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Abstract. In this paper we establish a fractional chain rule in the setting of weighted Triebel-Lizorkin

spaces under various smoothness conditions. Notably, this provides a fractional chain rule for weighted
Lebesgue spaces, Lppwq, for p ď 1. Additionally, an explicit relationship between the smoothness index,

integrablity index, and the choice of weights is determined.

1. Introduction

In this paper we consider a fractional chain rule that forms a good substitute for the identity

d

dx
F puq “ F 1puqu1

in the framework of weighted Triebel-Lizorkin (TL) spaces. This includes both homogeneous and inhomo-
geneous weighted TL spaces. The early use of a fractional chain rule goes back to Christ and Weinstein [3]
in the study of generalized Korteweg-de Vries (gKdV) equations. Specifically, these authors used fractional
chain and Leibniz rules to provide estimates for the solution of a gKdV represented as an integral equation
that enabled the study of the long-time behavior of the solution.

A fractional chain rule also plays an important role in establishing well-posedness of wave equations [9],
[8]. In particular, a more general smoothness condition, similar to that given subsequently in Theorem
1.1, was developed by Kato and Staffilani [11], [13] in the study of well-posedness of NLS equations. More
recently a weighted fractional chain rule was used to establish Morawetz type estimates in order to determine
the local well-posedness of a semi-linear wave equation [10]. A fractional chain rule has also been obtained
in the more general setting of Besov spaces, however the integrablity index is greater than or equal to 1 [8].

A related inequality to a fractional chain rule is a fractional Leibniz rule, which has a multitude of
generalizations and extensions. A fractional Leibniz rule, also known as a Kato-Ponce inequality [12] are
estimates of the form

∥Dspfgq∥Lp ď Cn,s,p1,p2

`

∥Dsf∥Lp1 ∥g∥Lp2 `∥f∥Lp1∥Dsg∥Lp2

˘

,(1.1)

where f, g are Schwartz functions and p´1 “ p´1
1 ` p´1

2 . In [1] Bernicot, Naibo, Maldonado, and Moen
extended (1.1) to include p ď 1, but required that s ą n. Grafakos and Oh [5] obtained (1.1) for 1

2 ă p ă 8

with a sharp lower bound on the smoothness index s ą np1{minpp, 1q ´ 1q. This same lower bound is also
shown to be sharp for a fractional chain rule and is discussed in Section 7.

The aim of this article is to provide a weighted fractional chain rule for p ď 1, similar to the extension in
the range of indices of the Kato-Ponce inequality. The main results in this article are in the spirit of Christ
and Weinstein’s work. However, their proof heavily relied on the boundedness of the Hardy-Littlewood
maximal operator, which is not available for p ď 1. To overcome this obstacle we adapt a similar technique
used by Naibo and Thomson [15] to obtain a weighted Kato-Ponce inequality for Triebel-Lizorkin spaces.
Specifically, we use a Peetre type lemma from [16], which allows us to circumvent this obstacle.

All functions are defined over Rn, so Rn is suppressed from in the notation. The space of Schwartz
functions, smooth rapidly decaying functions on Rn, is denoted by S. The dual space of S, the space of
tempered distributions, is denoted by S 1. For the homogeneous setting we need S0, the space of Schwartz
functions that have vanishing moments of all orders; that is f P S0 if and only if f is a Schwartz function
and

ş

Rn xαfpxqdx “ 0 where α is a multi-index. The dual space of S0 is the space of tempered distributions
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modulo polynomials and is denoted by S 1{P. This is the space of tempered distributions in which two
elements are identified if their difference is a polynomial. It is a known fact that S0 is dense in S 1{P and S
is dense in S 1. For more information about tempered distributions see [[7], Chap. 1].

For f P L1pRnq the Fourier transform and inverse Fourier transform are respectively defined by

pfpξq “

ż

Rn

fpyqe´2πiy¨ξdy qfpξq “

ż

Rn

fpyqe2πiy¨ξdy.

The homogeneous fractional Laplacian for u P S 1{P and s ą 0 is denoted by Dsu P S 1{P and defined by
xDsu, φy :“ xu, p| ¨ |s qφq x y for φ P S0 (it turns out p| ¨ |s qφq x P S0). The inhomogeneous fractional Laplacian
for u P S 1 and s ą 0 is denoted by Jsu P S 1 and defined by xJsu, φy :“ xu, p1 ` | ¨ |2q

s
2

qφq x y for φ P S.
Let pΦpξq be a positive radially decreasing C8pRnq function on Rn supported in twice the unit ball and

equal to one on the unit ball. Let pΨpξq “ pΦpξq ´ pΦp2ξq, which is non-negative and supported in the annulus
1
2 ď |ξ| ď 2. The Littlewood-Paley operator ∆j is defined to be convolution with 2jnΨp2j ¨q for j P Z. For
ease of notation denote

Ψj :“ 2jnΨp2j ¨q.

The weighted homogeneous Triebel-Lizorkin space is u P S 1{P such that

∥u∥ 9F s
p,qpwq

:“

∥∥∥∥∥∥
´

ÿ

jPZ
|2js∆ju|q

¯
1
q

∥∥∥∥∥∥
Lppwq

ă 8,

for w P A8 and 0 ă s, p, q ă 8. The weighted inhomogeneous Triebel-Lizorkin space is u P S 1 such that

∥u∥F s
p,qpwq

:“∥S0u∥Lppwq `

∥∥∥∥∥∥∥
˜

ÿ

jě1

´

2js|∆ju|

¯q
¸

1
q

∥∥∥∥∥∥∥
Lppwq

ă 8,

for w P A8 and 0 ă s, p, q ă 8. The Hardy space Hppwq for 0 ă p ă 8, and w P A8 is defined to be u P S 1,
such that

∥u∥Hppwq
:“

∥∥∥∥ sup
0ătă8

|t´nΦpt´1¨q ˚ u|

∥∥∥∥
Lppwq

ă 8.

The local Hardy space hppwq for 0 ă p ă 8, and w P A8 is defined to be u P S 1, such that

∥u∥hppwq
:“

∥∥∥∥ sup
0ătă1

|t´nΦpt´1¨q ˚ u|

∥∥∥∥
Lppwq

ă 8.

