pl_log_df.sort_values(by=["id", "timestamp"],

ascending=True)

48. pl_log_df =

104

pl_log_df.reset_index(drop=True) 49.

50.

pl_log_df.to_csv("/Users/maikiguchi/Desktop/cp2/1_combined_player_log.c

sv", index=False)

105

51. print("***** FIN creating player log by merging player and lesson logs

*****")

52.

53.

54. # create exp, coins, and replay aggregated data
55. def create_exp_rep_aggregated():
56. print("***** BEGIN merging and aggregating exp, coins, and replay

*****")

57. # import exp data from csv

58. path_exp =
"/Users/maikiguchi/Desktop/cp2/ORIG_player_exp_coins_2020_01_2

7.csv"

59. exp_df = pd.read_csv(path_exp, usecols=[0, 4, 6], header=0) # import

only specific columns

60. exp_df = exp_df.rename(columns={"account_id":

"id"}) 61.

62. # import replay data from csv

63. path_rep =
"/Users/maikiguchi/Desktop/cp2/ORIG_player_replay_2020_01_2

7.csv"

64. rep_df = pd.read_csv(path_rep, usecols=[1, 2], header=0) # import

only specific columns

65. rep_df = rep_df.rename(columns={"account_id": "id", "START":

"replay"}) 66.

67. # sort by account id

68. rep_df = rep_df.sort_values(by=["id"], ascending=True)

69. exp_df = exp_df.sort_values(by=["id"],

ascending=True) 70.

71. # aggregate exp and coins per id, then merge them

72. exp_df.set_index("id")

73. exp_agg_df = exp_df.groupby(["id"])["exp"].sum()

74. coins_agg_df = exp_df.groupby(["id"])["coins"].sum()

75. exp_df = pd.merge(exp_agg_df, coins_agg_df, on="id",

how="left") 76.

77. # count how many times replay, then merge with exp_df

78. rep_df = rep_df.groupby("id")["replay"].nunique()

79. exp_agg_df = pd.merge(exp_df, rep_df, on="id", how="left")

80. exp_rep_df =

exp_agg_df.fillna(0) 81.

exp_rep_df.to_csv("/Users/maikiguchi/Desktop/cp2/2_aggregated_exp_rep_c

oins.c sv", index=True)

82. print("***** FIN merging and aggregating exp, coins, and replay

*****") 83.

84.

85. # transform CRM player log (from Japanese to English, calculate
age, get prefecture neme) and remove test accounts

86. def transform_crm_log():
87. print("***** BEGIN transforming CRM data *****")

88. # import CRM data

89. path_crm =
"/Users/maikiguchi/Desktop/cp2/ORIG_crm_players_2020_03_2

8.csv"

90. tmp_crm_df = pd.read_csv(path_crm, usecols=[0, 1, 3, 11, 12, 13,
14], header=0) # import only specific columns

91.
92. # change the column name from Japanese to English

93. crm_df = tmp_crm_df.rename(

94. columns={"プレイアカウント ID": "account_id", "プレイアカウントメールアドレス

": "player_email", "管理アカウントメールアドレス": "parent_email",

95. "性別": "gender", "生年月日": "birthday", "郵便番号": "postal",

"

住所": "address"})

96. crm_df = crm_df.dropna(subset=["birthday"]) # drop unfilled test data

97. crm_df =

crm_df.reset_index(drop=True) 98.

99. # create a list of test accounts by email-address, and
transform information

106

100. len_crm = len(crm_df)

101. test_users = []

102. for i in range(0, len_crm):

103. print(i)

104. play_adr = crm_df.at[i, "player_email"]

105. prnt_adr = crm_df.at[i, "parent_email"]

107

106. gender = crm_df.at[i, "gender"]

107. birthday = crm_df.at[i, "birthday"]

108. postal = crm_df.at[i, "postal"]

109. address = crm_df.at[i,

"address"] 110.

111. # Gender from Japanese to English

112. if gender == "男性":

113. crm_df.at[i, "gender"] = "Male"

114. elif gender == "女性":

115. crm_df.at[i, "gender"] =

"Female" 116.

117. # Calculate Age by function

118. age = calculate_age(birthday)

119. crm_df.at[i, "birthday"]

= age 120.

121. # Convert postal code to prefecture in English

122. prefecture = postal_2_en_pref(postal)

123. crm_df.at[i, "postal"] =

prefecture 124.

125. # Check test users by email and address and put them

in the test_user list

126. if not pd.isnull(play_adr):

127. play = re.search("@lifeistech.co.jp", play_adr)

128. if play != None and play_adr != "":

129. test_users.append(crm_df.at[i, "account_id"])

130. elif not pd.isnull(prnt_adr):

131. parent = re.search("@lifeistech.co.jp", prnt_adr)

132. if parent != None and (

133. prnt_adr != "ibaraki@lifeistech.co.jp" and

prnt_adr != "aoyagi@lifeistech.co.jp" and prnt_adr !=

"clarkosaka_2019@lifeistech.co.jp"):

134. test_users.append(crm_df.at[i,

"account_id"]) 135.

136. address = address.replace(" ", "")

137. if re.search(".*南麻布 2-12-3.*", address):
138. test_users.append(crm_df.at[i,

"account_id"]) 139.

140. test_usr_df = pd.DataFrame(test_users, columns=["account_id"])

141. crm_df =

crm_df[~crm_df.account_id.isin(test_usr_df.account_id.values)] # remove

accounts in test_usr_df

142. crm_df = crm_df.drop(columns=["player_email",

"parent_email", "address"]) # drop unnecessary columns for

analysis

143. crm_df = crm_df.rename(columns={"birthday": "age",

"postal": "prefecture"}) # change the columns name

144. 144.
145. crm_df.to_csv("/Users/maikiguchi/Desktop/cp2/3_crm.csv", index=False)

146. test_usr_df.to_csv("/Users/maikiguchi/Desktop/cp2/4_test_accounts

.csv", index=False)

147. print("***** FIN transforming CRM data *****")

148. return

test_usr_df 149.

150.

151. # calculate age
152. def calculate_age(birthday):

153. birth_date = datetime.strptime(birthday, "%Y/%m/%d")

154. today = datetime.today()

155. age = today.year - birth_date.year - ((today.month,

today.day) < (birth_date.month, birth_date.day))

156. 156.
157. retu

rn age 158.

159.

160. # get English prefecture name from postal code

161. def postal_2_en_pref(postal):
162. # Using API to get English information

mailto:ibaraki@lifeistech.co.jp
mailto:aoyagi@lifeistech.co.jp
mailto:clarkosaka_2019@lifeistech.co.jp

108

163. response = requests.get(

164. "https://madefor.github.io/postal-code-api/api/v1/" +

postal[:3] + "/" + postal[4:8] + ".json")

109

165. if response.ok:

166. results = response.json()["data"]

167. prefecture = results[0]["en"]["prefecture"]

168. else:

169. prefecture

= None 170.

171. return

prefecture 172.

173.

174. # create aggregation data of lesson's chapter progress for each user
175. def create_chapter_aggregated(unique_id):
176. print("***** BEGIN creating chapter aggregated data *****")

177. # import chapter data from csv

178. path_ch =

"/Users/maikiguchi/Desktop/cp2/ORIG_player_chapter_waiting_2020_01_2

7.csv"

179. ch_df = import_log_files(path=path_ch,

header="Have") 180.

181. # remove unnecessary characters then sort

182. ch_df["cleared"] = ch_df["cleared"].str.replace("T|Z", " ")

183. ch_df["opened"] = ch_df["opened"].str.replace("T|Z", " ")

184. ch_df["begined"] = ch_df["begined"].str.replace("T|Z", " ")

185. ch_df = ch_df.sort_values(by=["account_id", "chapter"],

ascending=True)

186. unique_id_df = pd.DataFrame(unique_id, columns=["id"])

187. ch_df = ch_df[ch_df.account_id.isin(unique_id_df.id.values)]

188. ch_df =

ch_df.reset_index(drop=True) 189.

190. # import chapter 7 data from csv

191. path_ch7 = "/Users/maikiguchi/Desktop/cp2/ORIG_Ch7_fin_2020_01_27.csv"

192. ch7_df = import_log_files(path=path_ch7, header="Have")

193. ch7_df["cleared"] = ch7_df["cleared"].str.replace("T|Z", " ")

194. ch7_df = ch7_df.sort_values(by=["account_id",

"cleared"], ascending=True)

195. ch7_df =

ch7_df.reset_index(drop=True) 196.

