
REMARKS ON ALMOST EVERYWHERE
CONVERGENCE AND APPROXIMATE IDENTITIES

SEAN DOUGLAS AND LOUKAS GRAFAKOS

Abstract. We prove almost everywhere convergence for convo-
lutions of locally integrable functions with shrinking L1 dilations
of a fixed integrable kernel with an integrable radially decreasing
majorant. The set on which the convergence holds is an explicit
subset of the Lebesgue set of the locally integrable function of full
measure. This result can be viewed as an extension of the Lebesgue
differentiation theorem in which the characteristic function of the
unit ball is replaced by a more general kernel. We obtain a similar
result for multilinear convolutions.

1. Introduction

Almost everywhere convergence for sequences (or families) of func-
tions is an intricate topic that can be especially complicated in its
study. For instance the almost everywhere convergence of Fourier se-
ries of square integrable functions is notorious for its difficulty; see [4],
[6], [7]. But many other topics on almost everywhere convergence can
be delicate and involved. By a general theorem [15], in most important
cases, almost everywhere convergence is equivalent to the boundedness
of an associated maximal operator. And such boundedness is, in many
situations, particularly difficult to obtain. For an elegant presentation
of general issues related to almost everywhere convergence one may
consult the monograph [8] which exhibits a probabilistic viewpoint.

The use of approximate identities is of paramount importance in
harmonic analysis. As Dirac mass at the origin is not an integrable
function, the best way to approximate the unit element in the alge-
bra of integrable functions is to consider approximate identities. But
as convolution is a smoothing operation, convolution with approxi-
mate identities therefore allows the approximation of rough integrable
functions by smooth ones. Such convolutions may converge in norm
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and almost everywhere. The topic of almost everywhere convergence
for families of convolutions with approximate identities has been thor-
oughly studied by many authors. We mention for instance the following
works: [2], [14], [12], [13], [1], [3], [10], [11], [5], noting that this list is
by no means exhaustive. It is only representative of the different angles
and aspects of the theory.

In this article we focus on almost everywhere convergence for families
given by convolutions with specific approximate identities, formed by
a single kernel via L1 dilations. And our goal is to find relatively weak
conditions on the kernel for almost everywhere convergence to hold.

2. Preliminaries

We consider families of approximate identities formed by dilations of
a single integrable function on Rn. Such families have natural and use-
ful properties in terms of norm convergence. Precisely, if K ∈ L1(Rn)
has integral equal to 1 and

Kt(x) = t−nK(x/t), t > 0,

are the L1 dilations of K, then for any f ∈ Lp(Rn), 1 ≤ p < ∞ we
have that

Kt ∗ f → f in Lp(Rn)

as t→ 0+. Moreover, there is an analogous conclusion when p =∞, if
f ∈ L∞(Rn) is assumed to be uniformly continuous.

But the almost everywhere convergence (henceforth abbreviated as
a.e.) of the family f ∗ Kt to f as t → 0+ is a more delicate matter.
Usually certain control on the decay of K at infinity and its blowup
near zero are required in order to obtain such convergence. In this work
we study certain conditions on K suitable for the almost everywhere
convergence of the family f ∗Kt for general functions f on Rn.

A typical result along these lines is the following: Let K in L1(Rn)
have integral equal to 1 and satisfy |K(x)| ≤ A |x|−nmin(|x|γ, |x|−γ),
where A, γ > 0. Then given 1 ≤ p <∞ and f ∈ Lp(Rn) we have

lim
t→0

Kt ∗ f = f a.e.

Such a result can be proved by considering the oscillation

Of = lim sup
t→0

|Kt ∗ f − f |

of a function f in ∪1≤p<∞ Lp(Rn). The oscillation is zero a.e. for a
dense subclass of Lp (such as smooth functions with compact support;
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note here we use p < ∞). Thus for f ∈ Lp(Rn), we have Of = Of−φ

where φ lies in such a dense subclass. Moreover,

Of ≤ Cn,γ AM(f) + |f |,(1)

whereM is the Hardy-Littlewood maximal operator. This allows one
to show that for any δ > 0{

x ∈ Rn : Of (x) > δ
}
=

{
x ∈ Rn : Of−φ(x) > δ

}
.(2)

As we will see in more detail in Section 6, by (1) and (2) in conjuction
with the weak type (1, 1) property of the Hardy-Littlewood maximal
operator we obtain (2) is of Lebesgue measure zero and consequently
Of = 0 a.e.

This approach does not cover the case of p = ∞, in view of the
lack of a nice dense subspace of L∞. But it has the more serious
drawback that it does not provide any information about the set of
measure zero on which the pointwise convergence fails. In this note we
discuss a method that can handle bounded functions and even functions
that grow at infinity, provided there is a certain compatibility with the
kernel [precisely, property (4)]. But the most important feature of this
method is that it precisely describes the set on which the pointwise
convergence holds.