The lifting property of Triebel-Lizorkin spaces states for u P S1 and w P A8 that∥Jsu∥F 0
p,qpwq „∥u∥F s

p,qpwq

for 0 ď s ă 8 and 0 ă p, q ă 8. For homogeneous spaces the analogous lifting property for u P S1{P and
w P A8 is ∥Dsu∥ 9F 0

p,qpwq
„ ∥u∥ 9F s

p,qpwq
for 0 ď s ă 8 and 0 ă p, q ă 8. Furthermore, there is the following

relationship between Hardy and TL norms; ∥¨∥F 0
p,2pwq „ ∥¨∥hppwq and ∥¨∥ 9F 0

p,2pwq
„ ∥¨∥Hppwq for w P A8 and

0 ă p ă 8. A subtle point is that∥¨∥ 9F 0
p,2pwq

„∥¨∥Hppwq holds for u P S1{P, that is u is a tempered distribution

defined by its action on S0. If 1 ă p ă 8 and w P Ap then∥¨∥Lppwq „∥¨∥Hppwq „∥¨∥hppwq. Note that if g is a

function on Rn then ∥g∥Lppwq À ∥g∥hppwq À ∥g∥Hppwq for 0 ă p ă 8 and w P A8. For more information on

weighted function spaces see [2].
For a Muckenhoupt weight w we define τw “ inftτ P p1,8q : w P Aτu. Further definitions and notation

are defined in the next section. Now that all the relevant definitions have been discussed we state our main
result and its consequences.

Theorem 1.1. Let 0 ă s ă 1, 0 ă p ă 8, 1 ă p1 ď 8, 0 ă p2 ă 8, 1
p “ 1

p1
` 1

p2
, w1 P Ap1

,

w2 P A8, w “ w
p
p1
1 w

p
p2
2 , and 0 ď n

´

max
` τw2

p2
, 1
q

˘

´
p1´τw1

p1

¯

ă s or p
τw

ą 1 (in the case p1 “ 8 assume

0 ď n
´

max
` τw2

p2
, 1
q

˘

´ 1
¯

ă s) and u P S0. Let F : C Ñ C and G : C Ñ r0,8q such that F p0q “ 0 and

Gpuq P Lp1pw1q. Furthermore, suppose that for x, y P C that

|F pxq ´ F pyq| ď rGpxq ` Gpyqs|x ´ y|,
2
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then

∥F puq∥ 9F s
p,qpwq

ď Cn,s,q,p1,p2,w1,w2
∥Gpuq∥Lp1 pw1q∥u∥ 9F s

p2,qpw2q
.(1.2)

If u P S then

∥F puq∥F s
p,qpwq ď Cn,s,q,p1,p2,w1,w2

´

∥F puq∥Lppwq `∥Gpuq∥Lp1 pw1q∥u∥F s
p2,qpw2q

¯

.(1.3)

Moreover, if Gp0q “ 0 then we obtain

∥F puq∥F s
p,qpwq ď Cn,s,q,p1,p2,w1,w2

∥Gpuq∥Lp1 pw1q∥u∥F s
p2,qpw2q .(1.4)

Remark 1.1.1. The hypothesis F p0q “ 0 is not necessary for (1.2) since ∆jpcq “ 0 in the sense of dis-
tributions for any constant c. Furthermore, the assumption u P S0 (or u P S) is also inessential and only
serves to guarantee F puq is a well defined tempered distribution, so we may take the Triebel-Lizorkin norm
of it. This follows from the fact |F puq| ď CrGpuq ` Gp0qs|u| and ∥Gpuq∥Lp1 pw1q ă 8, so F puq is a Lp1pw1q

function, hence a tempered distribution. If we knew that Gp0q “ 0 for example, then we could allow for
u P S 1{P X L8 (or u P S 1 X L8) and still obtain that F puq is a well defined tempered distribution. This is a
detail overlooked in the existing literature.

A weighted fractional chain rule for Lebesgue spaces is given in [10] with a similar smoothness condition
of Theorem 1.1. However, in [10] it is assumed that 1 ă p1, p2, p ă 8 and w1 P Ap1

, w2 P Ap2
and

importantly w :“ w
p
p1
1 w

p
p2
2 P Ap. Nevertheless, Theorem 1.1 can hold even when w R Ap. For example

suppose that p ą 1 and q “ 2 so that the weighted Triebel-Lizorkin norm reduces to the weighted Hardy
norm, which controls the Lebesgue norm. It is well known that | ¨ |a P Aρ if and only if ρ P p´n, npρ ´ 1qq.

Let w1 “ |x|npτw1
´1q, w2 “ |x|npτw2

´1q, then

wpxq “ |x|
npτw1

´1q
p
p1 |x|

npτw2´1q
p
p2 “ |x|

nppr
τw1
p1

`
τw2
p2

s´1q.

Choosing for example p1 “ 1.5, τw1
“ 1.1, p2 “ 4, τw2

“ 2 gives
τw1

p1
`

τw2

p2
ą 1, hence w R Ap. But if

DspF puqq is a function then (1.2) implies

∥DsF puq∥Lppwq À∥DsF puq∥Hppwq À∥F puq∥ 9F s
p,2pwq

À∥Gpuq∥Lp1 pw1q∥D
su∥Lp2 pw2q

for sufficiently large s ă 1.

We now consider a special case of Theorem 1.1. Let p ď 1, p2 ď q “ 2 and w1, w2 P A1. Then the lower
bound on the smoothness index becomes 0 ď np 1

p2
´ 1

p1
1

q “ np 1
p ´ 1q ă s. This is the same lower bound

for s in the unweighted Kato-Ponce inequality [5]. This discussion in conjunction with the reduction of the
Triebel-Lizorkin norm to the Hardy space norm when q “ 2 provides the following corollary.

