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Abstract
We prove the Kato-Ponce inequality (normed Leibniz rule) for multiple factors in the setting of
multiple weights (Ap weights). This improves existing results to the product of m factors and extends
the class of known weights for which the inequality holds.

1 Introduction

In the study of Euler and Navier-Stokes equations, Kato and Ponce [7] obtained normed Leibniz rules for
fractional derivatives of the form

HJS(JEQ)HLP < On,sml,pz (”JSf”Lm HgHLm +Hf||Lm ||Jsg||Li”2) (1~1)

where f,g € S(R™), p% + p% = % with some conditions on s,p1,p2. Soon after their initial work, Kato-
Ponce (denoted KP) inequalities have been used in a variety of applications related to PDE. In view of the
great range of applications, it became apparent such inequalities soon merited their own study. Incremental
improvements in range of the smoothness index s and the integrablity indices p1, p2 were made [I], [6], [3],
[2], [I1]. For a detailed history of the development of the KP inequality see [10]. The cumulative contribution
of these works gave with 1 < p1,ps < 00 and s > n(1/min(1,7) — 1) or s € 2N being the largest range
of s. Remarkably, this includes the endpoint cases L' x L' — L2 and L® x L* — L*, which is uncommon
for bilinear operators.

A weighted KP inequality is an inequality of the form

17 9) oy < Cosnrs (19 1L ) 191 20 gy + 10 2o ) 170 72 ) (12)
where f,g € S(R"), p% + p% = 117, w,wy, wy are weights (non-negative and measurable). In most cases w is

related to wy,wy via w = w* wl?. Naibo and Thomson [I3] proved a more general normed Leibniz rule
over Triebel-Lizorkin spaces that implies when 1 < p1,p2 < 00, wy € Ay, we € Ay, and the range of s
is sharp based on n, py, pa, w1, we. Oh and Wu [10] proved when 1 < py,p2 < 00, and wy = (1+|-])*,
wy = (14 |-])*?, a1,z = 0 and notably s is independent of the choice of weights.

In this paper we prove the KP inequality with respect to multiple weights denoted by Az. The Az
class of weights was developed by Lerner, Ombrosi, Pérez, Torres, and Trujillo-Gonzélez [9], as a natural
class of weights for m-linear Calderén-Zygmund operators. While closely related to the tensor product
of Muckenhoupt weight classes, the multiple weight class (Ag), is strictly larger (see Defintion [1.2). If

P
(wi,...,wm) € Ap then w, may not even be locally integrable. Fortunately, their geometric average is

better behaved, indeed w = [}, wi/ Piis in A,y [9]. Hence we are able to define 7, = inf{p : w e A,}.

In addition, we consider KP inequalities with a product of m functions i.e., we obtain estimates for
J*(f1--- fm). This is necessary to point out since the 2-factor KP inequality does not imply the 3-factor
KP inequality in the full range of indices. For instance, in the 3-factor case let p; = ps = 3/2,p3 = 2 and
observe that if ay, as are such that % + % —+ % = (Tll + % = % + a%, then a; < 1 and as < 1. It follows the
2-factor inequality can not be applied in this case as it requires the indices to be greater than or equal to

one. We now state our main result.
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Theorem 1.1. Let m € Z™T, % <p<oo,l<p,....,pm < 0 satisfy % = p% + -+ pi. Let W € Agp.
If s > n(m — 1), then there exists a constant C = C(w,n,m,s,p1,...,Pm) < 00 such that for all

f1e S(R™) with 1€ {1,...,m} we have

”Js(fl T fm)”LP(w) <

. . (1.3)
C(HJ f1||LP1(w1)Hf2||Lpz(w2) o '”meLm(wpm) +e +||f1||LP1 (w1)||f2||LP2(w2) o HJ an”me(wm) )

Furthermore, the same estimate holds with D? in place of J°. Moreover, the range of s is sharp.

Regarding the sharpness, Oh and Wu [10] give an example using power weights i.e., weights of the form
| - |%, that shows if s is outside of the range given in theorem [I.1] then (1.3]) could fail.