We recall that a locally integrable function on Rn is integrable over
all compact subsets of Rn. The space of all locally integrable functions
is denoted by L1

loc(R
n). The Lebesgue differentiation theorem says that

for every locally integrable function f on Rn there is a measurable
subset Lf of Rn (called the Lebesgue set of f) with the properties
|Rn \ Lf | = 0 and

(3) lim
t→0

1

vntn

∫
|y|≤t

|f(x− y)− f(x)| dy = 0

for every x ∈ Lf . Here vn is the volume of the unit ball B(0, 1) in
Rn. The purpose of this article is to investigate how general can an
integrable function K be in order for f ∗Kt to converge a.e. to f . The
Lebesgue differentiation theorem says that K can be the characteristic
function of the unit ball divided by vn. The question we examine
is for what other integrable functions K such a convergence result is
possible. In Theorem 2.1 we show that the existence of a radially
decreasing integrable majorant of K is sufficient for almost everywhere
convergence to hold. A radially decreasing majorant of K is a radial
function which majorizes |K| and is decreasing as a function of its
modulus.
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A function L on (0,∞) is called piecewise absolutely continuous if
there is a sequence of points

0← a−N < · · · < a−2 < a−1 < a0 < a1 < · · · < aN < aN+1 →∞

such that L is absolutely continuous on each interval [aj, aj+1].
An example of a piecewise C1 (hence absolutely continuous) decreas-

ing, and continuous function is L(s) = s−1min(s1/4, s−1/4) which fails
to be differentiable at s = 1. Another more interesting example is the
following. Let gk ∈ L1(R) such that gk is nonnegative and supported
in [ak−1, ak]. Furthermore, suppose that

∑
k∈Z ∥gk∥L1(Rn) <∞. Define

hj(x) =
( ∞∑

k=j

∥gk∥L1(R) +

∫ aj

x

gj−1(t)dt
)
χ[aj−1,aj ](x)

and let L(x) =
∑

j∈Z hj(|x|). Then on each interval [aj−1, aj] the func-
tion L is absolutely continuous and decreasing, moreover L is continu-
ous at each aj for j ∈ Z. To see that L is globally decreasing observe
if j′ < j and x ∈ [aj−1, aj], x

′ ∈ [aj′−1, aj′ ], then

L(x) ≤
∞∑

k=j−1

∥gk∥L1(Rn) ≤
∞∑

k=j′

∥gk∥L1(Rn) ≤ L(x′).

We consider kernels whose absolute value is majorized by decreas-
ing, continuous, and piecewise absolutely continuous functions of the
modulus. For such kernels K we obtain an almost everywhere conver-
gence theorem for the convolutions f ∗Kt as t→ 0+ for general locally
integrable functions.

Our main result is as follows:

Theorem 2.1. Let K be a function on Rn and let L : (0,∞) →
[0,∞) be a decreasing, continuous, and piecewise absolutely continuous
function. Assume that

(A) |K(x)| ≤ L(|x|) for all x ∈ Rn.

(B) The function L(| · |) lies in L1(Rn).

Let f ∈ L1
loc(R

n). Suppose that there is a set Ef of measure zero such
that for every 0 < θ ≤ 1 and x ∈ Rn \ Ef we have

(4) lim
t→0+

∫
|y|≥θ

|f(x− y)| |Kt(y)| dy = 0.

Then there is another set of measure zero Df such that for all points x
in Rn \ (Df ∪ Ef ) we have

(5) (|f | ∗ |Kt|)(x) <∞
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for sufficiently small t (depending on x), and for all x in Lf \(Df ∪Ef )
we have

(6) lim
t→0+

(Kt ∗ f)(x) = cf(x),

where c =
∫
Rn K(x) dx. Thus, Kt ∗ f → cf a.e. as t→ 0+

In Section 4 we provide examples of pairs (f,K) satisfying condition
(4); these include Lp functions for 1 ≤ p ≤ ∞ and L1

loc functions if
K has compact support. Thus, condition (4) is very natural in this
context.

3. Properties of the function L

We begin with the following observations about the function L:

(7) lim
s→+∞

snL(s) = 0,

and

(8) lim
s→0+

snL(s) = 0.

To verify these assertions, we note that by assumption (B) we have

I =

∫ ∞

0

un−1L(u) du <∞.

Then for s > 0 we have∫ s

s/2

un−1L(u) du =

∫ ∞

s/2

un−1L(u) du−
∫ ∞

s

un−1L(u) du

and this converges to 0 as s→∞ being the difference of two tails of an
integrable function and also converges to I − I = 0 as s → 0+. Since
L is decreasing we obtain∫ s

s/2

un−1L(u) du ≥ L(s)(s/2)n−1(s− s/2) =
1

2n
L(s)sn,

for all s > 0, and from this we derive (7) and (8).
Next we focus on the following integration by parts lemma:

Lemma 3.1. Let b > 0. Let L be as in the statement of Theorem 2.1.
Then for any nonnegative absolutely continuous function ϕ on [0, b] that
satisfies

(9) ϕ(r) ≤ Crn for some C > 0 and all r ∈ [0, b]

and

(10)

∫ b

0

L
(s
t

)
|ϕ′(s)| ds <∞ for some t > 0,
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the integration by parts formula

(11)

∫ b

0

L
(r
t

)
ϕ′(r)dr = L

(b
t

)
ϕ(b)−

∫ b

0

1

t
L′
(r
t

)
ϕ(r)dr

is valid.

Proof. First we note that replacing b by tb, ϕ(r) by ϕ(tr), C by t−nC,
matters reduce to the case t = 1. So we prove (11) when t = 1.

We consider the largest point aN such that aN < b. Then b ≤ aN+1

and we apply integration by parts on each interval [ai, ai+1] for i <
N and also on [aN , b]; note that L is absolutely continuous on these
intervals.