Corollary 1.1.1. Let 0 ă s ă 1, 0 ă p ď 1, 1 ă p1 ď 8, 0 ă p2 ď 2, 1
p “ 1

p1
` 1

p2
, w1, w2 P A1,

w “ w
p
p1
1 w

p
p2
1 and np1{p ´ 1q ă s and u P S0 (or u P S). Let F : C Ñ C and G : C Ñ r0,8q such that

F p0q “ 0 and Gpuq P Lp1pw1q. Furthermore, suppose that for x, y P C that

|F pxq ´ F pyq| ď rGpxq ` Gpyqs|x ´ y|,

then

∥DsF puq∥Hppwq ď Cn,s,p1,p2,w1,w2
∥Gpuq∥Lp1 pw1q∥D

su∥Hp2 pw2q .(1.5)

Furthermore, if 0 ă s ď np1{p ´ 1q then (1.5) can fail. If u P S then

∥JsF puq∥hppwq ď Cn,s,p1,p2,w1,w2

´

∥F puq∥Lppwq `∥Gpuq∥Lp1 pw1q∥J
su∥hp2 pw2q

¯

.

Remark 1.1.2. Corollary 1.1.1 implies a fractional chain rule for Lebesgue spaces for p ď 1 when the
tempered distributions DspF puqq and JspF puqq, defined by their actions of S0 and S respectively, correspond
to functions. Section 7 addresses the sharpness of the lower bound on s in (1.5) for the unweighted case.

Assuming a stronger smoothness condition like that in the original fractional chain rule of Christ and
Weinstein [3] we can allow for more general weights.
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Corollary 1.1.2. Let 0 ă s ă 1, 0 ă p ă 8, 1 ă p1 ď 8, 0 ă p2 ă 8, p2 ď q ă 8, 1
p “ 1

p1
` 1

p2
, w1 P Ap1

,

w2 P A8 w “ w
p
p1
1 w

p
p2
2 , s ą npmax

` τw2

p2
, 1
q , 1

˘

´ 1q and u P S0pRnq. Furthermore, suppose that F P C1pCq,

F p0q “ 0 and F 1puq P Lp1pw1q then

∥F puq∥ 9F s
p,qpwq

ď Cn,s,q,p1,p2,w1,w2

∥∥F 1puq
∥∥
Lp1 pw1q

∥u∥ 9F s
p2,qpw2q

.

Using the fact F p0q “ 0 and the fundamental theorem of calculus it can easily be seen that F puq is in
Lp1pw1q, hence is a well defined tempered distribution. It is worth pointing out that in Corollary 1.1.2 for the
case p1 “ 8 the lower bound for the smoothness index becomes the same lower bound as the Muckenhoupt
weighted Kato-Ponce inequality for Triebel-Lizorkin spaces [15].

2. Notation

Much of the notation is adopted from [15]. We denote by M the uncentered Hardy-Littlewood maximal
function with respect to cubes. For a locally integrable function g and t ą 0, the maximal operator Mt is
given by Mtpgq :“ Mp|g|tq

1
t . For real numbers A,B we use A À B to mean A ď CB for some positive

constant C. The dependence of C on other variables and parameters will often be suppressed and clear from
the context. The notation A „ B means A À B and B À A. For a set E Ă Rn we denote χE to be the
characteristic function of E.

Let xΨ‹pξq be a Schwartz function supported in 4´1 ď |ξ| ď 4, 1 on 4´1 ď |ξ| ď 4 and denote ∆‹
j to

be convolution with 2jnΨ‹p2j ¨q. Notice that pΨxΨ‹ “ pΨ and ∆‹
j∆j “ ∆j . For f P S0 we have the identity

ř

jPZ ∆jf “ f . Also note that
ş

Ψ “ 0, in fact Ψ has vanishing moments of all orders. The operator S0 is

defined to be convolution with Φ, and the operator ∆ěk is defined to be
ř

jěk ∆j .
A Muckenhoupt weight or Ap weight is a non-negative locally integrable function w on Rn such that for

1 ă p ă 8 and for all cubes Q in Rn with sides parallel to the axes, we have

rwsAp
:“ sup

Q

˜

1

|Q|

ż

Q

wpxq dx

¸ ˜

1

|Q|

ż

Q

wpxq
´ 1

p´1 dx

¸p´1

ă 8.

We say w P A1 if

rwsA1
:“ sup

Q

˜

1

|Q|

ż

Q

wpxq dx

¸

›

›w´1
›

›

L8 ă 8.

The space Lppwq, is defined as the set of Lebesgue measurable functions on Rn such that

}f}Lppwq :“

ˆ
ż

Rn

|fpxq|pwpxq dx

˙1{p

ă 8.

For p “ 8, Lebesgue measure and wdx are mutually absolutely continuous, thus the essential supremum
with respect to wdx and Lebesgue measure are the same, hence ∥¨∥L8 “∥¨∥L8pwq. Muckenhoupt’s Theorem

states that if 1 ă p ă 8 and f P Lppwq then, w P Ap if and only if ∥Mpfq∥Lppwq ď Cp,n,rwsAp
∥f∥Lppwq.

Muckenhoupt weights are nested, that is if 1 ď p1 ă p2 ă 8 then Ap1
Ă Ap2

. As stated in the introduction
for w P A8 :“

Ť

1ďp Ap we define τw “ inftτ P p1,8q : w P Aτu.

3. Preliminaries

The inequality in (3.1) is an extension of a lemma from Taylor’s book [[14], Lemma 4.2], which was given
for q “ 2 and a “ ´8. A proof of the inequality in (3.2) can be found in [[15], Lemma A.3] with τ “ θ ´ s.

Proposition 3.1. Let takukPZ be a sequence of non-negative real numbers, 0 ă q ă 8 and a P t0,´8u then
˜

ÿ

jąa

´

2js
ÿ

aăkăj

2k´jak

¯q
¸

1
q

À

˜

ÿ

jąa

p2jsajqq

¸
1
q

if 0 ď s ă 1(3.1)

˜

ÿ

jąa

´

2js
ÿ

jďk

2pk´jqθak

¯q
¸

1
q

À

˜

ÿ

jąa

p2jsajqq

¸
1
q

if 0 ď θ ă s.(3.2)

4
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Proof. We only consider the case a “ 0, the proof for a “ ´8 follows by a similar argument. Suppose that
q ď 1, then

˜

ÿ

jě1

´

2js
ÿ

1ďkăj

2k´jak

¯q
¸

1
q

“

˜

ÿ

jě1

´

j´1
ÿ

l“1

2js2´laj´l

¯q
¸

1
q

ď

˜

ÿ

jě1

j´1
ÿ

l“1

2jsq2´lqaqj´l

¸
1
q

“

˜

8
ÿ

l“1

2lqps´1q
ÿ

jPZ
2pj´lqsqaqj´lχNpj ´ lq

¸
1
q

À

´

ÿ

jě1

p2jsajqq
¯

1
q

.

