

IDENTITIES AND FORMULAS

Listen. Learn.
 Grow.

Mathematics is not a contemplative but a creative subject-Hardy

Algebra Rules

Algebra Laws

Additive
Associative:
Commutative:

$$
a+(b+c)=(a+b)+c
$$

$a+b=b+a$
$a+(-a)=0$
$a+0=a$
$a(b+c)=a b+a c$
Inverse:
Identity:
Distributive:

Multiplicative
$a(b c)=(a b) c$
$a b=b a$
$a \cdot \frac{1}{a}=\frac{a}{a}=1$
$a \cdot 1=a$

Fractions

Common Dem: $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \quad$ Fraction Mult: $\frac{a}{b} \frac{c}{d}=\frac{a c}{b d} \quad$ Neg Exponent: $a^{-1}=\frac{1}{a}$

Basic rule: $\frac{a c}{b}=\frac{a}{b} c=\frac{c}{b} a \quad$ Double fractions: $\frac{a / b}{c / d}=\frac{a d}{b c} \quad$ Signs: $\frac{-a}{b}=-\frac{a}{b}=\frac{a}{-b}$

Exponent rules

Remember the logarithm and exponential are inverses of each other, thus the only way to get x by its self in e^{x} or $\ln (x)$ is to apply the inverse.

$$
\begin{aligned}
a^{x} b^{x} & =(a b)^{x} & a^{x} a^{y} & =a^{x+y} \\
\left(a^{x}\right)^{y} & =a^{x y} & \left(\frac{a}{b}\right)^{x} & =\frac{a^{x}}{b^{x}}
\end{aligned}
$$

Logarithms

Remember the logarithm and exponential are inverses of each other, thus the only way to get x by its self in e^{x} or $\ln (x)$ is to do the opposite one.

$$
\ln (a b)=\ln (a)+\ln (b) \quad \ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b) \quad \ln \left(a^{x}\right)=x \ln (a)
$$

SOH-CAH-TOA

$$
\begin{array}{ll}
\sin (\theta)=\frac{O}{H} & \csc (\theta)=\frac{1}{\sin (\theta)}=\frac{H}{O} \\
\cos (\theta)=\frac{A}{H} & \sec (\theta)=\frac{1}{\cos (\theta)}=\frac{H}{A} \\
\tan (\theta)=\frac{O}{A} & \cot (\theta)=\frac{1}{\tan (\theta)}=\frac{A}{O}
\end{array}
$$

Co-function Identities

Divide by $\sin (\theta)$ and $\cos (\theta)$ to get the other Co-function Identities.

$$
\sin (\theta)=\cos \left(\frac{\pi}{2}-\theta\right) \quad \cos (\theta)=\sin \left(\frac{\pi}{2}-\theta\right)
$$

Supplement Angle Identities

Take reciprocals on each side of the following to get the other supplement angle identities.

$$
\begin{aligned}
\sin (\pi-\theta) & =\sin (\theta) \\
\cos (\pi-\theta) & =-\cos (\theta) \\
\tan (\pi-\theta) & =-\tan (\theta)
\end{aligned}
$$

Negative angle Identities

Take reciprocals on each side of the following to get the other negative angle identities.

$$
\begin{aligned}
\sin (-\theta) & =-\sin (\theta) \\
\cos (-\theta) & =\cos (\theta) \\
\tan (-\theta) & =-\tan (\theta)
\end{aligned}
$$

Addition and Subtraction Identities

$$
\begin{array}{ll}
\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) & \sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B) \\
\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B) & \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B) \\
\tan (A+B)=\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)} & \tan (A-B)=\frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (B)}
\end{array}
$$

Useful Equations

$$
\text { degrees }=\text { radians } \frac{180^{\circ}}{\pi} \quad s=r \theta
$$

Sum Identities

$$
\begin{aligned}
& \sin (A)+\sin (B)=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
& \sin (A)-\sin (B)=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) \\
& \cos (A)+\cos (B)=\cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
& \cos (A)-\cos (B)=-\sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)
\end{aligned}
$$

Product Identities

$$
\begin{aligned}
\sin (A) \cos (B) & =\frac{1}{2}(\sin (A+B)+\sin (A-B)) \\
\cos (A) \cos (B) & =\frac{1}{2}(\cos (A+B)+\cos (A-B)) \\
\sin (A) \sin (B) & =\frac{1}{2}(\cos (A-B)-\cos (A+B))
\end{aligned}
$$

Double Angle Identities

$$
\begin{aligned}
& \tan (2 \theta)=\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)} \\
& \sin (2 \theta)=2 \sin (\theta) \cos (\theta) \\
& \cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=2 \cos ^{2}(\theta)-1=1-2 \sin ^{2}(\theta)
\end{aligned}
$$

Half-Angle Identities

$$
\begin{aligned}
\sin \left(\frac{\theta}{2}\right) & = \pm \sqrt{\frac{1-\cos (\theta)}{2}} \\
\cos \left(\frac{\theta}{2}\right) & = \pm \sqrt{\frac{1+\cos (\theta)}{2}} \\
\tan (\theta) & = \pm \sqrt{\frac{1-\cos (\theta}{1+\cos (\theta}}
\end{aligned}
$$