197. # create a new dataframe for aggregation

198. ch_agg_df = pd.DataFrame(columns=["id", "ch1_fin",

"ch2_open", "ch2_start", "ch2_fin",

199. "ch3_open", "ch3_start", "ch3_fin",

200. "ch4_open", "ch4_start", "ch4_fin",

201. "ch5_open", "ch5_start", "ch5_fin",

202. "ch6_open", "ch6_start", "ch6_fin",

203. "ch7_open", "ch7_start", "ch7_fin",

204. "ch2_wait(days)", "ch3_wait(days)",

"ch4_wait(days)",

205. "ch5_wait(days)",

"ch6_wait(days)", "ch7_wait(days)", "avr_ch_wait(days)"])

206.

207. # gather chapter info for each id

208. len_ch_agg = len(ch_df)

209. ch_log_idx = 0

210. for unq_idx in range(len(unique_id)):

211. print(unq_idx)

212. ch1_fin = ch2_op = ch2_st = ch2_fin = ch3_op = ch3_st =

ch3_fin = ch4_op = ch4_st = 0

213. ch4_fin = ch5_op = ch5_st = ch5_fin = ch6_op = ch6_st =

ch6_fin = ch7_op = ch7_st = 0

214. ch2_wait = ch3_wait = ch4_wait = ch5_wait = ch6_wait =

ch7_wait = avr_wait = 0

215. 215.
216. test1 = unique_id[unq_idx]

217. test2 = ch_df.at[ch_log_idx, "account_id"]

218. while (ch_log_idx < len_ch_agg) and

(unique_id[unq_idx] == ch_df.at[ch_log_idx, "account_id"]):

219. if ch_df.at[ch_log_idx, "chapter"] == 2:

220. ch1_fin = ch_df.at[ch_log_idx, "cleared"]

221. ch2_op = ch_df.at[ch_log_idx, "opened"]

110

222. ch2_st = ch_df.at[ch_log_idx, "begined"]

223. ch2_wait = ch_df.at[ch_log_idx, "days_begin"]

111

224. elif ch_df.at[ch_log_idx, "chapter"] == 3:

225. ch2_fin = ch_df.at[ch_log_idx, "cleared"]

226. ch3_op = ch_df.at[ch_log_idx, "opened"]

227. ch3_st = ch_df.at[ch_log_idx, "begined"]

228. ch3_wait = ch_df.at[ch_log_idx, "days_begin"]

229. elif ch_df.at[ch_log_idx, "chapter"] == 4:

230. ch3_fin = ch_df.at[ch_log_idx, "cleared"]

231. ch4_op = ch_df.at[ch_log_idx, "opened"]

232. ch4_st = ch_df.at[ch_log_idx, "begined"]

233. ch4_wait = ch_df.at[ch_log_idx, "days_begin"]

234. elif ch_df.at[ch_log_idx, "chapter"] == 5:

235. ch4_fin = ch_df.at[ch_log_idx, "cleared"]

236. ch5_op = ch_df.at[ch_log_idx, "opened"]

237. ch5_st = ch_df.at[ch_log_idx, "begined"]

238. ch5_wait = ch_df.at[ch_log_idx, "days_begin"]

239. elif ch_df.at[ch_log_idx, "chapter"] == 6:

240. ch5_fin = ch_df.at[ch_log_idx, "cleared"]

241. ch6_op = ch_df.at[ch_log_idx, "opened"]

242. ch6_st = ch_df.at[ch_log_idx, "begined"]

243. ch6_wait = ch_df.at[ch_log_idx, "days_begin"]

244. elif ch_df.at[ch_log_idx, "chapter"] == 7:

245. ch6_fin = ch_df.at[ch_log_idx, "cleared"]

246. ch7_op = ch_df.at[ch_log_idx, "opened"]

247. ch7_st = ch_df.at[ch_log_idx, "begined"]

248. ch7_wait = ch_df.at[ch_log_idx, "days_begin"]

249. else:

250. print("ERROR" + ch_df.at[ch_log_idx,

"chapter"]) 251.

252. ch_log_idx =

ch_log_idx + 1 253.

254. ch7_idx = ch7_df[

255. ch7_df["account_id"] ==

unique_id[unq_idx]].index.values.tolist() # if there is id in ch7 data

frame?

256. if ch7_idx != [] and ch7_st != 0: # if above is true frame &

ch7_st is not 0

257. ch7_fin = ch7_df.at[ch7_idx[0], "cleared"]

258. else:

259. ch7_f

in = 0 260.

261. wait_list = [ch2_wait, ch3_wait, ch4_wait, ch5_wait,

ch6_wait, ch7_wait]

262. len_wait = np.count_nonzero(wait_list)

263. if len_wait != 0:

264. avr_wait = np.sum(wait_list) /

len_wait 265.

266. tmp_ch = pd.Series(data=[unique_id[unq_idx], ch1_fin,

ch2_op, ch2_st, ch2_fin, ch3_op, ch3_st, ch3_fin,

267. ch4_op, ch4_st, ch4_fin, ch5_op,

ch5_st, ch5_fin, ch6_op, ch6_st, ch6_fin, ch7_op,

268. ch7_st, ch7_fin, ch2_wait, ch3_wait,

ch4_wait, ch5_wait, ch6_wait, ch7_wait, avr_wait],

269. index=ch_agg_df.columns)

270. ch_agg_df = ch_agg_df.append(tmp_ch,

ignore_index=True) 271.

272. ch_agg_df =

ch_agg_df.fillna(0) 273.

ch_agg_df.to_csv("/Users/maikiguchi/Desktop/cp2/5_aggregated_chapter.cs

v", index=False)

274. print("***** FIN creating chapter aggregated data *****")

275. return

ch_agg_df 276.

277.

278. # calculate aggregated values from player_log data

279. def create_player_aggregated():
280. print("***** BEGIN creating and calculating aggregated values *****")

281. unique_id_df = pd.DataFrame(unique_id,

columns=["id"]) 282. fmt = "%Y-%m-%d %H:%M:%S"

112

283. agg_df = pd.DataFrame(columns=["id",

"total_playtime(min)", "total_login",

"total_inactive(min)",

284. "average_playtime(min)",

"average_inactive(min)", "first_login",

285. "last_login",

"entire_period(days)", "churn_status",

286. "ch1_playtime(min)",

"ch2_playtime(min)", "ch3_playtime(min)", "ch4_playtime(min)",

287. "ch5_playtime(min)",

"ch6_playtime(min)", "ch7_playtime(min)"])

288. 288.
289. one_hour = 60 * 60 # sec*min

290. len_log = len(pl_log_df)

291. log_idx = unq_idx = 0

292.

293. while unq_idx < len(unique_id):

294. t_play_sec = t_inactive = avr_inactive = 0

295. ch1_play = ch2_play = ch3_play = ch4_play = ch5_play = ch6_play =

ch7_play = 0

296. t_login = 1

297. churn = False

298. first = pl_log_df.at[log_idx, "timestamp"]

299. unq_acc_id = "".join(unique_id[unq_idx])

300. inactive_list = []

301. ch_idx = ch_agg_df[

302. ch_agg_df["id"] ==

"".join(unique_id[unq_idx])].index.values.tolist() # if the id

is in ch_agg_df dataframe

303. print(un

q_idx) 304.

305. while (log_idx < len_log - 1) and

(unq_acc_id == pl_log_df.at[log_idx, "id"]) and (

306. pl_log_df.at[log_idx, "id"] ==

pl_log_df.at[log_idx + 1, "id"]):

307. t1 = datetime.strptime(pl_log_df.at[log_idx, "timestamp"], fmt)

308. t2 = datetime.strptime(pl_log_df.at[log_idx + 1,

"timestamp"], fmt)

309. td_sec = (t2 -

t1).total_seconds() 310.