Now suppose q ą 1, then

˜

ÿ

jě1

´

2js
ÿ

1ďkăj

2k´jak

¯q
¸

1
q

“

˜

ÿ

jě1

´

j´1
ÿ

l“1

2js2´laj´l

¯q
¸

1
q

“

˜

ÿ

jě1

´

j´1
ÿ

l“1

2lps´1q{22lps´1q{22pj´lqsaj´l

¯q
¸

1
q

À

´

ÿ

jě1

j´1
ÿ

l“1

p2lps´1q{22pj´lqsaj´lq
q
¯

1
q

À

´

8
ÿ

l“1

2lqps´1q{2
ÿ

jě1

p2pj´lqsaj´lχNpj ´ lqqq
¯

1
q

À

´

ÿ

jě1

p2jsajqq
¯

1
q

.

where in the first inequality we applied Hölder’s inequality.
□

We will regularly use the fact that a locally integrable function convolved with a L1 dilate of a radially
decreasing integrable function is pointwise bounded by the Hardy-Littlewood maximal operator [[6], Theorem
2.1.10]. A direct application of this fact provides the following result.

Lemma 3.2 ([16], Lemma 2.6). Let 0 ă t ă 8, f P L1
locpRnq, A ą 0 and a ą n

t then for x P Rn∥∥p1 ` |A ¨ |q´afpx ´ ¨q
∥∥
Lt ď Cn,tA

´ n
t Mtpfqpxq.

The following is the celebrated Peetre’s lemma, an essential estimate when dealing with function spaces.

Lemma 3.3 ([16], Theorem 2.10). Let 0 ă t ă 8, and u be a function on Rn whose distributional Fourier
transform satisfies suppppuq Ă Bp0, kq, then

sup
yPRn

|upx ´ yq|

p1 ` k|y|q
n
t

ď Cn,tMtpuqpxq

where the constant is independent of k.

The proceeding lemma is a slight modification of a corollary from [[16], Corollary 2.12]. As pointed out
in the appendix of [15] one can allow for A ą 0, rather than A ě 1 as originally stated in the corollary. Also

there is a typo, A´ n
t should be replaced by A

´ n
η1 . The proof is essentially the same as that given in [16],

with the only addition being the function h. The proof is provided for the reader’s convenience.
5
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Lemma 3.4. Suppose 1 ď η ď 8 and 0 ă t ď η1 where η and η1 are related by 1
η ` 1

η1 “ 1. Let A ą 0,

R ě 1, h ě 0 and a ą n
t . If u and φ are functions on Rn and the distributional Fourier transform of u

satisfies suppppuq Ă Bp0, ARq, then
ż

Rn

hpyq|upyq||φpx ´ yq| dy À R
np 1

t ´ 1
η1 q

A
´ n

η1 ∥hpx ´ ¨qp1 ` |A ¨ |qaφ∥Lη Mtpuqpxq

where the implicit constant is independent of A,R, φ and u.

Proof. Observe,
ż

Rn

hpyq|upyq||φpx ´ yq| dy

“

ż

|upx ´ yq|

p1 ` |Ay|qa
|hpx ´ yq|p1 ` |Ay|qaφpyq dy

ď

∥∥∥∥ |upx ´ ¨q|

p1 ` |A ¨ |qa

∥∥∥∥
Lη1

∥hpx ´ ¨qp1 ` |A ¨ |qaφ∥Lη

ď∥hpx ´ ¨qp1 ` |A ¨ |qaφ∥Lη

∥∥∥∥ |upx ´ ¨q|

p1 ` |A ¨ |qa

∥∥∥∥ t
η1

Lt

´

sup
yPRn

|upx ´ yq|

p1 ` |Ay|qa

¯1´ t
η1

À∥hpx ´ ¨qp1 ` |A ¨ |qaφ∥Lη

`

A´ n
t Mtpuqpxq

˘
t
η1

´

sup
yPRn

R
n
t |upx ´ yq|

pR ` |RAy|q
n
t

¯1´ t
η1

(3.3)

ď∥hpx ´ ¨qp1 ` |A ¨ |qaφ∥Lη A
´ n

η1 R
n
t p1´ t

η1 q
`

Mtpuqpxq
˘

t
η1

´

sup
yPRn

|upx ´ yq|

p1 ` |ARy|q
n
t

¯1´ t
η1

À∥hpx ´ ¨qp1 ` |A ¨ |qaφ∥Lη A
´ n

η1 R
n
t p1´ t

η1 q
`

Mtpuqpxq
˘

t
η1

´

Mtpuqpxq

¯1´ t
η1

(3.4)

“ R
np 1

t ´ 1
η1 q

A
´ n

η1 ∥hpx ´ ¨qp1 ` |A ¨ |qaφ∥Lη Mtpuqpxq

where in (3.3) we applied Lemma 3.2, and in (3.4) we applied Lemma 3.3 □

In [15] Naibo and Thomson only used the case η “ 8, our use however, will necessitate an optimal value
of η.

The following weighted vector-valued Fefferman-Stein inequality will be of great use: If 0 ă p ă 8,
0 ă q ă 8, w P A8, and 0 ă t ă minpp{τw, qq, then for all sequences tfju8

j“1 of locally integrable functions
defined on Rn, we have

(3.5)

›

›

›

›

›

›

›

›

¨

˝

ÿ

j

|Mtpfjq|q

˛

‚

1
q

›

›

›

›

›

›

›

›

Lppwq

À

›

›

›

›

›

›

›

›

¨

˝

ÿ

j

|fj |q

˛

‚

1
q

›

›

›

›

›

›

›

›

Lppwq

,

where the implicit constant depends on t, p, q, and w.

4. Proof of Theorem 1.1

The proof is inspired by the method in [[14], Proposition 5.1] for Lp spaces with p ą 1. However, our
argument is more delicate and relies on the use of Lemma 3.3 and Lemma 3.4. First suppose p1 ă 8.

