50 Ζ 0

IDENTITIES AND FORMULAS

Mathematics is not a contemplative but a creative subject-Hardy

Sean Douglas

Algebra Rules

Algebra Laws		
	Additive	Multiplicative
Associative:	a + (b + c) = (a + b) + c	a(bc) = (ab)c
Commutative:	a+b=b+a	ab = ba
Inverse:	a + (-a) = 0	$a \cdot \frac{1}{a} = \frac{a}{a} = 1$
Identity:	a + 0 = a	$a \cdot 1 = a$
Distributive:	a(b+c) = ab + ac	
L		

Fractions

Common Dem:
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 Fraction Mult: $\frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$ Neg Exponent: $a^{-1} = \frac{1}{a}$
Basic rule: $\frac{ac}{b} = \frac{a}{b}c = \frac{c}{b}a$ Double fractions: $\frac{a/b}{c/d} = \frac{ad}{bc}$ Signs: $\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}$

Exponent rules

Remember the logarithm and exponential are inverses of each other, thus the *only* way to get x by its self in e^x or $\ln(x)$ is to apply the inverse.

$$a^{x}b^{x} = (ab)^{x} \qquad a^{x}a^{y} = a^{x+y} \qquad a^{-x} = \frac{1}{a^{x}} \qquad a^{0} = 1$$
$$(a^{x})^{y} = a^{xy} \qquad \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}} \qquad \frac{a^{x}}{a^{y}} = a^{x-y} \qquad a^{x} = e^{x\ln(a)}$$

Logarithms

Remember the logarithm and exponential are inverses of each other, thus the *only* way to get x by its self in e^x or $\ln(x)$ is to do the opposite one.

$$\ln(ab) = \ln(a) + \ln(b) \qquad \qquad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b) \qquad \qquad \ln(a^x) = x\ln(a)$$

Co-function Identities

Divide by $\sin(\theta)$ and $\cos(\theta)$ to get the other Co-function Identities.

$$\sin(\theta) = \cos(\frac{\pi}{2} - \theta)$$
 $\cos(\theta) = \sin(\frac{\pi}{2} - \theta)$

Supplement Angle Identities

Take reciprocals on each side of the following to get the other supplement angle identities.

 $\sin(\pi - \theta) = \sin(\theta)$ $\cos(\pi - \theta) = -\cos(\theta)$ $\tan(\pi - \theta) = -\tan(\theta)$

Negative angle Identities

Take reciprocals on each side of the following to get the other negative angle identities.

 $sin(-\theta) = -sin(\theta)$ $cos(-\theta) = cos(\theta)$ $tan(-\theta) = -tan(\theta)$

Addition and Subtraction Identities

$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$	$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$
$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$	$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$
$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$	$\tan(A - B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$

Useful Equations

degrees = radians
$$\frac{180^{\circ}}{\pi}$$
 $s = r\theta$

Sum Identities

$$\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$
$$\sin(A) - \sin(B) = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$
$$\cos(A) + \cos(B) = \cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$
$$\cos(A) - \cos(B) = -\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

Product Identities

$$\sin(A)\cos(B) = \frac{1}{2}(\sin(A+B) + \sin(A-B))$$

$$\cos(A)\cos(B) = \frac{1}{2}(\cos(A+B) + \cos(A-B))$$

$$\sin(A)\sin(B) = \frac{1}{2}(\cos(A-B) - \cos(A+B))$$

Double Angle Identities

$$\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)}$$
$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$
$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$$

Half-Angle Identities

$$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos(\theta)}{2}}$$
$$\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos(\theta)}{2}}$$

$$\tan(\theta) = \pm \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}}$$

Г

