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ABSTRACT
Multiple sclerosis (MS) is a major, immune- mediated, 
demyelinating disease and the major cause of non- 
traumatic disability in young adults. Susceptibility to 
disease is controlled by a variety of interacting features 
that include genetic and notably environmental factors. 
One of these risk factors appears to be the occurrence 
of traumatic brain injury. In a follow- on to previous 
analysis of head injury- induced risk factors for MS, 
analysis of Swedish Registry data of MS and matched 
controls demonstrates enhanced susceptibility to 
MS, notably when stratified for the presence of HLA- 
DRB1*15.01, absence of HLA- A*02.01 and occurrence 
of smoking, which are known risk factors, the risk of 
MS increases to OR 65.4 (95% CI 8.35 to 512). This 
can be mechanistically supported by a number of 
routes whereby brain injury can lead to expression of 
autoantigenic targets, or damage- related release of 
neuroantigens that could generate a novel autoantigenic 
response in draining lymph nodes following glymphatic/
meningeal lymphatic drainage. These may be different 
from other mechanisms that are relevant to susceptibility 
due to human leucocyte antigen expression and 
smoking.

RISK OF MULTIPLE SCLEROSIS
Multiple sclerosis (MS) is a major, immune- mediated 
demyelinating disease and the major cause of non- 
traumatic disability in young adults affecting about 
3 million people worldwide.1 Susceptibility to MS is 
controlled by a variety of interacting features that 
include genetic and notably environmental factors 
as seen by the elevated but relatively low frequency 
of disease concordance in monozygotic twins 
compared with the general population.1 2 However, 
it is evident there are inheritable factors controlling 
MS and there are elevated risks for people with 
family members who have the disease.1 3 Indeed, it 
is clear that MS is polygenic and over 230 genetic 
variants associated with susceptibility to MS have 
been identified, none of which, however, appear to 
be absolutely necessary for disease development.4 
Most are related to immune function and each 
variant carries a small increased risk, with sex genes 
and HLA- DR B1*15.01 (associated with increased 
risk) and HLA- A*0201 (associated with decreased 
risk) variants exhibiting the strongest associa-
tions.4 5 The HLA- DRB1*15:01 risk gene variant is 
common in northern Europeans, due to ancestry, 
where the frequency of MS is relatively high6 and 
is associated with increased viral load following 
Epstein- Barr virus (EBV) infection which is another 

risk factor for MS.7 8 Again, while being increas-
ingly viewed as a causal factor of MS, this common 
infection is associated with other autoimmunities.7 9 
The EBV- associated risk is not only associated with 
infection, but time of infection, typically later in 
European and Western societies, and the presence 
of mononucleosis.9–11 In addition, there is evidence 
that potentially ultraviolet light sun exposure and 
dietary and sunlight- induced vitamin D levels can 
influence susceptibility, possibly during gestation 
and the geographical distribution of MS to be 
present in areas further from the equator.12 13 The 
importance of environmental elements is further 
supported by the increasing occurrence of MS in 
second- generation immigrants to MS- endemic 
geographical regions.14 Genetics and geography 
are more difficult elements to control risk in MS 
or other autoimmunities however, some risk factors 
that affect MS are modifiable, with variable degrees 
of supportive evidence including: diet; childhood 
obesity and body mass index, organic solvent expo-
sure and smoking tobacco.15–20 These risk features 
also include head trauma.21 22