To bound

∥F puq∥ 9F s
p,qpwq

“

∥∥∥∥∥∥∥
˜

ÿ

jPZ

´

2js|∆jpF puqq|

¯q
¸

1
q

∥∥∥∥∥∥∥
Lppwq

(4.1)

6
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we begin by estimating the Littlewood-Paley operator of the composition. Recall
ş

Ψ “ 0, and observe

|∆jF puqpxq| “

∣∣∣∣ż
Rn

F puqpyqΨjpx ´ yq dy ´ F puqpxq

ż

Rn

Ψjpx ´ yq dy

∣∣∣∣
ď

ż

Rn

|F puqpxq ´ F puqpyq| |Ψjpx ´ yq dy|

À Gpuqpxq

ż

Rn

|upxq ´ upyq| |Ψjpx ´ yq| dy(4.2)

`

ż

Rn

Gpuqpyq|upxq ´ upyq| |Ψjpx ´ yq| dy.(4.3)

We will first bound (4.3) by making several further decompositions,
ż

Rn

Gpuqpyq|upxq ´ upyq| |Ψjpx ´ yq| dy

ď
ÿ

kăj

ż

Rn

Gpuqpyq|∆kupxq ´ ∆kupyq| |Ψjpx ´ yq| dy`(4.4)

ÿ

jďk

ż

Rn

Gpuqpyq|∆kupxq ´ ∆kupyq| |Ψjpx ´ yq| dy.(4.5)

4.1. Bound for (4.4)

We estimate (4.4) by further expressing it as

ÿ

kăj

ż

|x´y|ď2´k

Gpuqpyq|∆kupyq ´ ∆kupxq||Ψjpx ´ yq|dy(4.6)

`
ÿ

kăj

ż

|x´y|ą2´k

Gpuqpyq|∆kupyq ´ ∆kupxq||Ψjpx ´ yq|dy.(4.7)

Fix t ą 0, and choose N P N so that N ´ n
t ą n. To estimate (4.6) observe that

|∆kupyq ´ ∆kupxq| “ |∆‹
k∆kupyq ´ ∆‹

k∆kupxq|

ď

ż

Rn

|∆kupzq||Ψ‹
kpx ´ zq ´ Ψ‹

kpy ´ zq|dz

“

ż

Rn

|∆kupzq|

∣∣∣∣∣
ż 1

0

2kp∇Ψ‹qkpθy ` p1 ´ θqx ´ zq ¨ py ´ xqdθ

∣∣∣∣∣ dz
À 2k|y ´ x|

ż

Rn

ż 1

0

|∆kupzq|
2kn

p1 ` 2k|θpy ´ xq ` x ´ z|qN
dθdz

À 2k|y ´ x|

ż

Rn

|∆kupzq|
2knp1 ` 2k|y ´ x|qN

p1 ` 2k|x ´ z|qN
dz,(4.8)

where in (4.8) we used that θ ď 1 and the following simple inequality for v1, v2 P Rn

1

1 ` |v2 ` v1|
ď

1 ` |v1|

1 ` |v2|
.

Recalling that in (4.6) we are assuming that |x´y| ď 2´k we obtain (4.8) is bounded by a constant multiple
of

2k|y ´ x|

ż

Rn

|∆kupx ´ zq|
2kn

p1 ` 2k|z|qN
dz

“ 2k|y ´ x|

ż

Rn

|∆kupx ´ zq|

p1 ` 2k|z|q
n
t

p1 ` 2k|z|q
n
t

2kn

p1 ` 2k|z|qN
dz

7
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“ 2k|y ´ x|Mtp∆kuqpxq

ż

Rn

2kn
p1 ` 2k|z|q

n
t

p1 ` 2k|z|qN
dz(4.9)

À 2k|y ´ x|Mtp∆kuqpxq

where in (4.9) we used Lemma 3.3. Thus (4.6) can be written as

“
ÿ

kăj

ż

|x´y|ď2´k

Gpuqpyq2k|y ´ x|Mtp∆kuqpxq|Ψjpx ´ yq|dy

ď
ÿ

kăj

2k´jMtp∆kuqpxq

ż

Rn

Gpuqpyq|2jy ´ 2jx||Ψjpx ´ yq|dy

À MpGpuqqpxq
ÿ

kăj

2k´jMtp∆kuqpxq.(4.10)

Now to bound (4.7)

ÿ

kăj

ż

|x´y|ą2´k

Gpuqpyq|∆kupyq ´ ∆kupxq||Ψjpx ´ yq|dy

ď
ÿ

kăj

|∆kupxq|

ż

|x´y|ą2´k

Gpuqpyq|Ψjpx ´ yq|dy(4.11)

`
ÿ

kăj

ż

|x´y|ą2´k

Gpuqpyq|∆kupyq||Ψjpx ´ yq|dy.(4.12)

The sum in (4.11) can be estimated by

ÿ

kăj

Mtp∆kuqpxq

ż

|x´y|ą2´k

Gpuqpyq
2jn

p1 ` 2j |x ´ y|qn`1
p1 ` 2j |x ´ y|q´1dy

À MpGpuqqpxq
ÿ

kăj

2k´jMtp∆kuqpxq.

The second sum in (4.12) is estimated similarly,

ÿ

kăj

ż

|x´y|ą2´k

Gpuqpyq|∆kupyq||Ψjpx ´ yq|dy

À
ÿ

kăj

ż

|x´y|ą2´k

Gpuqpyq|∆kupyq|
2jn

p1 ` 2j |x ´ y|qN
p1 ` 2j |x ´ y|q´1dy

ď
ÿ

kăj

2k´j

ż

|x´y|ą2´k

Gpuqpx ´ yq
|∆kupx ´ yq|

p1 ` 2k|y|q
n
t

p1 ` 2k|y|q
n
t

2jn

p1 ` 2j |y|qN
dy

À
ÿ

kăj

2k´jMtp∆kuqpxq

ż

Rn

Gpuqpx ´ yqp1 ` 2k|y|q
n
t

2jn

p1 ` 2j |y|qN
dy(4.13)

À MpGpuqqpxq
ÿ

kăj

2k´jMtp∆kuqpxq(4.14)

where in (4.13) we used Lemma 3.3 and in (4.14) we used 2k ă 2j . So (4.4) is pointwise bounded above by
MpGpuqpxqq

ř

kăj 2
k´jMtp∆kuqpxq.