By (8) there is an ϵ0 > 0 and such that

(12) 0 < ϵ < ϵ0 =⇒ L(ϵ)ϵn ≤ 1.

For ϵ < min(ϵ0, aN−2) we pick M < N − 2 such that aM < ϵ ≤ aM+1

and we write∫ b

ϵ

L(r)ϕ′(r)dr

=
N−1∑

i=M+1

(
L(ai+1)ϕ(ai+1)− L(ai)ϕ(ai)

)
−
∫ ai+1

ai

L′(r)ϕ(r)dr

+L(b)ϕ(b)− L(aN)ϕ(aN)−
∫ b

aN

L′(r)ϕ(r)dr

+L(aM+1)ϕ(aM+1)− L(ϵ)ϕ(ϵ)−
∫ aM+1

ϵ

L′(r)ϕ(r)dr

using the classical integration by parts identity, which is justified from
the fact that L and ϕ are absolutely continuous on each closed interval
that appears.
The sums are telescoping and thus summing them yields

(13)

∫ b

ϵ

L(r)ϕ′(r)dr = L(b)ϕ(b)− L(ϵ)ϕ(ϵ)−
∫ b

ϵ

L′(r)ϕ(r)dr.

At this point we need to let ϵ→ 0. Assume momentarily that

(14)

∫ b

0

|L′(r)|ϕ(r)dr <∞.

Then we let ϵ → 0+ applying the Lebesgue dominated convergence
theorem, whose use is justified by (10) and (14). We obtain∫ b

0

L(r)ϕ′(r)dr = L(b)ϕ(b)−
∫ b

0

L′(r)ϕ(r)dr,
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noting that

L(ϵ)ϕ(ϵ) = L(ϵ)ϵn︸ ︷︷ ︸
tends to 0

ϕ(ϵ)ϵ−n︸ ︷︷ ︸
bounded

→ 0

in view of condition (8) and (9). It remains to prove (14). Using (9)
and the fact that L′ ≤ 0 (whenever it is defined) we need to show that

−
∫ b

0

L′(r)rn dr <∞.

We just repeat the argument leading to (13) with ϕ(r) = rn to obtain

(15)

∫ b

ϵ

L(r)nrn−1dr = L(b)bn − L(ϵ)ϵn −
∫ b

ϵ

L′(r)rndr,

and from this and (12), since ϵ < ϵ0, we deduce

−
∫ b

ϵ

L′(r)rndr ≤ −L(b)bn + 1 +

∫ b

0

L(r)nrn−1dr

= − L(b)bn + 1 +
n

ωn−1

∥L(| · |)∥L1(Rn),

where ωn−1 is the surface area of the unit sphere S
n−1 and ∥L(|·|)∥L1(Rn)

is the L1 norm of the function x→ L(|x|) on Rn. Letting ϵ→ 0+ and
using the Lebesgue monotone convergence theorem proves (14) and
completes the proof of (11). □

4. The proof of Theorem 2.1

Proof. We fix f ∈ L1
loc(R

n) andK,L as in the statement of the theorem.
For every N ∈ Z+ and every t > 0 we have∫

|x|≤N

[ ∫
|y|≤1

|f(x− y)| 1
tn
L
( |y|

t

)
dy

]
dx

≤
(∫

|y|≤1

1

tn
L
( |y|

t

)
dy

)∫
|x′|≤N+1

|f(x′)| dx′

≤
∥∥L(| · |)|∥∥

L1(Rn)

∫
|x|≤N+1

|f(x)| dx

< ∞.

Thus for every N ∈ Z+, there is a set of measure zero DN such that
x ∈ B(0, N) \DN implies

(16)

∫
|y|≤1

|f(x− y)| 1
tn
L
( |y|

t

)
dy <∞ for all t > 0.
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Here and throughout B(x, r) is the open ball in Rn of radius r > 0
centered at x. Let

Df =
∞⋃

N=1

DN .

Then for all x ∈ Rn \Df we have

(17)

∫
|y|≤1

|f(x− y)| |Kt(y)| dy ≤
∫
|y|≤1

|f(x− y)| 1
tn
L
( |y|

t

)
dy <∞.

Now for a given x ∈ Rn \ Ef , (4) with θ = 1 implies that there is a
tx,1 > 0 such that for all t satisfying 0 < t < tx,1 we have

(18)

∫
|y|≥1

|f(x− y)| |Kt(y)| dy < 10.

Combining this fact with (17) we obtain that when x ∈ Rn \ (Df ∪Ef )
and 0 < t < tx,1 we have∫

Rn

|f(x− y)| |Kt(y)| dy <∞.

This proves (5).
Let Lf be the Lebesgue set of f . We fix a x0 ∈ Lf \ (Df ∪Ef ) which

has full measure and we prove (6) for x = x0.
Let vn = |B(0, 1)| be the volume of the unit ball in Rn and

IL =

∫
Rn

L(|x|)dx = n vn

∫ ∞

0

sn−1L(s) ds <∞.

Given ε > 0, as x0 ∈ Lf , there is a δ0 > 0 (we may assume that
δ0 < 1) such that

(19) 0 < r ≤ δ0 =⇒ 1

vnrn

∫
|y|<r

|f(x0 − y)− f(x0)| dy <
ε

IL
.