HEAD TRAUMA AND THE RISK OF MS
Traumatic brain injury (TBI) results from the 
alteration of normal brain function caused by an 
external force. TBI is a common condition affecting 
about 69 million (95% CI 64 to 74×106) people 
each year and is frequently caused by road traffic 
accidents.23 24 Moderate to severe TBI is associated 
with loss of consciousness from several minutes to 
many hours but many people experience mild TBI 
such as concussion following blows to the head.25 
It is of interest that TBI has been associated as a 
risk factor for a number of degenerative, neuro-
logical conditions which indicates the risk of the 
development of any neurological illness such as 
Alzheimer’s disease, Parkinson’s disease and other 
types of dementia subsequent to mild TBI was 
1.67 (95% CI 1.44 to 1.93, p<0.0001), including 
both neurological (OR 1.55, 95% CI 1.31 to 1.83, 
p<0.0001) and psychiatric (OR 2.00, 95% CI 1.50 
to 2.66, p<0.0001) outcomes.26 This may increase 
in amyotrophic lateral sclerosis (OR 3.1, 95% CI 
1.2 to 8.1) also.27 Likewise, there is supportive 
data to suggest that previous TBI is a risk factor for 
MS21 and Guillain- Barre syndrome.28 Meta- analysis 
of high- quality case–control studies suggests there 
are statistically significant associations between 
sustaining head trauma in childhood (OR 1.27, 
95% CI 1.12 to 1.44, p<0.001) and adulthood 
(>20 years) head trauma (OR 1.40, 95% CI 1.08 
to 1.81, p=0.01) and the risk of being diagnosed 
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with MS.22 In adult studies, about half of the cases (n=10/21) 
indicated an elevated risk with an OR over 2, and some had 
marked upper limits of the OR.22 This view has continued to 
be underpinned by subsequent studies in adolescents (11–20 
years old), that demonstrated increased MS risk (HR=1.29, 
p=0.03), notably in males (HR=1.41, p=0.04).29 This risk was 
increased further by multiple trauma (OR 2.33, 95% CI 1.35 to 
4.04, p=0.002) compared with single events (OR 1.22 (95% CI 
1.05 to 1.42, p=0.008)) including later diagnosis.30 31 However, 
this association has not been universally confirmed32–34 and 
may depend on the perceived quality of the studies.21 The risks 
of this could be influenced by the presence of comorbidities, 
such as thyroid disease and type 2 diabetes, and the genetics of 
susceptible individuals.31 35 As such, in a recent study showing 
increased risk of subsequently people developing MS (OR 1.34, 
95% CI 1.17 to 1.53), if people were stratified to both the 
expression of HLA- DRB1*1501 and absence of HLA- A*0201 
rendered an 18- fold increased risk of MS, compared with those 
with neither the genetic risk factors nor a history of head trauma 
(OR 17.7, 95% CI 7.13 to 44.1).31 As such, it was considered to 
be of interest to determine whether further stratification for the 
presence of other risk factors, such as smoking, would affect the 
risk of MS further, as seen with exposure to organic solvents and 
smoking where the risk in exposed HLA- DRB1*1501 positive, 
HLA- A*0201 negative non- smoker increased from OR 6.7 (3.7 
to 12.1) to OR 30.3 (11.7 to 78.3) in smokers compared with 
HLA- A*0201 positive individuals lacking the three risk factors.31 
Therefore, further similar analysis was undertaken to assess the 
impact of smoking on head trauma- related risk of MS (table 1). 
Although the numbers are small, the data indicate the risk of 
MS in TBI with HLA- DRB1*15.01 and HLA- A*02.01 in never- 
smokers versus smokers, increased from OR 12.7 (95% CI 4.47 
to 36.0) to OR 65.4 (95% CI 8.35 to 512), compared with those 
expressing the HLA- A*02.01 and lack of HLA- DRB1*1501 
expression or a history of smoking or TBI (table 1). This suggests 
that the genetics of recipients and their life history can impact 
the results of subsequent TBI. However, it is important that such 
statistical associations can be supported by plausible biology.

During ischaemic stroke, neurological damage will also release 
neuroantigens, but in contrast to head trauma, there is a lack 
of evidence for stroke as a risk factor for MS, although it can 
occur.36 Conversely, stroke appears to be more common in MS 
and could perhaps relate to altered vascular biology in MS.37 38 
However, the age demographic for MS is typically much younger 
than for stroke.39 There is immune senescence with ageing, and 
it does not appear that sequestration of the immune system in 
the CNS, as occurs in MS, develops following acute ischaemia,40 
suggesting that key aetiological features required for MS devel-
opment are lacking, possibly accounting for lack of a reported 
relationship.