4.2. Bound for (4.5)

To estimate (4.5) we write

ÿ

jďk

ż

Rn

Gpuqpyq|∆kupyq ´ ∆kupxq||Ψjpx ´ yq|dy

8
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ď
ÿ

jďk

|∆kupxq|

ż

Rn

Gpuqpyq|Ψjpx ´ yq|dy(4.15)

`
ÿ

jďk

ż

Rn

Gpuqpyq|∆kupyq||Ψjpx ´ yq|dy.(4.16)

To bound (4.15) observe,

ÿ

jďk

|∆‹
k∆kupxq|

ż

Rn

Gpuqpyq|Ψjpx ´ yq|dy

ÿ

jďk

Mtp∆kuqpxq

ż

Rn

Gpuqpyq|Ψjpx ´ yq|dy

À MpGpuqqpxq
ÿ

jďk

Mtp∆kuqpxq.

4.3. Bound for the bad term (4.16)

The term in (4.16) i.e.

ÿ

jďk

ż

Rn

Gpuqpyq|∆kupyq||Ψjpx ´ yq| dy

is the most delicate. If p
τw

ą 1 then here we would pointwise bound by
ř

jďk MpGpuq|∆ku|q, however this

method breaks down for p{τw ď 1. Furthermore, a direct application of Lemma 3.3 like in (4.11) will not
work here since j ď k.

Applying Lemma 3.4 with R “ 2k´j ě 1, A “ 2j , φ “ Ψj , uk “ ∆ku and 1 ď η ď 8, 0 ă r ď η1, a ą n{r,
where r and η are to be determined. A summand of (4.16) is bounded by a constant multiple of

2pk´jqnp1{r´1{η1
qMrp∆kuqpxq2

´j n
η1

∥∥∥Gpuqpx ´ ¨qp1 ` |2j ¨ |qaΨj

∥∥∥
Lη

“ 2pk´jqnp1{r´1{η1
qMrp∆kuqpxq

˜

2jn
ż

Rn

p1 ` |2jy|qηa|Ψp2jyq|ηpGpuqpx ´ yqqη

¸
1
η

À 2pk´jqnp1{r´1{η1
qMrp∆kuqpxqMηpGpuqqpxq.

4.4. Applying the Triebel-Lizorkin norm

We have estimated (4.3) above by a constant multiple of

MpGpuqqpxq
ÿ

kăj

2k´jMtp∆kuqpxq(4.17)

` MpGpuqqpxq
ÿ

jďk

Mtp∆kuqpxq(4.18)

` MηpGpuqqpxq
ÿ

jďk

2pk´jqnp1{r´1{η1
qMrp∆kuqpxq.(4.19)

We now apply the homogeneous Triebel-Lizorkin norm to (4.17), (4.18), (4.19). Starting with (4.17) and
choosing 0 ă t ă minpp2{τw2 , qq we obtain∥∥∥∥∥∥MpGpuqq2js

ÿ

kăj

2k´jMtp∆kuq

∥∥∥∥∥∥
Lppℓqqpwq

9
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ď∥MpGpuqq∥Lp1 pw1q

∥∥∥∥∥∥∥
˜

ÿ

jPZ

´

2js
ÿ

kăj

2k´jMtp∆kuq

¯q
¸

1
q

∥∥∥∥∥∥∥
Lp2 pw2q

(4.20)

À∥Gpuq∥Lp1 pw1q

∥∥∥∥∥∥∥
˜

ÿ

jPZ

´

2jsMtp∆juq

¯q
¸

1
q

∥∥∥∥∥∥∥
Lp2 pw2q

(4.21)

À∥Gpuq∥Lp1 pw1q

∥∥∥∥∥∥∥
˜

ÿ

jPZ

´

2js|∆ju|

¯q
¸

1
q

∥∥∥∥∥∥∥
Lp2 pw2q

(4.22)

À∥Gpuq∥Lp1 pw1q∥u∥ 9F s
p2,qpw2q

where in (4.20) we applied Hölder’s inequality, in (4.21) we applied (3.1), and in (4.22) we applied the
Fefferman-Stein inequality. We obtain the same normed estimate for (4.18) by a similar method used to
bound (4.17); namely Hölder’s inequality, Lemma 3.1 with θ “ 0, followed the Fefferman-Stein inequality.

4.5. Bounding the worse term (4.19)

To bound (4.19), first choose r and η. Recall by hypothesis

0 ď n
´

max
`τw2

p2
,
1

q

˘

´
p1 ´ τw1

p1

¯

ă s.

Note that
´ p1
τw1

¯1

“
p1

p1 ´ τw1

,

also since p1 ą 1 and w1 P Ap1
we have τw1

ă p1, by the self improving property of Muckenhoupt weights.
Pick ϵ ą 0 small enough so that

0 ă n
´ 1

min
`

p2

τw2
, q

˘

´ ϵ
´

1

p
p1

τw1
´ ϵq1

¯

ă s,

and let η “
p1

τw1
´ ϵ ą 1 and r “ min

`

p2

τw2
, q

˘

´ ϵ ą 0. Note that 0 ă r ă η1 which is required for Lemma

3.4. Observe, ∥∥∥∥∥∥MηpGpuqqpxq2js
ÿ

jďk

2pk´jqnp1{r´1{η1
qMrp∆kuqpxq

∥∥∥∥∥∥
Lppℓqqpwq

ď
∥∥MηpGpuqq

∥∥
Lp1 pw1q

∥∥∥∥∥∥∥
˜

ÿ

jPZ

´

2js
ÿ

jďk

2pk´jqnp1{r´1{η1
qMrp∆kuqpxq

¯q
¸

1
q

∥∥∥∥∥∥∥
Lp2 pw2q

(4.23)

À
∥∥MηpGpuqq

∥∥
Lp1 pw1q

∥∥∥∥∥∥∥
˜

ÿ

jPZ

´

2jsMrp∆juq

¯q
¸

1
q

∥∥∥∥∥∥∥
Lp2 pw2q

(4.24)

À∥Gpuq∥Lp1 pw1q

∥∥∥∥∥∥∥
˜

ÿ

jPZ

´

2js|∆ju|

¯q
¸

1
q

∥∥∥∥∥∥∥
Lp2 pw2q

(4.25)

À∥Gpuq∥Lp1 pw1q∥u∥ 9F s
p2,qpw2q

where in (4.23) we applied Hölder’s inequality, in (4.24) we applied (3.2) with 0 ă θ “ np1{r´1{η1q ă s, and
in (4.25) we applied the Fefferman-Stein inequality and the boundedness of the Hardy-Littlewood maximal

10
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operator. Notice we may apply the Fefferman-Stein inequality as r ă minpp2{τw2
, qq. Furthermore, η ă

p1{τw1
so Mη maps Lp1pw1q to Lp1pw1q. This finishes the desired estimate for (4.3).