1.1 Notation

Cubes in R™ will be denoted by @ and have sides parallel to the axes. A ball of radius r and center x € R™
is denoted by B(z,r). The space LP(w), where w is a non-negative measurable function and 0 < p < o0, is
defined as the set of Lebesgue measurable functions on R™ such that the norm

HfHLP(w) = (J ) 1 () Po(z) dx) 1/p

is finite. For A,B € R we use A < B to mean A < CB for some positive constant C'. The dependence of
the constant C on other parameters or constants will be clear from the context and will often be suppressed.
We also define A ~ B if and only if A < B and B < A. In practice the implicit constant will never depend
on the functions involved.

For f € L*(R™) the Fourier transform and inverse Fourier transform are respectively defined by

fo=| fwermviay  J© = fwenidy.

R

On occasion we will use F to denote the Fourier transform, precisely F(f) = f and F~1(f) = f . The space
of Schwartz functions i.e., smooth rapidly decaying functions, is denoted by S(R™).

Let ®(£) be a radially decreasing bump function on R” supported in |€] < 2 and equal to one on |¢] < 1.
Let W(¢) = ®(¢) — &(2¢), which is non-negative and supported in the annulus 1 < [¢] < 2. Notice that '
gives rise to a partition of unity i.e., for £ = 0 we have

Y W(27ig) = 1, (1.4)

JET

as well as the useful identity Zj<j0 ‘@(2’%) = @(2*3‘05) for any jo € Z. The operators A; and S; are defined
to be convolution with 27"¥(27.) and 27" ®(27.) respectively. The operator A; , is defined to be convolution
with 29"W(29 . +cp), where ¢ is a constant independent of j and y € R™. The explicit value of ¢ will depend
on the context. Occasionally we will will also use the symbol A; ,, ,,, which denotes convolution with
2jn\’1}(2j cteipn + CQ,UQ).

We use M to denote the standard uncentered Hardy-Littlewood maximal operator over cubes. A Muck-
enhoupt weight or A, weight is a nonnegative locally integrable function w on R™ such that for 1 < p < o
there exists a constant C' > 0 where for all cubes @ in R™, we have

p—1
1 1 ~5 g
(@ L) w(x) d:z:) <|Q| L?w(:z) =1 d ) <C.

We say w e Ay if M(w) < Cw a.e. Let Ay, = J,c(1,4) Ap and for w € Aq, define 7, = inf{p : w e 4,}.
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1.2 Inhomogeneous Decomposition

In this subsection we break J*(f;--- f,,) into a sum of paraproducts of 2 types; those given by (1.8)) and
(1.9). Observe for f; € S(R™) we have

J(fife fm)(2)
=F N+ P2 (fife e fm))(@)

= J”(l + |§1|2)§(f1 Kook ﬁ\n)(§1)62“51'$d§1

= f mn(l G Fi(6 — &) fa&a — &3) - Fun(€m) ™80 dE, - - €y,
= fmn(l + &+ + §m|2)%f1(&)f2(52) . ..f;(gm)e%i(gl+..‘+5m),wd§1 e dE, 15)

where the last line is from applying a lower triangular orthogonal matrix where all non-zero entries are 1.
Using ([1.4) and = € R™ we can write (1.5 as

L (X tera)be e G
" jenm (1.6)
K (L4 €+ + Em) A (E) Fo(&) - ()2 FEm)2ge, L ge,

We now decompose Z™ into 2™ pieces so that we can express (|1.6)) as a sum of paraproducts. For 7 =
(115 nm) € {0,1}™\{0} let

Bz = {(J1s-- -, Jm) €Z™ :if n, = 1 for some 1 <t < m then, max{ji,...,Jm} = j: and j; > 0}.

Notice that

7m = B, (1.7)
7e{0,1}™
where By := (Z<o)™ = {0,—1,-2,...}™. For 7 = (m1,...,mm) € {0,1}™ let
Y(2-d =1 A, =1
an (fk) — A( gkl) Nk Vnk — J Nk
! P27 =0 / Sic1 me=0
Observe that
2RI TIG) W TIE) = Y YO (&) (1 (&),
Jezm 7€{0,1}™ jeN

Substituting this into (1.6]) gives

(Y Seren- @ e)

7€{0,1}™ jeN
X (Lt Jn o 4 &l 2 (60 fa(€a) - Fan ()T E Ty
. JS(Z(‘/jnlfl) o (Vf’"fm)>

fe{0,1}m jeN

= ((So ) (Sofu)) + D T (DR (V" )