311. if td_sec > one_hour: # stopped playing, count as inactive

time

312. t_login = t_login + 1

313. t_inactive = t_inactive + td_sec

314. if td_sec != 0:

315. inactive_list.append(td_sec)

316. elif td_sec <= one_hour: # keep playing, count as playtime

317. t_play_sec = t_play_sec + td_sec

318. if ch_idx != []: # the id is in ch_agg_df, count

playtime per chapter

319. if (ch_agg_df.at[ch_idx[0], "ch7_start"] != "0") and (

320. datetime.strptime(ch_agg_df.at[ch_idx[0],

"ch7_start"], fmt) <= t1):
321. ch7_play = ch7_play + td_sec

322. elif (ch_agg_df.at[ch_idx[0], "ch6_start"] != "0") and (

323. datetime.strptime(ch_agg_df.at[ch_idx[0],

"ch6_start"], fmt) <= t1):

324. ch6_play = ch6_play + td_sec

325. elif (ch_agg_df.at[ch_idx[0], "ch5_start"] != "0") and (

326. datetime.strptime(ch_agg_df.at[ch_idx[0],

"ch5_start"], fmt) <= t1):

327. ch5_play = ch5_play + td_sec

328. elif (ch_agg_df.at[ch_idx[0], "ch4_start"] != "0") and (

329. datetime.strptime(ch_agg_df.at[ch_idx[0],

"ch4_start"], fmt) <= t1):

330. ch4_play = ch4_play + td_sec

331. elif (ch_agg_df.at[ch_idx[0], "ch3_start"] != "0") and (

332. datetime.strptime(ch_agg_df.at[ch_idx[0],

113

"ch3_start"], fmt) <= t1):

333. ch3_play = ch3_play + td_sec

114

334. elif (ch_agg_df.at[ch_idx[0], "ch2_start"] != "0") and (

335. datetime.strptime(ch_agg_df.at[ch_i

dx[0], "ch2_start"], fmt) <= t1):

336. ch2_play = ch2_play + td_sec

337. elif datetime.strptime(first, fmt) <= t1:

338. ch1_play = ch1_play +

td_sec 339.

340. log_idx =

log_idx + 1 341.

342. if log_idx < (len_log - 1): # if it's not the last object in a

list

343. last = pl_log_df.at[log_idx, "timestamp"]

344. avr_play = round((t_play_sec / 60 / t_login), 2)

345. current = datetime.strptime("2020-01-28 0:00:00", fmt)

the next date of the data collected

346. recency = (current -

datetime.strptime(last, fmt)).total_seconds()

347. 347.
348. if (pl_log_df.at[log_idx, "id"] !=

pl_log_df.at[log_idx + 1, "id"]):

349. log_idx =

log_idx + 1 350.

351. recency = round((recency / 60), 2)

352. try: # calcurate standard deviation of inactive time

353. std_inactive = round(statistics.stdev(inactive_list) / 60,

2)

354. except statistics.StatisticsError:

355. std_inacti

ve = 0 356.

357. if ch_idx != []: # the id is in ch_agg_df

358. # ch7 is not finished and total login is not one time,

add the inactive period till now

359. if ch_agg_df.at[ch_idx[0], "ch7_fin"] == "0" and t_login !=

1:

360. t_inactive = (t_inactive + recency)

361. avr_inactive = round((t_inactive / 60 / t_login),

362. 2) # add the time between now

and the last play as inactive

363. personal_cutoff = avr_inactive + (2 * std_inactive)

364. if recency > personal_cutoff: # determine if the

player is churned or not

365. churn = True

366. else: # finished playing, so not churned

367. avr_inactive = round((t_inactive / 60 / t_login),

368. 2) # add the time between now

and the last play as inactive

369. churn = False

370. 370.

371. diff = (datetime.strptime(last, fmt) - datetime.strptime(first,

372. fmt)).days #

difference between first and last login

373. tmp_ser = pd.Series(

374. data=[unq_acc_id, round((t_play_sec / 60), 2),

t_login, round((t_inactive / 60), 2),

375. avr_play, avr_inactive, first, last, diff, churn,

376. round(ch1_play / 60, 2), round(ch2_play /

60, 2), round(ch3_play / 60, 2),

377. round(ch4_play / 60, 2),

378. round(ch5_play / 60, 2), round(ch6_play /

60, 2), round(ch7_play / 60, 2)],

379. index=agg_df.columns)

380. agg_df = agg_df.append(tmp_ser,

ignore_index=True) 381.

382. unq_idx =

unq_idx + 1 383.

384. agg_df.to_csv("/Users/maikiguchi/Desktop/cp2/6_aggregated_play

.csv", index=False)

385. print("***** FIN creating and calculating aggregated values

115

*****") 386.

387.

388. # removing test accounts from the data frames

116

389. def remove_test_data():
390. print("***** BEGIN removing test account *****")

391. # import test account

392. path_test = "/Users/maikiguchi/Desktop/cp2/4_test_accounts.csv"

393. test_acc_df = import_log_files(path=path_test,

header="YES") 394.

395. # remove test data from player log df

396. print("... removing test accounts from player log data")

397. path_pl = "/Users/maikiguchi/Desktop/cp2/1_combined_player_log.csv"

398. pl_log_df = import_log_files(path=path_pl, header="YES")

399. pl_log_df =

pl_log_df[~pl_log_df.id.isin(test_acc_df.account_id.values)]

400. pl_log_df = pl_log_df.sort_values(by=["id",

"timestamp"], ascending=True)

401. pl_log_df =

pl_log_df.reset_index(drop=True) 402.

pl_log_df.to_csv("/Users/maikiguchi/Desktop/cp2/1_combined_player_log.c

sv", index=False)

403.

404. # remove test data from exp df

405. print("... removing test accounts from exp, coins, replay data")

406. path_exp =

"/Users/maikiguchi/Desktop/cp2/2_aggregated_exp_rep_coin

s.csv"

407. exp_df = import_log_files(path=path_exp, header="YES")

408. exp_df = exp_df[~exp_df.id.isin(test_acc_df.account_id.values)]

409. exp_df =

exp_df.reset_index(drop=True) 410.

exp_df.to_csv("/Users/maikiguchi/Desktop/cp2/2_aggregated_exp_rep_coins

.csv", index=False)

411.

412. # remove test data from ch_agg_df

413. print("... removing test accounts from chapter agg data")

414. path_ch = "/Users/maikiguchi/Desktop/cp2/5_aggregated_chapter.csv"

415. ch_agg_df = import_log_files(path=path_ch, header="YES")

416. ch_agg_df =

ch_agg_df[~ch_agg_df.id.isin(test_acc_df.account_id.values)]

417. ch_agg_df =

ch_agg_df.reset_index(drop=True) 418.

ch_agg_df.to_csv("/Users/maikiguchi/Desktop/cp2/5_aggregated_chapter.cs

v", index=False)

419.

420. # remove test data from unique id

421. unique_id = pl_log_df["id"].unique().tolist()

422. unique_id.sort()

423. unique_id_df = pd.DataFrame(unique_id, columns=["id"])

424. unique_id =

unique_id_df[~unique_id_df.id.isin(test_acc_df.account_id.values)].valu

es.tol ist()

425. 425.
426. print("***** FIN removing test account *****")

427. return ch_agg_df, pl_log_df,

unique_id 428.

429.

430. # merging the dataframes into one for modeling
431. def merge_dfs():
432. print("***** BEGIN merging all datasets *****")

433. # import the created exp, coins, replay data

434. path_exp =

"/Users/maikiguchi/Desktop/cp2/2_aggregated_exp_rep_coin

s.csv"

435. exp_agg_df = import_log_files(path=path_exp,

header="YES") 436.

437. # import the created crm

438. path_crm = "/Users/maikiguchi/Desktop/cp2/3_crm.csv"

439. crm_df = import_log_files(path=path_crm, header="YES")

440. crm_df = crm_df.rename(columns={"account_id":

"id"}) 441.

117

442. # import player aggregated data

443. path_agg = "/Users/maikiguchi/Desktop/cp2/6_aggregated_play.csv"

444. agg_df = import_log_files(path=path_agg,

header="YES") 445.

118

446. # import chapter aggregated data

447. path_ch_agg = "/Users/maikiguchi/Desktop/cp2/5_aggregated_chapter.csv"

448. ch_agg_df = import_log_files(path=path_ch_agg,

header="YES") 449.

450. # merge agg and ch_agg

451. agg_df = pd.merge(agg_df, exp_agg_df, on="id", how="left")

452. agg_df = pd.merge(agg_df, ch_agg_df, on="id", how="left")

453. agg_df = pd.merge(agg_df, crm_df, on="id",

how="left") 454.

455.

 agg_df.to_csv("/Users/maikiguchi/Desktop/cp2/7_aggregated

.csv", index=False)

456. print("***** FIN merging all datasets

*****") 457.

458.

459. # output data frame details such as statistical and graphical information

460. def show_plots(agg_df):

461. # check all variables

462. print(agg_df.describe(include="all")) # statistical text

information for each variable

463. # check which variables have missing values

464. print(agg_df.columns[agg_df.isnull().any()])

465.