For t > 0 and t < tx,1 we write∣∣∣(Kt ∗ f)(x0)− cf(x0)
∣∣∣

=

∣∣∣∣ ∫
Rn

f(x0 − y)Kt(y) dy −
(∫

Rn

Kt(y) dy
)
f(x0)

∣∣∣∣
≤
∫
Rn

∣∣f(x0 − y)− f(x0)
∣∣ |Kt(y)| dy

≤
∫
|y|≥δ0

∣∣f(x0 − y)− f(x0)
∣∣ |Kt(y)| dy(20)

+

∫
|y|<δ0

∣∣f(x0 − y)− f(x0)
∣∣ |Kt(y)| dy.(21)
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We begin with term (20). We have∫
|y|≥δ0

∣∣f(x0 − y)− f(x0)
∣∣ |Kt(y)| dy

≤
∫
|y|≥δ0

|f(x0 − y)| |Kt(y)| dy + |f(x0)|
∫
|y|≥δ0

|Kt(y)| dy

=

∫
|y|≥δ0

|f(x0 − y)| |Kt(y)| dy + |f(x0)|
∫
|y|≥δ0/t

|K(y)| dy.

By assumption (4) there is a positive constant tx0,δ0 such that for all
t satisfying 0 < t < tx0,δ0 we have∫

|y|≥δ0

|f(x0 − y)| |Kt(y)| dy < ε.

Moreover there is a t∗x0,δ0
> 0 such that for 0 < t < t∗x0,δ0

we have

|f(x0)|
∫
|y|≥δ0/t

|K(y)| dy < ε

as the integral above is the tail of an integrable function. Combining
these facts we obtain

(22)

∫
|y|≥δ0

∣∣f(x0 − y)− f(x0)
∣∣ |Kt(y)| dy < 2ε

whenever

(23) 0 < t < min
{
tx0,1, tx0,δ0 , t

∗
x0,δ0

}
.

To handle the term in (21) for every r > 0 we use polar coordinates
to write∫

|y|<r

|f(x0 − y)− f(x0)| dy

=

∫ r

0

ρn−1

∫
Sn−1

|f(x0 − ρθ)− f(x0)| dθ dρ

=

∫ r

0

F (ρ) dρ,

where we set

F (ρ) = ρn−1

∫
Sn−1

|f(x0 − ρθ)− f(x0)| dθ.

Note that by Fubini’s theorem, F is defined for almost every ρ > 0 as
|f(x0 − ·)− f(x0)| is integrable over the ball B(0, r).



10 SEAN DOUGLAS AND LOUKAS GRAFAKOS

We now write for any t > 0∫
|y|<δ0

|f(x0 − y)− f(x0)| |Kt(y)| dy

≤
∫
|y|<δ0

|f(x0 − y)− f(x0)|
1

tn
L
( |y|

t

)
dy <∞(24)

and the expression on the right is finite in view of (16) since x0 does
not lie in Df ∪ Ef and δ0 < 1. We now write∫
|y|<δ0

|f(x0 − y)− f(x0)|
1

tn
L
( |y|

t

)
dy

=

∫ δ0

0

d

dr

[ ∫ r

0

F (ρ) dρ
] 1

tn
L
(r
t

)
dr

=

(∫ δ0

0

F (ρ) dρ

)
1

tn
L
(δ0
t

)
−
∫ δ0

0

(∫ r

0

F (ρ) dρ

)
1

tn
1

t
L′
(r
t

)
dr,

where we used the integration by parts formula (11) with b = δ0 and

ϕ(r) =

∫ r

0

F (ρ) dρ,

which is absolutely continuous. Note that ϕ satisfies condition (9) with
C = εvn/IL and condition (10) since

∫ δ0

0

F (r)L
(r
t

)
dr ≤

∫
|y|≤δ0

|f(x0 − y)− f(x0)|L
( |y|

t

)
dy <∞

in view of (24).
We now return to estimating(∫ δ0

0

F (ρ) dρ

)
1

tn
L
(δ0
t

)
−
∫ δ0

0

(∫ r

0

F (ρ) dρ

)
1

tn
1

t
L′
(r
t

)
dr

which we write as follows:

(25)

(
1

δn0

∫ δ0

0

F (ρ)dρ

)
δn0
tn
L
(δ0
t

)
−
∫ δ0

0

(
1

rn

∫ r

0

F (ρ) dρ

)
rn

tn
1

t
L′
(r
t

)
dr.
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Using (19) and the fact that −L′ ≥ 0 a.e. we estimate (25) by

ε

IL
vn

[
δn0
tn
L
(δ0
t

)
−
∫ δ0

0

rn

tn
1

t
L′
(r
t

)
dr

]
=

ε

IL
vn

[
δn0
tn
L
(δ0
t

)
−
∫ δ0/t

0

rnL′(r) dr

]
=

ε

IL
n vn

[ ∫ δ0/t

0

rn−1L(r) dr

]
≤ ε

IL
n vn

1

ωn−1

∫
Rn

L(|x|) dx

= ε.

Here we used the integration by parts identity (11) again with the
function ϕ(r) = rn and the fact that nvn = ωn−1. Combining the
inequality just proved with (20), (21), and (22) we obtain

|(Kt ∗ f)(x0)− cf(x0)| < 2ε+ ε = 3ε,

whenever (23) holds. This proves (6). □

5. Comments and remarks

Several remarks on Theorem 2.1 are in order.