PATHWAYS TO AUTOIMMUNITY
While the cause of MS is currently unproven, it is thought to 
represent an autoimmune disease of the central nervous system 
(CNS).1 3 MS is associated with the generation of mononu-
clear cell infiltrates around blood vessels leading to white cell 
entry into the CNS, damage of myelin and oligodendrocytes, 
and nerve loss and disability accumulation.1 3 Importantly, the 
response to early effective immunotherapy, which prevents 
peripheral immunity from entering the CNS, controls the accu-
mulation of disability in relapsing and progressive MS and 
demonstrates that this is a central part of the pathology, rather 
than a secondary phenomenon.41–43 This limits the development 
of mechanistically distinct neurodegenerative processes that 
respond slowly and poorly to relapse- inhibiting agents following 
exhaustion of the neurological reserve as seen in humans and 
animal models.44–47

Although self- reactive lymphocytes are typically deleted as part 
of the homeostatic, immune- tolerance mechanism, potentially 
autoreactive lymphocytes are generated in everybody, but are 
typically controlled.48–50 Lymphocytes are produced in the bone 
marrow and are educated in primary (thymus) and secondary 
(spleen, Peyer’s patches, tonsils, appendix and lymph nodes) 
lymphoid organs to avoid autoimmunity.50 Naïve cells express 
adhesion molecules such as L- selectin (CD62L), which promote 

Table 1 OR with 95% CI of multiple sclerosis among subjects categorised by HLA- DRB1*15.01 status, a reported history of smoking and head 
trauma

HLA- DRB1*15.01 + HLA- A*02.01– Ever smoking Recent TBI Cases/controls OR (95% CI)

– – – – 159/591 1.0 (reference)

– – + – 195/475 1.50 (1.17 to 1.91)

– + – – 252/534 1.73 (1.37 to 2.19)

– + + – 288/419 2.42 (1.91 to 3.07)

+ – – – 214/236 3.83 (2.92 to 5.04)

+ – + – 249/210 4.99 (3.79 to 6.55)

+ + – – 301/197 6.56 (4.99 to 8.62)

+ + + – 308/136 9.62 (7.21 to 12.8)

– – – + 5/15 1.14 (0.40 to 3.23)

– – + + 8/19 1.59 (0.67 to 3.78)

– + – + 10/20 1.86 (0.84 to 4.10)

– + + + 18/13 5.22 (2.45 to 11.2)

+ – – + 9/4 9.80 (2.94 to 32.7)

+ – + + 13/12 4.93 (2.16 to 11.2)

+ + – + 15/5 12.7 (4.47 to 36.0)

+ + + + 13/1 65.4 (8.35 to 512)

The study group comprised the Swedish population aged 16–70 years. Incident cases of McDonald criteria positive MS were recruited via hospital- based and privately run 
neurology units throughout the country. For each case, two controls were randomly selected from the national population register in close temporal alignment with the case’s 
inclusion, matched by age in 5- year age strata, sex and residential area.31
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recirculation and migration through high endothelial venules 
into lymphoid tissue where they are most likely to contact 
infection- related antigens, presented by antigen- presenting cells, 
which drain via the lymphatics from the surrounding tissues50 51 
(figure 1). Once activated by their target antigens, naïve cells 
proliferate and differentiate to become memory/effector cells 
that express new adhesion molecules such as alpha4 (CD49d), 
beta1 (CD29) integrins and chemokine receptors that allow 
them to circulate and surveil tissues for infection or in the case of 
B cells to secrete protective antibodies.50 51 This process provides 
lifelong control of infection that is central to immune func-
tion. However, if these immune cells recognise self- targets then 
uncontrollable autoimmunity may develop.48 50 52 Once suffi-
cient memory cells are generated, relatively innocuous environ-
mental stimuli can trigger their activation, circulation and entry 
into the CNS, as seen in animal models of MS52–55 (figure 1). 
Although there has been some concern over whether the initial 
response in MS is generated within the CNS or periphery,41 given 
the recent discovery of glymphatics and meningeal lymphatics 
that allow drainage of brain proteins and cells into peripheral 
lymph nodes,56–58 even centrally derived triggers can generate 
peripheral immunity that later enters the CNS to deliver 
effector function. As such, myelin antigens and maturing B cells 

that accumulate in the brain during disease can be detected in 
draining lymph nodes in MS.59 60 Meningeal lymphatic activity is 
important during recovery from TBI and therefore this pathway 
is operational during TBI.61