77e{0,1}\{0} JeN

Note that the coordinates with a 1 in 7 correspond to a A; operator, while the coordinates with a 0 correspond
to a S;_1 operator. Let

j(f) (ij fl) T (‘/jnmfm)'
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Define the inhomogeneous paraproduct, @77‘], for 7= (n1,...,7m) € {0,1}™ as

P4 (frs- s fm) = (Sof1) -+ (Sofm)
PL(frr o fm) = DUl (F) = DV 1) -+ (V™ fom).-
jeN jeN
Notice that J* (32;71 ( f )) is a well defined function; this can be seen by the Lebesgue dominated convergence

theorem in conjunction with the fact that fi are Schwartz functions and the support of % Furthermore, we
have supp]-'(u?(f)) < B(0,m2/*1).

Let lp € {1,2,...,m}. Since there are finitely many 7, and 77 with exactly Iy ones can be treated similarly
up to permutation, it is enough to show the result for an 77 where the first [y entries are one, specifically let

o= (1,1,...,1,0,0,...,0).
—_——

lo

Thus in the sequel we will focus our attention on the terms
T (P ) = 7 ((Sof1) - (Sofm)) (18)
T (23 (i) = 7 (2wl ()
jeN
= (DA F) + (Aifi) (St firs) - (Sy-1fm) ).

jeN

(1.9)

1.3 Homogeneous Decomposition

The decomposition for the homogeneous case D*(f; -+ fy,) is similar. We decompose Z™ In the following
way. For 7= (n1,...,7m) € {0,1}™ let

g ={(J1,-- -, Jm) € Z™ :if n; = 1 for some 1 <t < m then, max{ji,...,Jm} = ji}-

Notice that

zr= || % (1.10)
7e{0,1}™
For 7 = (m1,...,nm) € {0,1}"™ let
Y(2-i =1 A =1
Q;]k (fk) . A( 7]?1) Mk ijnk — 7 Nk
®(2 &) M =0 Sji-1 =0

Observe that
S W)Y ) PR IE) = Y Y QT (&) QI (En).

jezm {0, 1}m jez
Changing (1 + [& + -+ &%) 2 to |&1 + - -+ + &, |® and substituting the above equation into (T.6]) we obtain
D*(fifa- - fm)(x)

[ (Y S aren)
Rmm ™ def0,1)m jez
X |61+ A Eml A€ fa&) -+ Fon (€)™ EHHEm) e e,y o e,
3 DS(Z(V}mﬁ) . (Vf’"fm)>.

7€{0,1}™ JEL
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Define the homogeneous paraproduct, 327?, for 7= (M1, ...,nm) € {0,1}" as
PR(fry- - fm) = D) = DV 1) - (V™ fon).-
jeZ JEz.

Let lg € {1,2,...,m}. Since there are finitely many 7, and 77 with exactly y ones can be treated similarly
up to permutation, it is enough to show the result for an 77 where the first [y entries are ones, specifically let

7o = (1,1,...,1,0,0,...,0).
—_——
lo

In the sequel we will focus our attention on the term

D"‘(,@D(fl,...,fm)> :DS(Zyjo(f’))
JEZ
=DS(Z(Ajf1)(Ajf2) (A f10)(Sj-1fig+1) - (Sj—lfm))~

JEZ

(1.11)

1.4 The Az Condition

+ -+ 2. Given @ =

Definition 1.2. Let P = (P1y--sDm) with 1 < p1,....pm < 0O satisfy 1% = p% o

(w1, ..., wy) set
m
n P/p;

We say that @ satisfies the Ap condition (or We Ap ) if

J l/p J‘ 1- p 1/p;
sup < 00,
[ \QI

where the supremum is taken over all cubes QQ with sides parallel to the axes.

It turns out that w € A,,;,, which will be crucial for our results. The accompanying maximal operator
called the multilinear maximal function given below is trivially smaller than the m-fold product of Hardy-
Littlewood maximal operators.

Definition 1.3. Given f: (f1,---, fm) where each entry is measurable, we define the mazximal operator M
by

f supn ‘Q|f |f] Yj ‘dij

where the supremum is taken over all cubes Q) containing x.