4.6. Bound for (4.2)

To finish the proof we turn our attention to (4.2) i.e.

Gpuqpxq

ż

Rn

|upxq ´ upyq| |Ψjpx ´ yq| dy.

From the proof of (4.3) we see if we replace Gpuqpyq by 1, then (4.2) is bounded above by a constant multiple
of

Gpuqpxq
ÿ

kăj

2k´jMtp∆kuqpxq

` Gpuqpxq
ÿ

jďk

Mtp∆kuqpxq

` Gpuqpxq
ÿ

jďk

2pk´jqnp1{r´1{η1
qMrp∆kuqpxq2

´j n
η1

∥∥∥p1 ` |2j ¨ |qaΨj

∥∥∥
Lη

.

which all give the desired bound by the same proof used for (4.17), (4.18), and (4.19) respectively; that is
Hölder’s inequality, Lemma 3.1, followed by the Fefferman-Stein inequality.

All that remains is the case p1 “ 8. The only part of the proof that this effects is the estimate for the
bad term (4.16) i.e.

2pk´jqnp1{r´1{η1
qMrp∆kuqpxq2

´j n
η1

∥∥∥Gpuqpx ´ ¨qp1 ` |2j ¨ |qaΨj

∥∥∥
Lη

.

Recall the smoothness condition in this case is 0 ď n
´

max
` τw2

p2
, 1
q

˘

´ 1
¯

ă s. Choosing η “ 8 and r

close enough to max
` τw2

p2
, 1
q

˘

gives 0 ă θ “ np 1
r ´ 1q ă s. We can then applying Lemma 3.1 and the

Fefferman-Stein inequality analogously to subsection 4.6. □

5. Inhomogeneous Triebel-Lizorkin chain rule

Most of the proof reduces to the homogeneous version. We need to bound

∥F puq∥F s
p,qpwq “∥S0pF puqq∥Lppwq `

∥∥∥∥∥∥∥
˜

ÿ

jě1

´

2js|∆jpF puqq|

¯q
¸

1
q

∥∥∥∥∥∥∥
Lppwq

.(5.1)

Using the estimates (4.2) and (4.3) along with the identity g “ S0g ` ∆kě1g for a tempered distribution g,
we obtain |∆jF puq| is bounded above by a constant multiple of

Gpuqpxq

ż

Rn

|S0upxq ´ S0upyq| |Ψjpx ´ yq| dy(5.2)

`
ÿ

kě1

Gpuqpxq

ż

Rn

|∆kupxq ´ ∆kupyq| |Ψjpx ´ yq| dy(5.3)

`

ż

Rn

Gpuqpyq|S0upxq ´ S0upyq| |Ψjpx ´ yq| dy(5.4)

`
ÿ

kě1

ż

Rn

Gpuqpyq|∆kupxq ´ ∆kupyq| |Ψjpx ´ yq| dy.(5.5)

Bounding (5.5) is very similar to bounding (4.3); that is we break up the sum of k P N into two parts
1 ď k ă j and j ď k. The proof then follows analogously to treatment of (4.4) and (4.5) with the only
difference coming from the Lemma 3.1, where we use a “ 0 rather than a “ ´8, which does not affect the
proof.

11
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Since the only property of the operator ∆k used is that it is convolution with a L1 dilate of a Schwartz
function (5.4) can be obtained from the same argument in subsection 4.1 where k “ 0. From this we obtain
(5.4) is pointwise bounded by a constant multiple of

MpGpuqqpxq2´jMtpS0uqpxq.

Since s ă 1 applying the TL norm we obtain the desired bound.
The bounds for (5.2) and (5.3) follow from the the proof for (5.4) and (5.5) by setting Gpuqpyq “ 1. This

just leaves the S0pF puqq term. Observe,

|S0pF puqqpxq| ď

ż

|Φpx ´ yq||F puqpyq|dy

ď |Gpuqpxq|

ż

|Φpx ´ yq||upxq ´ upyq|dy(5.6)

`

ż

|Φpx ´ yq||Gpuqpyq||upxq ´ upyq|dy(5.7)

` |F puqpxq|

ż

|Φpx ´ yq|dy.(5.8)

It is clear that (5.8) will give the bound ∥F puq∥Lppwq. Furthermore, the bound for (5.6) will follow from our

bound for (5.7) by setting Gpupyqq “ 1, hence we focus on (5.7). Using the identity g “ S0g ` ∆ě1g for a
tempered distribution g, (5.7) is further decomposed by

ż

|Φpx ´ yq||Gpuqpyq||S0upxq ´ S0upyq|dy(5.9)

`
ÿ

kě1

ż

|Φpx ´ yq||Gpuqpyq||∆kupxq ´ ∆kupyq|dy.(5.10)

Using Lemma 3.3 and the triangle inequality (5.9) is further bound by

|S0upxq|

ż

Gpuqpyq|Φpx ´ yq|dy ` MtpS0puqqpxq

ż

Gpuqpx ´ yqp1 ` 2|y|q
n
t |Φpyq|dy

for t arbitrarily small. Hence the Lppwq norm of (5.9) is bounded by a constant multiple of∥Gpuq∥Lp1w1
∥u∥F s

p,q
.

By the triangle inequality we obtain (5.10) is bounded by

ÿ

kě1

|∆kupxq|

ż

|Φpx ´ yq||Gpuqpyq|dy `
ÿ

kě1

ż

|∆kupyq||Φpx ´ yq||Gpuqpyq|dy

À MpGpuqqpxq
ÿ

kě1

|∆kupxq| ` MηpGpuqqpxq
ÿ

kě1

2
knp 1

r ´ 1
η1 q

Mrp∆kuqpxq(5.11)

ď

´

MpGpuqqpxq ` MηpGpuqqpxq

¯

ÿ

kě1

2
knp 1

r ´ 1
η1 q

Mrp∆kuqpxq

À

´

MpGpuqqpxq ` MηpGpuqqpxq

¯´

ÿ

jě1

´

2js
ÿ

kěj

2
knp 1

r ´ 1
η1 q

Mrp∆kuqpxq

¯q¯
1
q

where in (5.11) we applied Lemma 3.4. The estimate now follows by the same method used in subsection
4.5, with the same choices of r and η. Hence, the Lppwq norm of (5.10) is bounded by a constant multiple
of ∥Gpuq∥Lp1w1

∥u∥F s
p,q

.