Remark 5.1. Given f ∈ L1
loc(Rn), if it is the case that for all x ∈ Rn

(26)

∫
|y|≤1

|f(x− y)| 1
tn
L
( |y|

t

)
dy <∞

then Df = ∅. Additionally if Ef = ∅, then (6) is valid for every point
in the Lebesgue set of f . In this case, the convergence of f ∗ Kt (as
t→ 0+) holds on the Lebesgue set Lf of f .

Remark 5.2. If the function K in Theorem 2.1 has compact support,
then condition (4) holds for any locally integrable function f . Indeed,
if K is supported in a ball B(0,M), then the integral in (4) is over the
set θ ≤ |y| ≤Mt and this set becomes empty when t < θ/M .

Remark 5.3. If L(s) = s−nmin(sγ, s−γ) for some γ > 0, then condi-
tion (4) can be derived from

(27)

∫
Rn

|f(z)|
(1 + |z|)n+γ

dz <∞.
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Indeed, assuming (27), for any x ∈ Rn, we obtain

(28)

∫
Rn

|f(z)|
(1 + |x− z|)n+γ

dz <∞

by splitting the z integral above into the regions |z| ≤ 2|x| and |z| ≥
2|x|. The integral over the region |z| ≤ 2|x| is finite as f is locally

integrable. Also, in the case |z| ≥ 2|x| we have |z|
2
≤ |z − x| ≤ 3

2
|z|, so

we obtain the finiteness of (28) from (27). Then for |y| ≥ θ and t > 0
we have

|Kt(y)| ≤
A

tn

∣∣∣y
t

∣∣∣−n∣∣∣y
t

∣∣∣−γ

= A
tγ

|y|n+γ
≤ A tγ

(θ + 1

θ

)n+γ 1

(1 + |y|)n+γ
.

Combining this estimate with (28) we deduce (4).

Remark 5.4. We note that condition (4) holds if f lies in Lp where
1 ≤ p ≤ ∞. Indeed, in this case we make use of the bound∫

|y|≥θ

|f(x− y)| |Kt(y)| dy ≤ ∥f∥Lp(Rn)∥Kt∥Lp′ (Rn\B(0,θ)),

by Hölder’s inequality. Here p′ is the dual exponent of p which satisfies
1/p+ 1/p′ = 1. If p′ <∞, then

∥Kt∥Lp′ (Rn\B(0,θ)) =

(∫
|y|≥θ/t

|K(y)|p′ dy
) 1

p′

≤
(∫ ∞

θ/t

L(s)p
′
sn−1 ds

) 1
p′

.

Since L is decreasing on (0,∞) it has a limit as s→∞ and this cannot
be a positive number, otherwise L(s)sn−1 would not be integrable over
(0,∞). Let us pick an s0 > 0 such that L(s) ≤ 1 for all s ≥ s0. Then
pick t0 such that t < t0 implies θ/t > s0. It follows if t < t0, then for
s ≥ θ/t we have L(s)p

′ ≤ L(s) hence(∫ ∞

θ/t

L(s)p
′
sn−1 ds

) 1
p′

≤
(∫ ∞

θ/t

L(s)sn−1 ds

) 1
p′

and this converges to zero as it is the tail of an integrable function.
Hence condition (4) holds in this case.

We now turn to the case p = 1 or p′ = ∞. We apply Hölder’s
inequality as in the case p > 1, but we note that

∥Kt∥L∞(Rn\B(0,θ)) ≤ sup
|y|≥θ

1

tn
L
( |y|

t

)
≤ 1

tn
L
(θ
t

)
=

1

θn
θn

tn
L
(θ
t

)
.

Now letting t→ 0 and using (7) we obtain that the preceding expression
tends to zero and thus condition (4) also holds in this case.



REMARKS ON ALMOST EVERYWHERE CONVERGENCE 13

Example 5.1. Three examples of functions L that satisfy the hypothe-
ses of Theorem 2.1 are the following:

L1(s) = s−n

{
sγ when s < 1

s−γ when s ≥ 1

L2(s) = s−n

{
(1 + ln 1

s
)−δ when s < 1

(1 + ln s)−δ when s ≥ 1

L3(s) = s−n

{
(1 + ln 1

s
)−1(1 + ln(1 + ln 1

s
))−δ when s < 1

(1 + ln s)−1(1 + ln(1 + ln s))−δ when s ≥ 1,

where γ > 0 and δ > 1.

6. A different approach with a nonexplicit set of
convergence

In this section we provide another proof of the a.e. convergence
claimed in Theorem 2.1 which has the shortcoming that it does not
relate the set of a.e. convergence with the Lebesgue set of f .
For simplicity we denote by BM the closed ball B(0,M) for M > 0.

We fix a locally integrable function f on Rn and also fix M > 0.
We work with points x in the closed ball BM for which |f(x)| < ∞
and (|f | ∗ |Kt|)(x) < ∞ for all t > 0. (Almost all points x satisfy
|f(x)| < ∞, and in Section 3 it was shown that almost all points also
satisfy (|f | ∗ |Kt|)(x) < ∞ for all t > 0.) For such points x we clearly
have the estimate

|(f ∗Kt)(x)−cf(x)|

≤
∫
|y|≤1

|f(x− y)| |Kt(y)| dy

+ |c| |f(x)|

+

∫
|y|≥1

|f(x− y)| |Kt(y)| dy

+ |f(x)|
∫
|y|≥1

|Kt(y)| dy.