In analogy with the relationship between A, and the standard Hardy-Littlewood maximal operator we
have following relationship between A5 and the multilinear maximal operator.

Theorem 1.4 ([9]). Let 1 <p; <, j=1,...,m, and % = p% +... 4+ pim. Then the inequality

m

IM() o) < CT T 1515 (w;)
j=1

holds for every measurable f if and only if e Ap.

We will need the following result.
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Proposition 1.5. Let F=(f1, s fm) € (LR))™ and ¢ € S(R™) forj e {1,...,m}. ForteR.q define
the operator Y7 to be convolution with t="¢’ (t~1.), then there is a finite constant independent of t such that

(T3 (T8 )| < Conpt,ipre MUF):

Proof. In this proof we will use the same decomposition of Z™ as that for D*(f; ... f,,) into paraproducts,

namely
zm= || .
77e{0,1}m
First we define some notation. Let A; ; == {y : 2%t < |y| < 2**1t}. For j e {1,...,m} define
@ = | | e = )|,
tk
and
S —way = [ e ) - )]
1<k JAe ly;|<2k+1t
Observe,

N

[(Tefr) (@) (T fm) ()]

> i, (@)l (2)

kezm

= Z Z akl ape, ().

7e{0,1}™ ket

([Jemere it — o dm) -+ ([|ememe v e = )] dum)

Since there are finitely many 77, and 17 with exactly [y ones are the same up to permutation it is enough to

show the result for an 77 where the first [ entries are one, specifically let

o= (1,1,...,1,0,0,...,0).
—_——
lo
It follows
D an,ail = ) ap(@) - a (@) (@) - b ()
keoty, keZ
< D) ag(@)bibi () - b ().
keZ
We now estimate aj and b), for j € {2,...,m}. Let 4 > n(m — 1), then

ak(a) = L R ) e — )|

J2"t<y<2k+1t min «@)%’ (thl‘)_’s (@)_nvl(f” —y1)ldys

min (22 2” k7)2 M (@ — y1)|d

J t<\y\<2k+1t

— dy; -
) (] g 1~ 01

To estimate b), for j € {2,...,m} we have

@ =] e e |
y;1<

(1.12)

(1.13)

(1.14)
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) 2(k+1)n
< ]H T — Az — u)| dus
HSO Lo 9(k+1)n flyj|<2k+1t’fj (x y])| Yj
1
30,250 Jpqnng 7791 1.15)
Applying estimates (1.14]) and (L.15) to (1.12) we obtain
Z min (2%2‘%) o(k+1)n(m—1) ][ [f1(x —y1)|dys - ][ | frn (@ — Y ) |dym < M(f)(x)
keZ B(0,2k+1¢) B(0,2k+1¢)
where the implicit constant is independent of ¢. 0

Remark 1.5.1. Suppose that in Proposition the T{ were replaced by the shifted operators T{,u defined
by convolution with t="@’ (t~1 - +p) for p € R™. Then the final constant grows polynomially in |u|, i.e. see
1.16). To see this notice that the only part of the proof that this effects is the estimate of a}., specifically at
1.13), where we bound it by a radially decreasing function. We will make use of the simple inequality for
V1,02 € R™

1 <1+|1}1|
1+‘1}2—U1| = 1+|’U2|

in finding the new estimate. Observe,

1

1/p—1 —1 —ntl (I + )2
Ty )| S QU+t y + g -
"ty + ) < L+ [ty + pf) (1t -y

and
(L+ |p)m*

(1+ [ty
It follows that we may estimate |p(t~' - +u)| by a constant multiple of

() (5 ) ()

Then continuing the proof we obtain the bound

lp (" )| S L+ [ty + )~ <

(T 1)+ (C )| < (L ) Cop o M), (1.16)

In practice there will be Fourier coefficients of arbitrary good decay to cancel out the polynomial growth of
(L4 [ul)" 7.

Let 0 € L*(R™"). The m-linear Fourier multiplier is defined as

To(frs- o, fn) (@) = fmn 2 Et ) o (g1 ) FL61) - Fn(En) dEi . .