466. # -- numeric variables

467. # show box plots for each variable

468. box_plot_columns = ["total_login", "total_playtime(min)",

"total_inactive(min)", "average_playtime(min)",

469. "average_inactive(min)", "entire_period(days)",

470. "avr_ch_wait(days)", "exp", "coins", "replay", "age"]

471. for column in box_plot_columns:

472. agg_df.boxplot(showmeans=True, column=column)

473. plt.

show() 474.

475. agg_df.boxplot(showmeans=True,

476. column=["ch1_playtime(min)",

"ch2_playtime(min)", "ch3_playtime(min)",

"ch4_playtime(min)",

477. "ch5_playtime(min)",

"ch6_playtime(min)", "ch7_playtime(min)"])

478.

 plt.

show() 479.

480. # -- categorical variables

481. # show bar chart

482. agg_df["gender"].value_counts().plot(kind="bar")

483. plt.show()

484. agg_df["prefecture"].value_counts().plot(kind="bar")

485. plt.

show() 486.

487.

488. # preprocess the dataset
489. def preprocess_data(agg_df):

490. # -- Missing Value Imputation

491. # drop system admin and trial players

492. agg_df = agg_df.dropna(subset=["gender"])

493. agg_df =

agg_df.reset_index(drop=True) 494.

495. # [exp, coins, replay] imputation with 0 for the missing value

in exp, coins, and replay

496. agg_df["exp"] = agg_df["exp"].fillna(0)

497. agg_df["coins"] = agg_df["coins"].fillna(0)

498. agg_df["replay"] =

agg_df["replay"].fillna(0) 499.

500. # [prefecture] imputation of the missing value in

prefecture, then transform (Label Encoding) to ordinal value

501. agg_df["prefecture"] = agg_df["prefecture"].fillna("Tokyo")

502. agg_df["prefecture"].value_counts().plot(kind="bar") # check

after modification

119

503. plt.show()

504. le_pre = preprocessing.LabelEncoder()

505. agg_df["prefecture"] = le_pre.fit_transform(agg_df["prefecture"])

120

506. print(list(le_pre.clas

ses_)) 507.

508. # check if all missing values are imputed

509.

 print(agg_df.columns[agg_df.isnull().a

ny()]) 510.

511. # -- Transformation (Label Encoding)

512. # [gender] transform the gender string to binary value (Female = 0,

Male

= 1)

513. le_gen = preprocessing.LabelEncoder()

514. agg_df["gender"] = le_gen.fit_transform(agg_df["gender"])

515. print(list(le_gen.clas

ses_)) 516.

517. # [churn_status] transform churn_status True/False to binary

(False = 0, True = 1)

518. le_churn = preprocessing.LabelEncoder()

519. agg_df["churn_status"] =

le_churn.fit_transform(agg_df["churn_status"])

520.

 print(list(le_churn.clas

ses_)) 521.

522. # -- Replacement of highly impossible values

523. # [age] -1 and over 100 years old are replaced with median 26

524. print(agg_df["age"].median()) # check median

525. agg_df.loc[agg_df["age"] >= 100, "age"] = 26 # non-realistic age

526. agg_df.loc[agg_df["age"] <= 3, "age"] = 26 # majority of kids

under 3 cannot read in Japan, so it"s impossible to start playing

527. print(agg_df["age"].describe(include="all")) # check statistic

values after modification

528. plt.

show() 529.

530. # -- Standardization of variables with outliers

531. # exclude No outlier variables and categorical variables

532. drop_col = ["id", "total_inactive(min)",

"entire_period(days)", "churn_status", "gender", "age",

"prefecture"]

533. std_df = agg_df.drop(columns=drop_col) # drop unnecessary columns

534. names = std_df.columns

535. scaled_df = preprocessing.StandardScaler().fit_transform(std_df)

536. scaled_df = pd.DataFrame(scaled_df,

columns=names) 537.

538. for name in names:

539. agg_df[name] =

scaled_df[name] 540.

541.

agg_df.to_csv("/Users/maikiguchi/Desktop/cp2/8_aggregated_after_preproc

ess.cs v", index=False)

542. return

agg_df 543.

544. # preprocess the dataset for retention analysis

545. def preprocess_retention():

546. path_agg = "/Users/maikiguchi/Desktop/cp2/7_aggregated.csv"

547. agg_df = import_log_files(path=path_agg,

header="YES") 548.

549. # -- Missing Value Imputation

550. # drop system admin and trial players

551. agg_df = agg_df.dropna(subset=["gender"])

552. agg_df =

agg_df.reset_index(drop=True) 553.

554. # [exp, coins, replay] imputation with 0 for the missing value

in exp, coins, and replay

555. agg_df["exp"] = agg_df["exp"].fillna(0)

556. agg_df["coins"] = agg_df["coins"].fillna(0)

557. agg_df["replay"] =

agg_df["replay"].fillna(0) 558.

559. # [prefecture] imputation of the missing value in

prefecture, then transform (Label Encoding) to ordinal value

121

560. agg_df["prefecture"] = agg_df["prefecture"].fillna("Tokyo")

561. agg_df["prefecture"].value_counts().plot(kind="bar") # check

after modification

562.

563. # -- Replacement of highly impossible values

122

564. # [age] -1 and over 100 years old are replaced with median 26

565. agg_df.loc[agg_df["age"] >= 100, "age"] = 26 # non-realistic age

566. agg_df.loc[agg_df[

567. "age"] <= 4, "age"] = 26 # majority of kids under 4

cannot read in Japan, so it"s impossible to start playing

568. 568.
569. 569.

agg_df.to_csv("/Users/maikiguchi/Desktop/cp2/8_aggregated_after_preproc

ess_re t_analysis.csv", index=False)

570. return

agg_df 571.

572. # splitting data into specified percentage
573. def split_data(train, test, val, x_features, y_target, split_way):

574. if split_way == "cross":

575. train_ratio = train

576. test_ratio = test

577. validation_ratio = val

578. x_train, x_test, y_train, y_test =

train_test_split(x_features, y_target, test_size=(1 -

train_ratio),

579. random_state=1)

580. x_val, x_test, y_val, y_test = train_test_split(x_test, y_test,

581. test_size=(test_ratio /

(test_ratio + validation_ratio)),

582. random_state=1)

583. x_train = pd.concat([x_train, x_test])

584. y_train = pd.concat([y_train, y_test])

585. return x_train, x_val, y_train,

y_val 586.

587.

588. # run decision tree cross_val
589. def DT_cross_val(x_train, y_train, tree_dpt, criteria, split):

590. if tree_dpt == "": # no hyperparameter setting. use default.

591. dt = DecisionTreeClassifier(random_state=1).fit(x_train,

y_train) # train the decision tree classifier

592. accuracy = cross_val_score(dt, x_train, y_train,

cv=10, scoring='accuracy')

593. roc_auc = cross_val_score(dt, x_train, y_train,

cv=10, scoring='roc_auc')

594. print("Accuracy of DT: ", accuracy.mean())

595. print("ROC AUC of DT: ", roc_auc.mean())

596. else: # train with the specified hyper parameters

597. dt = DecisionTreeClassifier(random_state=1,

max_depth=tree_dpt, criterion=criteria,

598. min_samples_split=split).fit(x_

train, y_train) # train the decision tree classifier

599. accuracy = cross_val_score(dt, x_train, y_train,

cv=10, scoring='accuracy')

600. roc_auc = cross_val_score(dt, x_train, y_train,

cv=10, scoring='roc_auc')

601. print("Accuracy of DT: ",

accuracy.mean()) 602. print("ROC AUC of DT: ",

roc_auc.mean()) 603.

604.

605. # run logistic regression cross_val

606. def LR_cross_val(x_train, y_train, c, penalty,

solver): 607. if c == "": # no hyperparameter setting.

use default.

608. lr = LogisticRegression(random_state=1).fit(x_train,

y_train) # train the Logistic Regression classifier

609. accuracy = cross_val_score(lr, x_train, y_train,

cv=10, scoring='accuracy')

610. roc_auc = cross_val_score(lr, x_train, y_train,

cv=10, scoring='roc_auc')

611. print("Accuracy of LR: ",

accuracy.mean()) 612. print("ROC AUC of LR: ",

roc_auc.mean())

613. else: # train with the specified hyper parameters

123

614. lr = LogisticRegression(random_state=1, C=c,

penalty=penalty, solver=solver).fit(x_train,y_train)

124

615. accuracy = cross_val_score(lr, x_train, y_train,

cv=10, scoring='accuracy')

616. roc_auc = cross_val_score(lr, x_train, y_train,

cv=10, scoring='roc_auc')

617. print("Accuracy of LR: ",

accuracy.mean()) 618. print("ROC AUC of LR: ",

roc_auc.mean()) 619.