Highly effective therapy in MS is associated with depletion 
or functional inhibition of memory B and T cell activity, which 
limits blood–brain barrier dysfunction, cellular inflammation 
and nerve damage.42 62 Memory B cells are not only formed in 
response to antigen- driven expansion and maturation signals, 
but can be created independently of antigen- driven events 
following EBV infection due to the capacity of EBV to mimic B 
cell receptor and CD40 stimulatory/costimulatory signals.62 The 
genetics of the host may facilitate this in both positive or nega-
tive ways, such as, in the case of increased (HLA- DRB1*15.01) 
or decreased (HLA- A*02.01) cellular viral loading due to expres-
sion of MS- risk associated human leucocyte antigens (HLA) vari-
ants either involved in, or protective against, EBV infection.5 62 
Once generated, memory B cells have the potential to present 
autoantigen to T cells to create T cell memory, secrete cytokines 
that influence blood–brain barrier, myelination and neuronal 
survival, but are also precursors for plasmablasts and plasma 
cells that can that may drive pathology either directly or indi-
rectly via activation of the local glial response.42 62–67 While there 

Figure 1 Mechanistic pathways explaining traumatic brain injury (TBI) as a risk factor for the development of multiple sclerosis (MS). MS is associated 
with the entry of pathogenic immune cells into the central nervous system (CNS) due to signals from within the peripheral immune system, possibly 
following additional activation signals acquired during re- circulation in tissues, such as the lungs. This activation is possibly due to molecular mimicry 
between infection- targeted immunity and brain tissue or autoantigen- induced immunity. This could occur following neuroantigen release within the CNS 
that drains into the lymphoid tissue where neuroantigen- specific naïve cells may be activated to become memory/effector cells and circulate through tissues. 
TBI may initiate immune exposure to neuroantigens that are released during damage or produced during the removal of debris during repair. Alternatively, 
the damage may cause upregulation of novel antigens, such as HSPB5 that most people are immune to, and autoimmunity develops when their target 
antigen is contacted within the CNS. In addition, reduced blood–brain barrier function due to injury may allow neuroantigen- specific cells to enter the CNS 
and immunity will develop following contact with antigen. Produced with www.biorender.com.
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is evidence for the formation of pathogenic antibodies in MS, 
possibly as a consequence of damage,68 these could be generated 
locally following differentiation of mononuclear cells entering 
the CNS or by entry from the periphery due to mononuclear cell- 
induced blood–brain barrier dysfunction. Therefore, delivering 
antigen to lymph nodes and the generation of effector memory 
cells capable of responding to CNS antigens are probably key 
components in the generation of CNS autoimmunity (figure 1).

PATHWAYS OF CNS AUTOIMMUNITY AFTER TBI
It is evident that a prodromal phase of MS occurs where clini-
cally silent disease develops, as seen in the chance detection of 
a radiologically isolated syndrome showing typical MS imaging 
and immune- pathology seen following biopsy and/or lumbar 
puncture, which is evident years before clinically definite MS 
occurs.69 70 Likewise, exposure to potential aetiological trig-
gers, such as EBV, occurs sometime (median 5–8 years, range 
0–12 years) before diagnosis.7 8 This indicates that it may take 
some time for TBI to trigger MS. Furthermore, given the high 
frequency of TBI and low frequency of MS, the conditions that 
trigger MS after TBI will be a rare event, in MS- susceptible indi-
viduals. However, there is biology that can support this causal 
link.