The first use of a bilinear multiplier theorem that employed a Héormander-type smoothness condition like
that in was introduced by Tomita [I2]. Then Grafakos and Si [4] extend this multiplier theorem to
the m-linear case. Soon after the development of A z-weighted Calderén-Zygmund inequalities in [9], Li and
Sun [§] proved the Ag-weighted m-linear multiplier result Theorem (1.6

Let A be a Schwartz function on R™" satisfying
1
2

Supp/\gz{(flw..,fnﬂ co<al 6] < 2} and > AQ27F&,...,27%,) = LY(&, ..., &) # 0.

keZ

1
Pm

Theorem 1.6 ([§]). Let P = (P1y - sDm) with 1 < p1,...,pym < 0 and p% +- 4
mn/2 <t < mn, and o € L (R™) with

= %. Suppose that

t
Sup |70k | s oy < 0 (1.17)
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where
Uk(£17 e ,£m> = A(gla cee 7§m)0(2_k£17 sy 2_k§m)

Let ro :=mn/t <p1,...,pm < 0O andzﬁeAﬁ/m. Then

7ot

N
Fill 2oi () - 1.18
Lp( EH Ie: (i) (1.18)

1.5 Decay and Summablity

In the proof of Theorem the paraproducts of J*°(f1--- f;n) can be classified into two types; high-high
frequency (diagonal) terms and high-low frequency (off-diagonal) terms. The multiplier theorem of the pre-
vious section, Theorem will deal with the high-low frequency terms. This leaves the high-high frequency
terms. In the unweighted bilinear case a technique using Fourier series is used to write J°(3 ey A f14; f2)
essentially as a sum of (A;J°f1)(A,f2), then the desired estimate follows from the Cauchy-Schwartz in-
equality, a square function estimate, and Hélder’s inequality [6]. In the A s-weighted case this method will
not work for two reasons. First, the Fourier coefficients used in the Fourier series technique may not decay
fast enough. Secondly, square function estimates may not work in this weighted setting, indeed recall if
(w1, wz) € Ap then wy, wy may not even be locally integrable functions.

To handle the issue of summablity we will adapt an averaging technique of Oh and Wu [I0], but apply
Hélder’s inequality later in the proof. We will apply a useful theorem of Naibo and Thomson (Theorem 3.2,
[13]) that allows us to side step the issue of decay.

Theorem 1.7 ([13]). Let f e (L(R™)™, we Ay, i€ {O 1}™, 0 < p < and s > n(min(1,7/7,)"t = 1).
Then for the homogeneous paraproduct @D(f) = dez J (f) we have

[N

p (D) = (SR
JEZL L (w) JEL L7 (w)

where the implicit constant depends only on w,n,s,p. Furthermore, for a inhomogeneous paraproduct with
the same parameters we have

P(Ru)| =] (S eedie)

jeN L7 (w) jeN

[N

Lr(w)

Bernstein’s inequality says for 1 < ¢ < o0, f € S(R™) and j € Z that HA]-(DSf)HLq ~ 2js||Aj(f)HLq. We
need a way to directly express A;(D?®f) in terms of A;f and vice versa without the appearance of a norm.
In fact we need such expressions for the shifted Littlewood-Paley operator A; ,. Recall the operator A; ,

means convolution with 20"W(29 - +cp), where c is a constant independent of j and p € R™.

Proposition 1.8. (Bernstein-type expressions) Let s € R, and let 7:/1\ be a C*(R™) function supported in the

annulus = < |€] < 2. Define A?’f to be convolution with 29™(27.) for f € S(R™) and let j € Z. Then one
has
JAYf(x) =20 ) ¢ AV f(x) and 2°AYVf(x) = > ¢j AT f(x) (1.19)
HEL™ HEL™

where |c; | < (1+|u])™ for any N € N, when j > 0, the implicit constant is independent of j. Analogously,
for the operator D® and j € Z we have

DAY f(x) =2 Y ¢, AV, f(2) and 2°AYf(2) = Y] ¢, AV, D* f(a), (1.20)

HEL™ UEL™

where ¢, is a rapidly decaying constant in ||, which does not depend on j € Z.
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Proof. Let ¥, be a bump function that is 1 for 1 < |¢] < 2 and supported in 1 < [¢] < 4. Let 0;(¢) =
(2727 + |€|?) 24h, (€) which is a smooth compactly supported function. Furthermore, o; and all of its partial

derivatives are uniformly bounded in j due to the support of z/ZJ: and the fact that j > 0. Expanding in
Fourier series we have