620.

621. # run random forest cross_val
622. def RF_cross_val(x_train, y_train, n_est, tree_dpt):
623. if n_est == "": # no hyperparameter setting. use default.

624. rf = RandomForestClassifier(random_state=1).fit(x_train,

y_train) # train the random forest classifier

625. accuracy = cross_val_score(rf, x_train, y_train,

cv=10, scoring='accuracy')

626. roc_auc = cross_val_score(rf, x_train, y_train,

cv=10, scoring='roc_auc')

627. print("Accuracy of RF: ",

accuracy.mean()) 628. print("ROC AUC of RF: ",

roc_auc.mean())

629. else: # train with the specified hyper parameters

630. rf = RandomForestClassifier(random_state=1,

n_estimators=n_est, max_depth=tree_dpt).fit(x_train,y_train)

631. accuracy = cross_val_score(rf, x_train, y_train,

cv=10, scoring='accuracy')

632. roc_auc = cross_val_score(rf, x_train, y_train,

cv=10, scoring='roc_auc')

633. print("Accuracy of RF: ",

accuracy.mean()) 634. print("ROC AUC of RF: ",

roc_auc.mean()) 635.

636.

637. # find best hyperparameters for the DT

model 638. def DT_find_best_param(x_train,

y_train):

639. # Find the best criterion ---------------------------

640. dt =

DecisionTreeClassifier(random_state=1,

criterion="gini").fit(x_train,y_train)

641. roc_auc = cross_val_score(dt, x_train, y_train,

cv=10, scoring='roc_auc')

642. print("Gini Criteria AUC with Validation: ",

roc_auc.mean()) 643.

644. dt =

DecisionTreeClassifier(random_state=1,

criterion="entropy").fit(x_train, y_train)

645. roc_auc = cross_val_score(dt, x_train, y_train,

cv=10, scoring='roc_auc')

646. print("Entropy Criteria AUC with Validation: ",

roc_auc.mean()) 647.

648. # Find the best splitter ---------------------------

649. dt =

DecisionTreeClassifier(random_state=1,

splitter="best").fit(x_train, y_train)

650. roc_auc = cross_val_score(dt, x_train, y_train,

cv=10, scoring='roc_auc')

651. print("Best Splitter AUC with Validation: ",

roc_auc.mean()) 652.

653. dt =

DecisionTreeClassifier(random_state=1,

splitter="random").fit(x_train, y_train)

654. roc_auc = cross_val_score(dt, x_train, y_train,

cv=10, scoring='roc_auc')

655. print("Random Splitter AUC with Validation: ",

roc_auc.mean()) 656.

657. # Find the best max_depths ---------------------------

658. cross_val_results = []

659. max_depths = np.linspace(1, 32, 32, endpoint=True) # create

evenly spaced 32 values between 1 to 32 trees

125

660. for max_depth in max_depths:

661. dt =

DecisionTreeClassifier(random_state=1,

max_depth=max_depth).fit(x_train, y_train)

662. roc_auc = cross_val_score(dt, x_train, y_train,

cv=10, scoring='roc_auc')

663. cross_val_results.append(roc_auc.mean())

126

664. 664.
665. line1, = plt.plot(max_depths, cross_val_results, "b",

label="Cross Validation AUC")

666. plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})

667. plt.title("Decision Tree")

668. plt.ylabel("AUC score")

669. plt.xlabel("Tree depth")

670. plt.show()

671. 671.
672. # Find the best min_samples_split ---------------------------

673. cross_val_results = []

674. # create evenly spaced 30 values between 1% to 50% of the minimum

number of samples required to split

675. min_samples_splits = np.linspace(0.01, 0.5, 30,

endpoint=True) 676. for split in min_samples_splits:

677. dt =

DecisionTreeClassifier(random_state=1,

min_samples_split=split).fit(x_train,

678.

 y_tra

in)

train the decision tree classifier

679. roc_auc = cross_val_score(dt, x_train, y_train,

cv=10, scoring='roc_auc')

680. cross_val_results.append(roc_auc.mean())

681.

682. line1, = plt.plot(min_samples_splits,

cross_val_results, "b", label="Cross Validation AUC")

683. plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})

684. plt.title("Decision Tree")

685. plt.ylabel("AUC score")

686. plt.xlabel("Minimum Sample of

Splits") 687. plt.show()

688.

689. # Find the best min_samples_leaf ---------------------------

690. val_results = []

691. cross_val_results = []

692. # create evenly spaced 30 values between 1% to 50% of the minimum

number of samples leaf

693. min_samples_leafs = np.linspace(0.01, 0.5, 30,

endpoint=True) 694. for leaf in min_samples_leafs:

695. dt =

DecisionTreeClassifier(random_state=1,

min_samples_leaf=leaf).fit(x_train,

696.

 y_train

)

train the random forest classifier

697. roc_auc = cross_val_score(dt, x_train, y_train,

cv=10, scoring='roc_auc')

698. cross_val_results.append(roc_auc.mean())

699.

700. line1, = plt.plot(min_samples_leafs,

cross_val_results, "b", label="Cross Validation AUC")

701. plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})

702. plt.title("Decision Tree")

703. plt.ylabel("AUC score")

704. plt.xlabel("Minimum Samples of

Leaf") 705. plt.show()

706.

707.

708. # find best hyperparameters for the LR

model 709. def LR_find_best_param(x_train,

y_train):

710. # Find the best penalty ---------------------------

711. lr = LogisticRegression(random_state=1, penalty="l1",

solver="liblinear").fit(x_train, y_train) # train the logistic

regression classifier

127

712. roc_auc = cross_val_score(lr, x_train, y_train,

cv=10, scoring='roc_auc')

713. print("Penalty L1 AUC : ",

roc_auc.mean()) 714.

715. lr =

LogisticRegression(random_state=1,

penalty="l2").fit(x_train,y_train)

128

716. roc_auc = cross_val_score(lr, x_train, y_train,

cv=10, scoring='roc_auc')

717. print("Penalty L2 AUC : ",

roc_auc.mean()) 718.

719. lr =

LogisticRegression(random_state=1,

penalty="none").fit(x_train,y_train)

720. roc_auc = cross_val_score(lr, x_train, y_train,

cv=10, scoring='roc_auc')

721. print("Penalty None AUC : ",

roc_auc.mean()) 722.

723. # Find the best C

724. cross_val_results = []

725. c_params = np.linspace(0.01, 1.5, 30, endpoint=True) # 30 evenly

spaced

values between 0.01

to 1.5 726. for c in

c_params:

727. lr = LogisticRegression(random_state=1, C=c,

penalty="l1", solver="liblinear").fit(x_train,y_train)

728. roc_auc = cross_val_score(lr, x_train, y_train,

cv=10, scoring='roc_auc')

729. cross_val_results.append(roc_auc.mean())

730.

731. line1, = plt.plot(c_params, cross_val_results, "b",

label="Cross Validation AUC")

732. plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})

733. plt.title("Logistic Regression")

734. plt.ylabel("AUC

score") 735.

 plt.xlabel("Number

of C") 736. plt.show()

737.

738. # find best hyperparameters for the RF

model 739. def RF_find_best_param(x_train,

y_train):

740. # Find the best n_estimators ---------------------------

741. n_estimators = [1, 2, 4, 8, 16, 32, 64, 100, 150]

742. cross_val_results = []

743. for estimator in n_estimators:

744. rf = RandomForestClassifier(random_state=1,

n_estimators=estimator).fit(x_train,

745.

 y_trai

n)

train the random forest classifier

746. roc_auc = cross_val_score(rf, x_train, y_train,

cv=10, scoring='roc_auc')

747. cross_val_results.append(roc_auc.mean())

748.