Taking the lim sup as t → 0+ and using (4) and the fact that the
integral of |K| over the region |y| ≥ 1/t tends to zero as t → 0+ we
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obtain

lim sup
t→0+

|(f ∗Kt)(x)− cf(x)|

≤ lim sup
t→0+

(∫
Rn

|f(x− y)|χ|x−y|≤M+1 |Kt(y)| dy + |c| |f(x)|
)

= lim sup
t→0+

(|f |χBM+1
∗ |Kt|)(x) + |c| |f(x)|)

≤∥L(| · |)∥L1M(|f |χBM+1
)(x) + |c| |f(x)|

≤C ′ M(|f |χBM+1
)(x).

Here C ′ = ∥L(| · |)∥L1 + |c|, M is the Hardy-Littlewood maximal func-
tion, and we used the fact that |g| ∗ |Kt| is pointwise bounded by M(g)
times the L1 norm of an integrable radially decreasing majorant of K
(cf. [9, Theorem 2.1.10]). We also used that |g| ≤M(g) for any locally
integrable function g.

Let ε > 0. For our fixed f and M pick a smooth function with
support φ inside BM+1 such that

(29) ∥fχBM+1
− φ∥L1 < ε.

We set

Of (x) = lim sup
t→0+

|(f ∗Kt)(x)− cf(x)|

and we call Of the oscillation of f . A simple argument shows that
Oφ = 0 everywhere and that Of = Of−φ on the set on which Of <∞
(which is a set of full measure as observed earlier).

Then for a given δ > 0 we have∣∣∣{x ∈ BM : Of (x) > δ
}∣∣∣ = ∣∣∣{x ∈ BM : Of−φ(x) > δ

}∣∣∣
≤

∣∣∣{x ∈ BM : C ′M(|f − φ|χBM+1
)(x) > δ

}∣∣∣
≤

∣∣∣{x ∈ Rn : C ′ M(|f − φ|χBM+1
)(x) > δ

}∣∣∣
≤ 3nC ′

δ
∥fχBM+1

− φ∥L1

by the weak type (1, 1) property of the Hardy-Littlewood maximal
operator (which holds with constant 3n). Using (29) we obtain that∣∣∣{x ∈ BM : Of (x) > δ

}∣∣∣ ≤ 3nC ′

δ
ε

and letting ε→ 0 we deduce∣∣∣{x ∈ BM : Of (x) > δ
}∣∣∣ = 0
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for any δ > 0, hence Of = 0 a.e. on BM . Now letting M →∞ through
the positive integers we conclude that Of = 0 a.e. on Rn. This yields
the a.e. convergence of Theorem 2.1 but, unfortunately, there is no
explicit relation to the Lebesgue set of f .

7. Almost everywhere convergence for multilinear
convolutions

In this section we generalize Theorem 2.1 to multilinear convolutions.
We say f ∈ Lp

loc(R
n) if only if |f |p ∈ L1

loc(R
n) for 1 ≤ p < ∞. Also,

f ∈ L∞
loc(R

n) means ∥χKf∥L∞(Rn) is finite for any compact setK ⊆ Rn.
Notice as a consequence of Hölder’s inequality Lp

loc(R
n) ⊆ L1

loc(R
n) for

1 ≤ p ≤ ∞.
We review the notion of multilinear convolutions. Throughout this

section we fix a positive integer m ≥ 2. Suppose that K(y1, . . . , ym) is
a measurable function on (Rn)m, where each variable yj lies in Rn. Let
fj be measurable functions on Rn. If for some x ∈ Rn the following
integral∫

(Rn)m
|f1(x− y1)| · · · |fm(x− ym)| |K(y1, . . . , ym)| dy1 · · · dym <∞

converges absolutely, then we say that the multilinear convolution of
K with the m-tuple (f1, . . . , fm) exists at x and equals∫

(Rn)m
f1(x− y1) · · · fm(x− ym)K(y1, . . . , ym) dy1 · · · dym.

For notational simplicity we write

y⃗ = (y1, . . . , ym)

and

dy⃗ = dy1 · · · dym,
and we introduce the tensor function

⊗f⃗(y⃗ ) = (f1 ⊗ · · · ⊗ fm)(y1, . . . , ym) = f1(y1) · · · fm(ym)
for yj on Rn. The m-tuple (f1, . . . , fm) of functions on Rn provides a
function on (Rn)m. Then the multilinear convolution of K with the
m-tuple (f1, . . . , fm) at the point x ∈ Rn coincides with the regular
convolution of f1 ⊗ · · · ⊗ fm with K at the point (x, . . . , x) ∈ (Rn)m.

The L1 dilation of K is defined as

Kt(y1, . . . , ym) =
1

tmn
K
(y1
t
, . . . ,

ym
t

)
when t > 0.
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For the sake of simplicity in notation we denote the multilinear con-
volution of Kt with the m-tuple (f1, . . . , fm) at the point x by

(⊗f⃗ ∗Kt)(x).

Theorem 7.1. Let K be a function on (Rn)m and let L : (0,∞) →
[0,∞) be a decreasing and piecewise absolutely continuous function.
Assume that

(A) |K(x)| ≤ L(|x|) for all x ∈ (Rn)m.

(B) L(| · |) lies in L1((Rn)m).