(&) = X[=a,417(§) 2 Cj,u@%ig'% (1.21)

HEL™

where due to 0;’s smoothness the coefficients satisfy

o=y,
PR PN T A )Y

for any N € Z*, where the implicit constant is independent of j and p. Observe for j = 0,

JSA;?’f( ) J(1_|_ |£| ) (2 Jg)Awf(f) 27Ti§-:cd§
:JQJ’S(Q 2j +|2 j£| ) (2 jf)A¢f(£)62”i§'md§
_ QJSJ Z ¢ 2m§2 i— 3MA¢f(£) 2miE- zdf

HEL™

= 2Js Z cj’MAgi“f(m).

HETL™

To get the other direction observe,

—

PoAYf(a) = [[2°(1+ gP) L2 I Q)T

= [ s i) i AT e
o DT N B

HEZ™

= ZCJqu J* f ().

HEZL™

The equality in (1.20]) follows by the same technique.
O

Proposition [I.§ combined with the following averaging lemma will allow us to achieve summablity of the
diagonal paraproduct.

Lemma 1.9 ([T10]). If ar, < min(2**A,27%B) for some a,b, A, B > 0 and every k € Z, then for any u > 0,
we have {ag}rez € (“(Z) and
b _a_
{ak}rezllpn < A=F? B0,

In particular, if | fill -,y < lak| for 0 <r < o0, every k € Z, and a weight w then

ka < A5 Bat,

keZ L (w)



2 PROOF OF THEOREM[1.1|

2 Proof of Theorem (1.1

2.1 Casel. [ =2
Proof. We need to bound

I (DA L2) -+ (A i) (St fisn) -+ (St fm))
jeN LP (w)

where at least the first two operators are A;. For j € Z define operators

T{(frye o ) = (D F) (g f2) - (A i) (Sj—1 figs1) -+ (Sj—1fm)

and

TI(frseeesfm) = D0 D% GG (B F1) (D f2) (B f3) -+ - (B fro Sjmr figr1) -+ (=1 fim)
W1EZ po€Z
where ¢;,, < (1+|-])7" for I = 1,2 any N € N, and the implicit constant is independent of j € Z. Since
by hypothesis s > n(min(1,r/7,)~" — 1) we apply Theorem [1.7|and the fact that />, ; [t;]> < X5 [t;] to

obtain

T (A2 -+ (A5 ) (S fugs1) -+ (Si1fm))

jeN L (w)

S| 201 ) (A f2) - (D fiy) (i1 Fig 1) -+ (Sj-1fm)|

jeN Lo (w)
We now obtain two upper bounds on
Hst(Ajfl)(Ajfz) (A f1)(Sj=1f1g+1) - (ijlfm)‘Lp(w)‘ (2.1)
Trivially, (2.1) is bounded above by
9is|| i (. m( . 2.2
1(f17 7f ) Lo (w) ( )

Applying Proposition twice on the first two A; operators we obtain that (2.1) is bounded above by a
constant multiple of

o—is Tg(JSf17J8f27f3,,.,fm)’Lp(w). (2.3)
In view of 7 Lemmawith a=8b=—s5 A= suijTf(fl,..., fm)‘ L)’
B = suijTg(Jsfl, J5fa, f3.. .,fm)HLp( : we obtain
T (S A2+ (A fu)(Sim1fisr) -+ (Sj-1fm))
Jen Lr(w)
< (sup||T7(f1, ...\ fm T f1, T far f3 s fom ’, 2.4
(JLEIII\;)‘ fl f )‘ Lr(w) 22}1\?‘ fl f2 f3 f ) LP(w)) ( )

10
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Next using Proposition [.5] and then Theorem [I.4] we obtain

Wt <M <Al T
sup [ 17, )], o SIMO ) S UL sy Ay 29
Similarly, we have the estimate
sup| [T (7 f1, P o fo oo S| | S IMO 1T o F s ) (2.6)
jeN LP(w)