749. line1, = plt.plot(n_estimators, cross_val_results, "b",

label="Cross Validation AUC")

750. plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})

751. plt.title("Random Forest")

752. plt.ylabel("AUC score")

753. plt.xlabel("n_estimators")

754. plt.show()

755. 755.
756. # Find the best max_depths ---------------------------

757. cross_val_results = []

758. max_depths = np.linspace(1, 32, 32,

endpoint=True) 759. for max_depth in max_depths:

760. rf =

RandomForestClassifier(random_state=1,

max_depth=max_depth).fit(x_train, y_train)

761. roc_auc = cross_val_score(rf, x_train, y_train,

cv=10, scoring='roc_auc')

762. cross_val_results.append(roc_auc.mean())

129

763.

764. line1, = plt.plot(max_depths, cross_val_results, "b",

label="Cross Validation AUC")

765. plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})

766. plt.title("Random Forest")

767. plt.ylabel("AUC score")

768. plt.xlabel("Tree depth")

769. plt.show()

130

770. 770.
771. # Find the best min_samples_split ---------------------------

772. cross_val_results = []

773. # 1% to 30% of the minimum number of samples required to

split 774. min_samples_splits = np.linspace(0.01, 0.3,

10,endpoint=True) 775. for split in min_samples_splits:

776. rf =

RandomForestClassifier(random_state=1,

min_samples_split=split).fit(x_train,y_train)

777. roc_auc = cross_val_score(rf, x_train, y_train,

cv=10, scoring='roc_auc')

778. cross_val_results.append(roc_auc.mean())

779.

780. line1, = plt.plot(min_samples_splits,

cross_val_results, "b", label="Cross Validation AUC")

781. plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})

782. plt.title("Random Forest")

783. plt.ylabel("AUC score")

784. plt.xlabel("Minimum Sample of

Splits") 785. plt.show()

786.

787. # Find the best min_samples_leaf ---------------------------

788. cross_val_results = []

789. # 1% to 10% of the minimum number of samples at the

leafs 790. min_samples_leafs = np.linspace(0.01, 0.3, 5,

endpoint=True) 791. for leaf in min_samples_leafs:

792. rf =

RandomForestClassifier(random_state=1,

min_samples_leaf=leaf).fit(x_train,y_train)

793. roc_auc = cross_val_score(rf, x_train, y_train,

cv=10, scoring='roc_auc')

794. cross_val_results.append(roc_auc.mean())

795.

796. line1, = plt.plot(min_samples_leafs,

cross_val_results, "b", label="Cross Validation AUC")

797. plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})

798. plt.title("Random Forest")

799. plt.ylabel("AUC score")

800. plt.xlabel("Minimum Samples of

Leaf") 801. plt.show()

802.

803. # train a DT model and predict with test dataset

804. def DT_evaluation(x_train, x_test, y_train, y_test, tree_dpt,

criteria, split):

805. print("Decision Tree ==")

806. dt = DecisionTreeClassifier(random_state=1,

max_depth=tree_dpt, criterion=criteria,

min_samples_split=split).fit(

807. x_train, y_train) # train the decision tree classifier

808. dt_pred_test = dt.predict(x_test) # predict with the test dataset

809. false_positive_rate, true_positive_rate, thresholds =

roc_curve(y_test, dt_pred_test)

810. roc_auc = auc(false_positive_rate,

true_positive_rate) 811. print("[Test] ROC AUC of DT:

", roc_auc)

812. print("▼▼▼ [Test] Classification Report of DT ▼▼▼")

813. print(classification_report(y_test, dt_pred_test, digits=4))

814. disp = plot_confusion_matrix(dt, x_test, y_test,

cmap=plt.cm.Blues, values_format="d",

815. display_labels=["Non-Churner",

"Churner"]) 816. disp.ax_.set_title("DT - Confusion

Matrix")

817. plt.show()

818.

819. # train a LR model and predict with test dataset

820. def LR_evaluation(x_train, x_test, y_train, y_test, c, penalty,

solver): 821. print("Logistic Regression

==")

131

822. lr = LogisticRegression(random_state=1, C=c,

penalty=penalty, solver=solver).fit(x_train,

823.

y_train) # train the Logistic Regression classifier

824. lr_pred_test = lr.predict(x_test) # predict with the test dataset

132

825. false_positive_rate, true_positive_rate, thresholds =

roc_curve(y_test, lr_pred_test)

826. roc_auc = auc(false_positive_rate,

true_positive_rate) 827. print("[Test] ROC AUC of LR:

", roc_auc)

828. print("▼▼▼ [Test] Classification Report of LR ▼▼▼")

829. print(classification_report(y_test, lr_pred_test, digits=4))

830. disp = plot_confusion_matrix(lr, x_test, y_test,

cmap=plt.cm.Blues, values_format="d",

831. display_labels=["Non-Churner",

"Churner"]) 832. disp.ax_.set_title("LR - Confusion

Matrix")

833. plt.show()

834.

835. # train a RF model and predict with test dataset

836. def RF_evaluation(x_train, x_test, y_train, y_test, n_est,

tree_dpt): 837. print("Random Forest

==")

838. rf = RandomForestClassifier(random_state=1,

n_estimators=n_est, max_depth=tree_dpt).fit(x_train,

839.

y_train) # train the random forest classifier

840. rf_pred_test = rf.predict(x_test) # predict with the test dataset

841. false_positive_rate, true_positive_rate, thresholds =

roc_curve(y_test, rf_pred_test)

842. roc_auc = auc(false_positive_rate,

true_positive_rate) 843. print("[Test] ROC AUC of RF:

", roc_auc)

844. print("▼▼▼ [Test] Classification Report of RF ▼▼▼")

845. print(classification_report(y_test, rf_pred_test, digits=4))

846. disp = plot_confusion_matrix(rf, x_test, y_test,

cmap=plt.cm.Blues, values_format="d",

847. display_labels=["Non-Churner",

"Churner"]) 848. disp.ax_.set_title("RF - Confusion

Matrix")

849. plt.show()

850.

851.

852. #

===

==

=========================

853. # Main -- Preprocessing

==

854. # set display number of columns

855. pd.set_option("display.max_columns", 50)

856.

857. # -- import and combine account log and lesson

log 858. create_player_log()

859.

860. # -- create aggregated log for exp, coins, and number of

replay time 861. create_exp_rep_aggregated()

862.

863. # -- import and transform CRM log and also get test user account

list 864. test_acc_df = transform_crm_log()

865.

866. # -- import the created crm data

867. path_crm =

"/Users/maikiguchi/Desktop/cp2/3_crm.csv" 868. crm_df

= import_log_files(path=path_crm, header="Have") 869.

crm_df = crm_df.reset_index(drop=True)

870.

871. # -- import the created player log data

872. path_plog =

"/Users/maikiguchi/Desktop/cp2/1_combined_player_log.csv" 873.

pl_log_df = import_log_files(path=path_plog, header="Have")

874.

875. # -- check unique id and store in a list

133

876. unique_id =

pl_log_df["id"].unique().tolist() 877.

unique_id.sort()

878.

879. # -- create chapter aggregated log

880. ch_agg_df =

create_chapter_aggregated(unique_id) 881.

882. # -- remove data of test accounts (in test_acc_df) from

ch_agg_df, pl_log_df, unique_id, and exp_df

134

883. ch_agg_df, pl_log_df, unique_id =

remove_test_data() 884.

885. # -- calculate aggregated information per players and store them

in csv 886. create_player_aggregated()

887.

888. # -- merge all aggregated data into

one 889. merge_dfs()

890.

891. # -- Exploratory Data Analysis (EDA) and preprocess ---------------------

--

892. # import the merged df

893. path_agg =

"/Users/maikiguchi/Desktop/cp2/7_aggregated.csv" 894.

agg_df = import_log_files(path=path_agg, header="YES")

895. agg_df = agg_df[["id", "total_login",
"total_playtime(min)", "total_inactive(min)",

"average_playtime(min)",

896. "average_inactive(min)",

"entire_period(days)", "churn_status",

897. "ch1_playtime(min)",

"ch2_playtime(min)", "ch3_playtime(min)",

"ch4_playtime(min)",

898. "ch5_playtime(min)",

899. "ch6_playtime(min)",

"ch7_playtime(min)", "avr_ch_wait(days)",

900. "exp", "coins", "replay", "gender", "age",

"prefecture"]] 901.

902. # -- EDA by checking statistical information

903. show_plots(agg_df) # show stats info, box_plots, and bar

charts 904. agg_df = preprocess_data(agg_df) # do preprocess

905. show_plots(agg_df) # check after

preprocess 906.