Let fk ∈ L
pj
loc(R

n) such that 1 ≤ pj ≤ ∞ and 1 =
∑m

k=1
1
pj
. Suppose

that there is a set Ef1,...,fm of measure zero such that for every 0 < θ ≤ 1
and x ∈ Rn \ Ef1,...,fm we have

(30) lim
t→0+

∫
|y⃗ |≥θ

|f1(x− y1)| · · · |fm(x− ym)| |Kt(y⃗ )| dy⃗ = 0.

Then there is another set of measure zero Df1,...,fm such that for each
x in Rn \ (Df1,...,fm ∪ Ef1,...,fm) there is a tx > 0 such that

(31)

∫
(Rn)m

|f1(x− y1) · · · fm(x− ym)| |Kt(y⃗ )| dy⃗ <∞.

for all 0 < t < tx. Moreover, for all

x ∈ (Lf1 ∩ · · · ∩ Lfm) \ (Df1,...,fm ∪ Ef1,...,fm)

we have

(32) lim
t→0+

(⊗f⃗ ∗Kt)(x) = cf1(x) · · · fm(x),

where

c =

∫
(Rn)m

K(x) dx.
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Proof. We fix fj ∈ L
pj
loc(R

n) for j ∈ {1, . . . ,m} as in the statement of
the theorem. For every N ∈ Z+ and every t > 0 we have∫

BN

[ ∫
|y⃗ |≤1

|f1(x− y1)| · · · |fm(x− ym)|
1

tmn
L
( |y⃗ |

t

)
dy⃗

]
dx

=

∫
|y⃗ |≤1

1

tmn
L
( |y⃗ |

t

)∫
BN

|f1(x− y1)| · · · |fm(x− ym)| dxdy⃗

≤
∫
|y⃗ |≤1

1

tmn
L
( |y⃗ |

t

) m∏
j=1

(∫
BN

|fj(x− yj)|pjdx
) 1

pj dy⃗

≤
∫
|y⃗ |≤1

1

tmn
L
( |y⃗ |

t

)
dy⃗

m∏
j=1

(∫
BN+1

|fj(x)|pjdx
) 1

pj

which is a finite quantity since fj ∈ L
pj
loc(R

n) and L is integrable; here
we do the obvious modification if pj = ∞. Thus for every N ∈ Z+,
there is a set of measure zero DN in BN such that

x ∈ BN \DN =⇒
∫
|y⃗ |≤1

|f1(x− y1)| · · · |fm(x− ym)|
1

tn
L
( |y⃗ |

t

)
dy⃗ <∞

for all t > 0. Setting

Df1,...,fm =
∞⋃

N=1

DN ,

then for all x ∈ Rn \Df1,...,fm we have

(33)

∫
|y⃗ |≤1

|f1(x− y1)| · · · |fm(x− ym)|
1

tn
L
( |y⃗ |

t

)
dy⃗ <∞

and the same is true with |Kt(y⃗ )| in place of 1
tn
L( |y⃗ |

t
).

Now for a given x ∈ Rn \ Ef1,...,fm , (30) with θ = 1 gives that for
some tx,1 > 0 and all t satisfying 0 < t < tx,1 we have

(34)

∫
|y⃗ |≥1

|f1(x− y1)| · · · |fm(x− ym)| |Kt(y⃗ )| dy⃗ < 100.

Combining this fact with (33) we obtain that for

x ∈ Rn \ (Df1,...,fm ∪ Ef1,...,fm)

and 0 < t < tx,1 we have∫
(Rn)m

|f1(x− y1)| · · · |fm(x− ym)| |Kt(y⃗ )| dy⃗ <∞.
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This yields (31) but also yields the slightly stronger estimate

(35)

∫
|y⃗ |≤1

|f1(x− y1)| · · · |fm(x− ym)|
1

tn
L
( |y⃗ |

t

)
dy⃗ <∞

for all t > 0 whenever x ∈ Rn \ (Df1,...,fm ∪ Ef1,...,fm).

We now fix a point

x0 ∈ (Lf1 ∩ · · · ∩ Lfm) \ (Df1,...,fm ∪ Ef1,...,fm).

We will prove (32) for x = x0.
Denote

IL =

∫
(Rn)m

L(|y⃗ |) dy⃗ <∞.

Let ε > 0. Without harm assume that ε < 1. As x0 ∈ Lf1∩· · ·∩Lfm ,
there is a δ0 ∈ (0, 1) such that

(36) 0 < r ≤ δ0 =⇒ 1

vnrn

∫
|y|<r

|fj(x0 − y)− fj(x0)| dy < ε.

Now we use the identity

a1a2 · · · am − b1b2 · · · bm =
m∑
i=1

b1 · · · bi−1(ai − bi)ai+1 · · · am

(with the obvious modification when i = 1 or i = m) to estimate

(37)
1

(vnrn)m

∫
|y1|<r

· · ·
∫
|ym|<r

∣∣∣ m∏
j=1

fj(x0 − yj)−
m∏
j=1

fj(x0)
∣∣∣dy⃗

by

m∑
i=1

[ i−1∏
j=1

1

vnrn

∫
|yj |<r

|fj(x0 − yj)|dyj
]

[
1

vnrn

∫
|yi|<r

|fi(x0 − yi)− fi(x0)| dyi
][ m∏

j=i+1

|fi(x0)|
]
.