Lastly if Gp0q “ 0 then we have the bound |S0pF puqqpxq| ď
ş

|Φpx´ yq|Gpuqpyq|upyq|dy which is the same
term as in (5.7), and therefore we may drop the ∥F puq∥Lppwq term in (1.3) to obtain (1.4). □

6. Proof of Corollary 1.1.2

The proof of Theorem 1.1.2 is similar to the proof of Theorem 1.1. The improved smoothness condition
greatly simplifies the decomposition and avoids the bad term (4.16). The following estimate was shown in
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[3],

|∆jpF puqqpxq| “

∣∣∣∣ż
Rn

F puqpyqΨjpx ´ yq dy ´ F puqpxq

ż

Rn

Ψjpx ´ yq dy

∣∣∣∣
ď

ż

Rn

|F puqpxq ´ F puqpyq| |Ψjpx ´ yq dy|

ď

ż

Rn

ż 1

0

∣∣F 1ptupyq ` p1 ´ tqupxqq
∣∣|upxq ´ upyq| |Ψjpx ´ yq dtdy|

ď 2MpF 1puqqpxq

ż

Rn

|upxq ´ upyq| |Ψjpx ´ yq| dy(6.1)

where (6.1) follows from a substitution.
By replacing Gpuq by MpF 1puqq in subsection 4.6 we obtain |∆jpF puqq| is bounded above by a constant

multiple of

MpF 1puqqpxq
ÿ

kăj

2k´jMtp∆kuqpxq(6.2)

` MpF 1puqqpxq
ÿ

jďk

Mtp∆kuqpxq(6.3)

` MpF 1puqqpxq
ÿ

jďk

2pk´jqnp1{r´1{η1
qMrp∆kuqpxq2

´j n
η1

∥∥∥p1 ` |2j ¨ |qaΨj

∥∥∥
Lη

.(6.4)

where t, r and η are to be determined. Picking 0 ă t ă minpp2{τw2 , qq we have (6.2) and (6.3) follow
by the same method as (4.17) and (4.18). To bound (6.4) let η “ 8, so η1 “ 1. Recall by assumption
s ą np1{minpp2{τw2

, q, 1q ´ 1q, so choose 0 ă r ă minpp2{τw2
, q, 1q close enough to minpp2{τw2

, q, 1q so that
np1{r´ 1q ă s. Applying (3.2) with θ “ np1{r´ 1q and noting 0 ă r ă minpp2{τw2

, qq we can apply Hölder’s
inequality, Lemma 3.1, and the Fefferman-Stein inequality to obtain the desired result.

□

7. Sharpness

We now prove the lower bound on s is sharp for (1.5) where w1 “ w2 “ 1. For this we need the following
lemma.

Lemma 7.1. [Lemma 1, [5]] Let f P SpRnq and s ą 0, s R 2N. If fpxq ě 0 for all x P Rn and f ­“ 0, then
there exists a R " 1 such that

|Dsf | ě Cn,s,f,R|x|´n´s for |x| ą R.

For p ă 1 and 0 ă s ď np1{p ´ 1q we construct an example such that (1.5) fails. Let F pzq “ z2 then
Gpzq “ |z|, that is

|F pz1q ´ F pz2q| ď

ż 1

0

2|tz1 ` p1 ´ tqz2||z1 ´ z2| ď 2p|z1| ` |z2|q|z1 ´ z2|.

Let u “ Ψ. Note that pΨ is compactly supported away from the origin so the RHS of (1.5) is finite. Since
F pΨq “ Ψ2 P S we have DspΨ2q is a L2 function. So ∥DspF pΨqq∥Lp À ∥DspF pΨqq∥Hp . By Lemma 7.1 and
the fact s ď np1{p ´ 1q we obtain that ∥DspF pΨqq∥Lp “ 8. Therefore the LHS of (1.5) is infinite.
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[9] Hidano, Kunio; Wang, Chengbo. Fractional derivatives of composite functions and the Cauchy problem for the nonlinear

half wave equation. Selecta Math. 25 (2019), no.1, Paper No. 2, 28 pp.
[10] Hidano, Kunio; Jiang, Jin-Cheng; Lee, Sanghyuk; Wang, Chengbo. Weighted fractional chain rule and nonlinear wave

equations with minimal regularity. Rev. Mat. Iberoam. 36 (2020), no.2, 341–356.
[11] Kato, Tosio. On nonlinear Schrödinger equations. II. Hs-solutions and unconditional well-posedness. J. Anal. Math. 67

(1995), 281–306.

[12] Kato, Tosio; Ponce, Gustavo. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math.
41 (1988), no. 7, 891–907.

[13] Staffilani, Gigliola. On the generalized Korteweg-de Vries-type equations. Differential Integral Equations 10 (1997), no.4,

777–796.
[14] Taylor, Michael. Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Math.

Surveys Monogr., 81. AMS, Rhode Island, 2000.

[15] Thomson, Alexander; Naibo, Virginia. Coifman-Meyer multipliers: Leibniz-type rules and applications to scattering of
solutions to PDEs. Trans. Amer. Math. Soc. 372 (2019), no. 8, 5453–5481.

[16] Yamazaki, Masao. A quasihomogeneous version of paradifferential operators. I. Boundedness on spaces of Besov type. J.

Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), no.1, 131–174.

Department of Mathematics, University Of Missouri

Email address: spdthc@umsystem.edu

14


	1. Introduction
	2. Notation
	3. Preliminaries
	4. Proof of Theorem 1.1
	4.1. 
	4.2. 
	4.3. 
	4.4. 
	4.5. 
	4.6. 

	5. Inhomogeneous Triebel-Lizorkin chain rule
	6. Proof of Corollary 1.1.2
	7. Sharpness
	References