907. path_agg =

"/Users/maikiguchi/Desktop/cp2/8_aggregated_after_preprocess.csv

"

908. agg_df = import_log_files(path=path_agg,

header="YES") 909. feature_cols = ["total_login",

"total_playtime(min)",

"total_inactive(min)", "average_playtime(min)",

910. "average_inactive(min)", "entire_period(days)",

911. "ch1_playtime(min)", "ch2_playtime(min)",

"ch3_playtime(min)", "ch4_playtime(min)", "ch5_playtime(min)",

912. "ch6_playtime(min)", "ch7_playtime(min)",

"avr_ch_wait(days)", 913. "exp", "coins", "replay", "gender", "age",

"prefecture"]

914.

915. x_features = agg_df[feature_cols] #

features 916. y_target =

agg_df["churn_status"] # target 917.

918. # -- Feature selection by Principal Component Analysis (PCA)

919. pca = PCA(n_components="mle").fit(x_features) # mle = select n based

on input

920. print("Explained Variance: %s" %

pca.explained_variance_ratio_) 921.

922. pc =

pca.fit_transform(x_features) 923.

924. print(pd.DataFrame(pca.components_, columns=x_features.columns,

925. index=['PC-1', 'PC-2', 'PC-3', 'PC-4', 'PC-5', 'PC-6',

'PC-

7', 'PC-8', 'PC-9', 'PC-10', 'PC-11',

926. 'PC-12', 'PC-13', 'PC-14', 'PC-15', 'PC-16',

'PC-17', 'PC-18', 'PC-19']))

927. x_features_pc = pd.DataFrame(data=pc,

928. columns=['PC-1', 'PC-2', 'PC-3', 'PC-4', 'PC-5',

'PC-6', 'PC-7', 'PC-8', 'PC-9', 'PC-10',

929. 'PC-11', 'PC-12', 'PC-13', 'PC-14', 'PC-

15', 'PC-16', 'PC-17', 'PC-18', 'PC-19'])

135

930.

931. # Main -- Modeling
==

932. # -- Dataset and split ratio comparison by using 10 K-folds
cross validation

933. # original dataset
934. # 80% (60% training and 20% validation), 20% test

136

935. x_train80, x_test20, y_train80, y_test20 = split_data(0.6,
0.2, 0.2, x_features, y_target, "cross")

936. # 85% (70% training, 15% validation), 15% test
937. x_train85, x_test15, y_train85, y_test15 = split_data(0.7, 0.15,

0.15, x_features, y_target, "cross")

938. # 90% (80% training and 10% validation), 10% test

939. x_train90, x_test10, y_train90, y_test10 = split_data(0.8, 0.1, 0.1,

x_features, y_target, "cross")

940.

941. # features selected by pca method
942. # 80% (60% training and 20% validation), 20% test
943. x_train80_pc, x_test20_pc, y_train80_pc, y_test20_pc =

split_data(0.6, 0.2, 0.2, x_features_pc, y_target, "cross")

944. # 85% (70% training, 15% validation), 15% test
945. x_train85_pc, x_test15_pc, y_train85_pc, y_test15_pc =

split_data(0.7, 0.15, 0.15, x_features_pc, y_target, "cross")

946. # 90% (80% training and 10% validation), 10% test
947. x_train90_pc, x_test10_pc, y_train90_pc, y_test10_pc =

split_data(0.8, 0.1, 0.1, x_features_pc, y_target, "cross")

948. 948.
949. # Decision Tree

950. # different percentage with original features

951. print("Decision Tree ==")

952. print("Original")

953. DT_cross_val(x_train80, y_train80, "",

"", "") 954. DT_cross_val(x_train85, y_train85,

"", "", "") 955. DT_cross_val(x_train90,

y_train90, "", "", "") 956.

957. # different percentage with PCA selected

features 958. print("PCA")

959. DT_cross_val(x_train80_pc, y_train80_pc, "",

"", "") 960. DT_cross_val(x_train85_pc, y_train85_pc,

"", "", "") 961. DT_cross_val(x_train90_pc,

y_train90_pc, "", "", "") 962.

963. # Logistic Regression

964. print("Logistic Regression

==")

965. print("Original")

966. LR_cross_val(x_train80, y_train80, "",

"", "") 967. LR_cross_val(x_train85, y_train85,

"", "", "") 968. LR_cross_val(x_train90,

y_train90, "", "", "") 969.

970. # different percentage with PCA selected

features 971. print("PCA")

972. LR_cross_val(x_train80_pc, y_train80_pc, "",

"", "") 973. LR_cross_val(x_train85_pc, y_train85_pc,

"", "", "") 974. LR_cross_val(x_train90_pc,

y_train90_pc, "", "", "") 975.

976. # Random Forest

977. print("Random Forest ==")

978. print("Original")

979. # different percentage with original features

980. RF_cross_val(x_train80, y_train80, "", "") #setting no param =

default 981. RF_cross_val(x_train85, y_train85, "", "")

982. RF_cross_val(x_train90_pc, y_train90_pc,

"", "") 983.

984. # different percentage with PCA selected

features 985. print("PCA")

986. RF_cross_val(x_train80_pc, y_train80_pc,

"", "") 987. RF_cross_val(x_train85_pc,

y_train85_pc, "", "") 988.

RF_cross_val(x_train90_pc, y_train90_pc, "", "")

989.

990. # ---- FIND the best parameters and create the best performance model ----

-

991. # Decision Tree

992. print("Decision Tree ==")

137

993. # 90% (80% training and 10% validation), 10% test with PCA

994. DT_find_best_param(x_train90_pc, y_train90_pc)

995. DT_cross_val(x_train90_pc, y_train90_pc, 6, "entropy", 50)

138

Figure 44. Entire Python Code

996.

997. # Logistic Regression

998. print("Logistic Regression ==")

999. # 90% (80% training and 10% validation), 10% test with PCA

1000.LR_find_best_param(x_train90_pc, y_train90_pc)

1001.LR_cross_val(x_train90_pc, y_train90_pc, 0.9, "l1", "liblinear")

1002.

1003.# Random Forest

1004.print("Random Forest ==")

1005.# 90% (80% training and 10% validation), 10% test with PCA

1006.RF_find_best_param(x_train90_pc, y_train90_pc)

1007.RF_cross_val(x_train90_pc, y_train90_pc, 100, 10)

1008.

1009.# ---- Final Evaluation by using the best hyper parameters with the test

dataset

1010.DT_evaluation(x_train90_pc, x_test10_pc, y_train90_pc, y_test10_pc, 6,

"entropy", 50)

1011.LR_evaluation(x_train90_pc, x_test10_pc, y_train90_pc, y_test10_pc, 0.9,

"l1", "liblinear")

1012.RF_evaluation(x_train90_pc, x_test10_pc, y_train90_pc, y_test10_pc, 100,

10)

1013.

1014.preprocess_retention()

139

Appendix B - Figures of Results

Figure 45. Box Plot of total_login

Figure 46. Box Plot of total_playtime

Figure 47. Box Plot of total_inactive

140

Figure 48. Box Plot of average_playtime

Figure 49. Box Plot of average_inactive

Figure 50. Box Plot of entiere_period

141

Figure 51. Box Plot of avr_ch_wait

Figure 52. Box Plot of exp

Figure 53. Box Plot of coins

142

Figure 54. Box Plot of replay

Figure 55. Box Plot of age

Figure 56. Box Plot of Playtime of Each Chapter

143

Figure 57. Bar Chart of gender

144

Figure 58. Bar Chart of prefecture

145

Appendix C - Tables of

Results

Table 33 - 1. The Statistical

Output of All Variables (1/2)

 total_pla

ytime(mi

n)

total_log

in

total_ina

ctive(mi

n)

average_pl

aytime(mi

n)

average_i

nactive(mi

n)

first_logi

n

last_logi

n

entire_pe

riod(day

s)

churn_st

atus

count 3701 3701 3701 3701 3701 3701 3701 3701 3701

unique NaN NaN NaN NaN NaN 3539 3612 NaN 2

top NaN NaN NaN NaN NaN 2019/12/

18 16:29

2020/01/

10 11:28

NaN TRUE

freq NaN NaN NaN NaN NaN 26 9 NaN 2101

mean 1640.147

66

36.01378 307397.9

12

52.085955 16507.714

4

NaN NaN 211.5068

9

NaN

std 2207.535

35

50.26507

7

255321.9

19

28.872217 25549.829

8

NaN NaN 178.9529

66

NaN

min 0 1 0 0 0 NaN NaN 0 NaN

25% 339.55 700% 66484.59 33.93 4375.9 NaN NaN 42 NaN

50% 885.82 2000% 251926.1

7

46.74 9074.17 NaN NaN 173 NaN

75% 2213.1 4700% 496751.2

2

63.15 18022.08 NaN NaN 344 NaN

max 38390.98 742 928384.5

4

298 379752.63 NaN NaN 645 NaN

146

Table 33 - 2. The Statistical

Output of All Variables (2/2)