<1 il on oy 17 F2ll Lo oy 15l s gy - Il e+ (247)

where (2.6) follows from Proposition [I.5| and Remark Applying estimates (2.5) and (2.7)) to (2.4) and
using the AMGM inequality we obtain

1
S S 2
T il o 17° £l s sl sy = Wl ) (28)

< ||Jsf1||LP1 (w1)||f2||LP2(w2) o .Hfm”LPm (wim) +||f1||LP1 (w1)||JSf2HLP2 (w2)||f3||LP3(w3) o Hfm”LPm (wm)

(Y P P 1

as desired. This finishes the proof for the diagonal term in the inhomogeneous case. As both Lemma [1.9
and Proposition [1.5| work over j € Z we many replace N with Z and J® with D?® to get the homogeneous case
by the same proof.

2.2 Case 2. Low Frequency Term

In the inhomogeneous case we also have the term J*((Sof1) - (Sofm)) which is dealt with in a similar way.
Observe,

TS0 Gofu)@) = [ (164 P Bt + -+ 601+ ) 5B (561)
X S0T° fa(€2) - So i (€n) T (SR AE

(2.9)

Since the following expressions are smooth with compact support we can expand them in Fourier series
whose Fouier coefficients, c,, , c,, have rapid decay in f1, pi2;

50 1 i€y /8m
(1+ |§|2)2‘b(%§) = X[—dm,am]" (&) Z Cpuy €TSS

J1EZ™
_sa/l it
(L4 12738 (5€) = Xaun(€) Y] cue™er
H2EZ™

Substituting the Fourier series into (2.9) we obtain

JS(Sof1 t SOfm)(Jf)
_ f Z CM1€2wi(§1+...+£m)-u1/8m Z CM2€27ri§1-;L2/8S’O/J?f1(£1) . S/O'El(gm)€2mm.(§l+...+£m)d£—* (2.10)

H1EZ™ H2€Z™

YD a0 s (1) (@) S0,y (£2)(@) -+ So s (Fn) () (2.11)

W1EL™ po€Z™

where the operator Sy ,,, ., corresponds to convolution with ®(- + u1/8m + p2/8). By Proposition

Remark and Theorem applied to (2.11) we deduce

17°(So 1 -+ Sof) | oy SN Fillpos ony LTIl o g - (2.12)
j=2

11
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2.3 Case3. [j=1

When [y = 1 we have a“high-low-- - - -low” frequency multiplier of the form

ZW j§1 2 ]+1£2) (2 ]+1§m)

jeN

which corresponds to the term

T (DA £)(Si-1f2) -+ (Sj1fm))- (2.13)

jeN

Fix a € N to be determined later. We want to replace S;_1 by Sj_,. We do this by expressing S;_; as

Sj,a +2jfa<k<j Ay in i.e.
DA F)(Ss-1f2) - (ijlfm):Z(Ajfl)( D Awfa+ S af2)( j—1f3) - (Sj-1fm)

JjeN JjeN Jj—a<k<j—1
=AY Ak (Siofs) (Simafm) D (A A)(Siaf2)(Si1 fo) -+ (Sj-afm). (214)
jeN Jj—a<k<j—1 jeEN

The first term in (2.14) is a finite sum (over k) of operators from Case 1 since k ~ j. Therefore, we focus on
the second term in (2.14). Expressing S;_1f3 as Sj_afs + 2., Ay f3 we obtain

DA (Si—af2)(Sjo1fa) - (Sj-1fm)

j—a<k<j

jeN
= DA )8 afZ)( > Aka)( i—1fa) -+ (Sj—1fm) (2.15)
JjeN j—a<k<j—1
+ 2 (A 11)(Sj-af2)(Sj—af3)(Sj-1fa) -+ (Sj-1fm).
jeN

Again the term in (2.15) is a finite sum (over k) of operators from Case 1 since k ~ j. Continuing in this
way we eventually express (2.13)) as

Z(A (8 = af2)(S Jj= ~afs) - (Sj—afm)
jeN

plus finitely many other terms that have already been handled by Case 1. We have reduced matters to
showing the desired bound for the off-diagonal term

I (DS af)(Siafs) + (Si-afm). (2.16)

jeN

The support of the Fourier transform of (Sj_qf2)(Sj—af3) " (Sj—afm) is contained in the ball centered at
zero with the radius (m —1)2/=*1. The support of the Fourier transform of A, f; in contained in the annulus
2771 < & | < 29FL. Choose a so that

(2m)27 ot < 2971

for all integers j. Solving the above inequality gives a can be picked to be some integer larger than log,(8m).