In MS, it is widely believed that immunity to infections such 
as EBV can induce memory T and B cells which in turn induce a 
pathogenic response due to cross- reactivity with myelin proteins 
including: myelin basic protein, glialcam/hepacam, myelin oligo-
dendrocyte glycoprotein following molecular mimicry between 
the amino acid sequences shared between proteins.71–74 While 
TBI is associated with post- traumatic infections,75 it is not clear 
if such mimicry- related response occurs. However, epitope/
determinant spread is a simpler plausible mechanism by which 
CNS injury liberates neural antigens that generate an autoim-
mune response (figure 1). This was first shown in animals where 
viral- induced damage liberated neuroantigens that created and 
drove a pathogenic autoimmune disease in the CNS.76 This 
was further shown to occur during CNS- autoimmunity, where 
it was also shown that removal of draining lymph nodes could 
inhibit epitope spreading.76–79 Epitope spread also occurs at the 
T cell and antibody level during MS.80 81 Although the target 
antigen(s) in MS are unknown/unproven and may be diverse, 
there is ample evidence that TBI can create damage that liberates 
antigens, implicated in the pathogenesis of MS and other neuro-
logical conditions, that reach the circulation and may target 
cells in many lymphoid tissues including: myelin protein, myelin 
lipids, astrocytic and neuronal antigens.82–88 The pathological 
process during TBI, following a physical impact to the head, may 
result in long- lasting dysfunction of the blood–brain barrier and 
neuroinflammation,89–91 which will facilitate immune access to 
the CNS, and also the release of neuroantigens into the circula-
tion. As such, it is evident from examining neurofilament release 
that neuroantigen is being chronically released into the circula-
tion for months or even years following severe TBI,83 suggesting 
the damage and remodelling occurring following TBI acts as an 
antigen depot providing similar low antigen release akin to that 
occurring in adjuvants used in CNS- autoimmunity in animals.44 
This may contribute to the development of MS. While the func-
tional significance of this remains hypothetical, CNS injury has 
been associated with the generation of neural autoantibodies, 
indicating that TBI can be associated with autoimmunity.85 92 
Increased blood–brain barrier function may facilitate entry of 
pathogenic memory/effector cells into the CNS and may facili-
tate entry of naïve cells that may encounter their cognate antigen 

and become sensitised. While the lymphoid tissue is specialised 
for this activity and is, thus, perhaps the more likely location 
for activation, it has been suggested that epitope spread can be 
centrally generated.93 Importantly, TBI induces alpha B crystallin 
(CRYAB/HspB5) within the CNS, often in astrocytes.87 This is of 
significance since this small heat shock protein is the most abun-
dant, dominant autoantigen upregulated in MS brain tissue.94 It 
is induced in antigen- presenting B cells following infection with 
viruses such as EBV, which can activate CRYAB- reactive T cells 
that are not typically eliminated due to a lack of thymic expres-
sion that induces negative selection of reactive lymphocytes.63 
CRYAB- specific antibodies are also induced during MS.73 This 
provides another mechanistically relevant approach that could 
lead to autoimmunity in MS following TBI.

It seems that a history of smoking, a well- known risk factor 
for MS susceptibility and poorer prognosis,95 96 increases the 
risk of TBI- related MS (table 1). How these features interact 
is unproven, but it is likely that the mechanisms of smoking- 
related MS risk are distinct from those suggested above to relate 
to TBI- associated MS. Although smoking clearly can exert CNS- 
directed effects: such as the production of free radicals, oxida-
tive stress, carbon monoxide, vascular changes and hypoxia that 
can damage the nervous system,97 98 it induces many systemic 
effects, including the induction of pro- inflammatory cytokines, 
increases in, and reduced regulation of, lymphocytes and lung 
inflammation, which may increase the likelihood of autoimmu-
nity.99 The latter is important since evidence in animal models 
of MS suggests that the lung contains a niche for the generation 
of potentially auto- aggressive lymphocytes, which can become 
activated and licensed to migrate into the CNS where they can 
induce autoimmunity.100 101 However, while there are sound 
mechanistic reasons of how TBI could impact on MS suscepti-
bility, these remain hypothetical and will require further study, 
and effective disease manipulation following the targeting of the 
relevant pathways, to assess causality.
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