 ch4_play

time(min

)

ch5_play

time(min

)

ch6_play

time(min

)

ch7_play

time(min

)

exp coins replay avr_ch_

wait(day

s)

gender

count 3701 3701 3701 3701 3521 3521 3521 3701 3557

unique NaN NaN NaN NaN NaN NaN NaN NaN 2

top NaN NaN NaN NaN NaN NaN NaN NaN Female

freq NaN NaN NaN NaN NaN NaN NaN NaN 202200%

mean 234.5085 117.4420 99.96648 93.08005 13753.36 15485.90 0.370917 11.43101 NaN

 22 86 5 7 84 46 5

std 642.2993 360.9147 331.1410 492.9242 14314.31 15841.23 4.09627 37.92064 NaN

 92 59 06 26 39 05 7

min 0 0 0 0 150 200 0 0 NaN

25% 0 0 0 0 4570 4700 0 0 NaN

50% 0 0 0 0 8670 9920 0 1.4785 NaN

75% 274.37 0 0 0 17700 21760 0 6.457125 NaN

max 22511.83 7105.2 4787.72 14452.2 135010 155850 177 644.5389 NaN

147

Table 34 - 1. Explained Variables of Principal Components (1/2)

 total_lo

gin

total_playti

me(min)

total_inacti

ve(min)

average_playti

me(min)

average_inact

ive(min)

entire_perio

d(days)

ch1_playti

me(min)

ch2_playti

me(min)

ch3_playti

me(min)

ch4_playti

me(min)

PC-1 2.00E-

06

1.00E-06 1.00E+00 -6.69E-07 1.00E-06 0.0007 4.46E-07 0.000002 1.00E-06 0.000001

PC-2 -5.00E-

04

0.00023 -7.88E-06 1.23E-03 -0.002 0.0099 2.32E-03 0.002199 7.00E-05 -0.001188

PC-3 0.0102 0.01323 -2.06E-06 5.76E-03 -0.001 0.0061 5.67E-03 0.012157 0.0116 0.007957

PC-4 0.1663 0.18799 -6.05E-04 1.75E-02 -0.096 0.8606 8.42E-02 0.116752 0.1384 0.147524

PC-5 0.2719 0.30871 3.52E-04 3.62E-02 -0.129 -0.506 7.84E-02 0.161545 0.2256 0.281479

PC-6 -0.029 0.03238 -2.08E-05 1.11E-01 0.4419 0.0295 1.32E-01 -0.382636 -0.242 0.168011

PC-7 0.1508 -0.03262 -7.21E-06 -7.75E-01 -0.159 0.011 -5.39E-02 -0.169805 -0.134 0.072236

PC-8 0.0694 0.0559 1.86E-05 7.53E-02 -0.246 -0.026 7.83E-01 0.17535 0.0091 0.024768

PC-9 0.1422 0.02436 7.13E-06 -4.70E-01 -0.128 -0.012 -9.13E-02 0.15487 0.1345 0.062961

PC-10 -0.069 -0.02935 -2.39E-05 1.63E-01 0.0029 0.0344 -4.78E-01 0.11993 0.2582 0.440438

PC-11 0.1205 0.08686 8.32E-07 -2.45E-01 0.7706 -0.004 2.10E-01 0.093908 0.4173 0.02843

PC-12 0.056 0.05772 7.58E-07 2.64E-02 0.098 -0.001 -1.33E-01 0.331262 0.1194 -0.211524

PC-13 -0.14 -0.0956 -3.09E-06 -4.76E-02 -0.119 0.005 1.27E-01 -0.655647 0.2889 0.161819

PC-14 -0.081 0.01833 2.38E-06 6.26E-02 -0.208 -0.002 -2.28E-02 -0.229848 0.6743 -0.39824

PC-15 -0.047 -0.01299 2.87E-06 5.21E-03 -0.034 -0.004 1.01E-02 0.106602 0.0718 -0.140912

PC-16 0.1724 0.04301 -1.46E-06 1.73E-02 -0.034 0.0022 2.07E-02 -0.059972 -0.038 0.202304

PC-17 0.4638 0.08592 8.15E-06 2.14E-01 -0.102 -0.011 -2.69E-02 -0.170329 0.0664 0.377125

PC-18 0.7444 -0.25832 -5.03E-06 1.41E-01 0.0578 0.0068 -1.21E-01 -0.16183 -0.076 -0.409904

PC-19 -0.007 0.00207 2.78E-07 -3.74E-04 0.0051 -5.00E-04 -5.72E-03 0.008591 0.003 -0.001526

Table 34 - 2. Explained Variables of Principal Components (2/2)

 ch5_playtime(

min)

ch6_playtime(

min)

ch7_playtime(

min)

avr_ch_wait(d

ays)

exp coins replay gender age prefectur

e

PC-1 1.00E-06 8.98E-07 5.97E-07 7.69E-07 2.00E-06 2.00E-06 3.49E-07 -3.25E-08 -2.00E-06 -6.73E-07

PC-2 -0.001 4.60E-04 -1.01E-03 -9.65E-04 0.001 0.0012 -1.27E-03 1.20E-03 -0.104 -9.94E-01

PC-3 0.0091 1.01E-02 8.35E-03 1.47E-03 0.0128 0.012 -1.08E-03 -2.74E-03 0.9939 -1.04E-01

PC-4 0.1502 1.50E-01 1.33E-01 -3.16E-02 0.1635 0.1639 8.41E-02 7.86E-03 -0.021 1.14E-02

PC-5 0.2694 2.48E-01 2.29E-01 -7.15E-02 0.2839 0.2834 2.03E-01 -2.73E-04 -0.025 -1.88E-03

PC-6 0.1533 6.46E-02 2.74E-01 2.91E-01 -0.157 -0.149 5.52E-01 -1.61E-02 0.0043 -3.57E-03

PC-7 0.0241 -1.11E-02 8.13E-02 -4.48E-01 -0.139 -0.129 2.24E-01 4.50E-02 0.0098 -2.40E-03

PC-8 -0.171 -3.29E-01 -2.21E-01 -2.78E-02 -0.111 -0.1 2.66E-01 1.07E-02 0.001 2.21E-03

PC-9 -0.065 -7.69E-02 -8.02E-02 8.19E-01 -0.007 -0.01 2.76E-03 1.06E-02 -0.002 -9.19E-04

PC-10 -0.146 -3.06E-01 -3.69E-01 -1.23E-01 -0.041 -0.04 4.40E-01 -2.61E-02 0.0037 -1.34E-03

PC-11 -0.056 -8.19E-03 -2.00E-01 -1.33E-01 0.0109 0.0045 -1.87E-01 1.46E-02 -0.005 -2.80E-04

PC-12 -0.392 -3.56E-01 7.06E-01 -5.77E-02 -0.041 -0.047 9.85E-02 -3.76E-02 -0.002 2.31E-05

PC-13 -0.402 -1.43E-01 1.26E-01 3.37E-02 0.3078 0.3135 -8.56E-02 -4.20E-03 0.0016 -1.18E-04

PC-14 0.3272 4.34E-02 4.93E-02 7.15E-03 -0.269 -0.268 1.36E-01 -7.22E-02 0.0009 -8.36E-04

PC-15 -0.587 7.19E-01 -1.07E-01 -4.31E-03 -0.063 -0.058 2.69E-01 -8.61E-02 0.0002 1.04E-03

PC-16 -0.021 -1.09E-02 2.98E-02 -1.19E-02 -0.113 -0.12 -1.88E-01 -9.26E-01 -0.003 -1.11E-03

PC-17 -0.183 9.63E-02 1.09E-01 7.23E-03 -0.358 -0.347 -3.43E-01 3.53E-01 0.0003 -5.30E-04

PC-18 -0.036 -1.08E-01 -1.91E-01 8.90E-04 0.1577 0.1674 1.94E-01 -3.58E-02 0.0009 -3.28E-04

PC-19 0.0035 -9.50E-04 1.98E-03 2.27E-03 -0.704 0.7096 -7.52E-03 -7.05E-03 0.0004 1.07E-04