On the Fourier transform side this choice of a gives [§] < 5|& | for [ € {2,...,m}. Hence,
(m=Dl&] _ &
206 =60+ &l Z Gl =& = = l&ml = G| = 7= = =,

thus & ~ [& + - + &l
In order to apply Theorem with ¢ = mn to the off-diagonal term in (2.16)) we need to show the
following Hormander smoothness condition

sup Y [|0%0k| 2 gy < 0 (2.17)

€4 |al<nm

12
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where

= A(&r, - &)@ G+ 27RE TR )T DT W22 TG) - B2,

j>—k
If (2.17) holds then theorem implies
Js ( 2 A f185-afoSiafs Sj,afm) S fillgon gy [ Ul 2o ) - (2.18)
JjeN Lo (w) j=2
To start fix a multi-index, a = (al,...,a™) € (N§)™, such that 0 < |a| < nm and let 8, = (B},...,8") €
(Np)Y™ for L € {1,2,...,m+ 3}. Since oy, is a product of m + 3 functions by Leibniz rule on d%0y, it is enough

to consider a summand of the form

OMAE)O"[2 M+ + 2_k€m>s]3ﬁ3 (2 )]
Z 0P [B(277€))]0% [B(279+28,)] - - - DPmea[B (2777, )] (2.19)

j>—k

where 81 + P2 + -+ 4+ Bmss = a. Also, we can bring the derivative into the sum because locally it is a
finite sum. Lets derive an estimate for 0%2[(27%¢; + - +277¢,,)%] and 0%2[(27%¢;)~*]. Notice that partial
derivatives of (27F¢& + .- +27FE, ) = 27F5(22F ¢ + .. +&,|%) 2 are linear combinations of terms of the
form

27F5(2%% L 1gy + -+ ) ETP(E)

where 0 < I < |B2] is a nonnegative integer and P is a polynomial over R". Furthermore, on the support
of A any polynomial over R™ is bounded by a constant. It follows on the support of A that

|82
P[7FG 4 427G <27 Y (2 G+ e+ Gl (2.20)
1=0
By the same argument we have
1831
e s 2 Y % ) R (2.21)

t=0

on the support of A.
Applying partial derivatives to each term in (2.19]), and taking absolute value, and using estimates ([2.20)
and (2.21)) we obtain that (2.19)) is bounded above by a constant multiple of

B 183
(@ M) 27% D% + Jea + -+ + En)ETI25 Y + 1) E N eyt )
=0 t=0 (2.22)
% Z |(064@)(2_j£1)‘2_j(‘64|+“‘+‘5m+3|).

JET

Using the support of the above expression, namely |&1] ~ |§1 + - -+ + &n| we can further bound (2.22)) by

82| 1831
@ @] 2 2 16X g e,y ) D@ D) I8 Hmesb. (2.2
0t je

Now dropping the 2%* in ([2.23) leaves |§1|’2(l+t) which is bounded above by a constant due to the support
of %1 A by the observation that 1/2 < |&1] + -+ - + |&m| < m|€1|. Also notice that by the support of %1 A and

13



REFERENCES

X{er|slele(1,....myy We have 1/2m < [&] < 2; this forces —logy(m) < j < logy(m). It follows (2.23) can be
estimated above by constant multiple of

’(aﬁlA)(g)’X{\fl\>>|§z|:l€{1,‘..,m}}(g) Z |(864\1\/)(27]—€1)|27j(‘64|+"'+|,3m+3‘)

l7l<cm

< Cm,n

(@ M)(@)|

which has a finite L? norm independent of k. This finishes the proof for the off-diagonal term in the
inhomogeneous case. The proof for the nondiagonal term in the homogeneous case is the same except

estimates (2.20) and (2.21)) are replaced by

|B2]
652 [|27k£1 4ot 27k£m‘s] < 27ks 2 ‘51 +oee gt £m|372l
=1

and

1851
e PSP N o

t=1

on the support of A.
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