But the preceding expression is bounded by

ε
m∑
i=1

[ i−1∏
j=1

(
|fj(x0)|+ ε

)][ m∏
j=i+1

|fi(x0)|
]

when r < δ0 in view of (36). So we proved that when 0 < r < δ0 we
have

1

(vnrn)m

∫
|y1|<r

· · ·
∫
|ym|<r

∣∣∣ m∏
j=1

fj(x0− yj)−
m∏
j=1

fj(x0)
∣∣∣dy⃗ ≤ εCf1,...,fm(x0)
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with

Cf1,...,fm(x0) =
m∑
i=1

[ i−1∏
j=1

(
|fj(x0)|+ 1

)][ m∏
j=i+1

|fi(x0)|
]
.

For t > 0 and t < tx,1 we write∣∣∣(⊗f⃗ ∗Kt)(x0)− cf1(x0) · · · fm(x0)
∣∣∣

=

∣∣∣∣ ∫
(Rn)m

m∏
j=1

fj(x0 − yj)Kt(y⃗ ) dy⃗ −
(∫

(Rn)m
Kt(y⃗ )dy⃗

) m∏
j=1

fj(x0)

∣∣∣∣
≤
∫
(Rn)m

∣∣∣∣ m∏
j=1

fj(x0 − yj)−
m∏
j=1

fj(x0)

∣∣∣∣ |Kt(y⃗ )| dy⃗

≤
∫
|y⃗ |≥δ0

∣∣∣∣ m∏
j=1

fj(x0 − yj)−
m∏
j=1

fj(x0)

∣∣∣∣ |Kt(y⃗ )| dy⃗(38)

+

∫
|y⃗ |<δ0

∣∣∣∣ m∏
j=1

fj(x0 − yj)−
m∏
j=1

fj(x0)

∣∣∣∣ |Kt(y⃗ )| dy⃗.(39)

To estimate (38) we write∫
|y⃗ |≥δ0

∣∣∣∣ m∏
j=1

fj(x0 − yj)−
m∏
j=1

fj(x0)

∣∣∣∣ |Kt(y⃗ )| dy⃗

≤
∫
|y⃗ |≥δ0

( m∏
j=1

∣∣fj(x0 − yj)
∣∣) |Kt(y⃗ )| dy⃗

+

( m∏
j=1

∣∣fj(x0)
∣∣) ∫

|y⃗ |≥δ0/t

|K(y⃗ )| dy⃗.

By assumption (30) there is a positive constant tx0,δ0 such that for
all t satisfying 0 < t < tx0,δ0 we have∫

|y⃗ |≥δ0

( m∏
j=1

∣∣fj(x0 − yj)
∣∣) |Kt(y⃗ )| dy⃗ < ε.

Moreover there is a t∗x0,δ0
> 0 such that for 0 < t < t∗x0,δ0

we have∫
|y⃗ |≥δ0

( m∏
j=1

∣∣fj(x0 − yj)
∣∣) |Kt(y⃗ )| dy⃗ < ε.
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Combining these facts we obtain that

(40)

∫
|y⃗ |≥δ0

∣∣∣∣ m∏
j=1

fj(x0 − yj)−
m∏
j=1

fj(x0)

∣∣∣∣ |Kt(y⃗ )| dy⃗ ≤ 2ε

whenever

(41) 0 < t < min
{
tx0,1, tx0,δ0 , t

∗
x0,δ0

}
.

We now examine (39). For every r > 0 we use polar coordinates to
write∫

|y⃗ |<r

∣∣∣∣ m∏
j=1

fj(x0 − yj)−
m∏
j=1

fj(x0)

∣∣∣∣dy⃗
=

∫ r

0

ρmn−1

∫
Smn−1

∣∣∣∣ m∏
j=1

fj(x0 − ρθj)−
m∏
j=1

fj(x0)

∣∣∣∣dθ⃗ dρ
=

∫ r

0

F (ρ) dρ,

where we set

F (ρ) = ρmn−1

∫
Smn−1

∣∣∣∣ m∏
j=1

fj(x0 − ρθj)−
m∏
j=1

fj(x0)

∣∣∣∣dθ⃗.
By Fubini’s theorem, F is defined for almost every ρ > 0.

At this point we treat (39) in a way that is completely analogous to
that (21) was handled. By the same reasoning (based on the identity
(11)) we obtain that for all t > 0, when r < δ0 we have∫

|y⃗ |<δ0

∣∣∣∣ m∏
j=1

fj(x0 − yj)−
m∏
j=1

fj(x0)

∣∣∣∣ |Kt(y⃗ )| dy⃗ ≤ εCf1,...,fm(x0)IL,

where IL = ∥L(| · |)∥L1((Rn)m). Combining this inequality with (40) we
finally obtain∣∣∣(⊗f⃗ ∗Kt)(x0)− c

m∏
j=1

fj(x0)
∣∣∣ < (

2 + Cf1,...,fm(x0)IL
)
ε

whenever (41) is valid. This proves (32). □

8. Examples

We now consider examples of functions f that may grow at infinity
for which Theorem 2.1 applies.
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Example 8.1. Let 0 < γ < n, |f(x)| ≤ C(1 + |x|)τ for 0 ≤ τ < γ and
K(x) = |x|−n min(|x|γ, |x|−γ).

In this case the observation in Remark 5.3 applies. Then notice that∫
Rn

|f(y)|
(1 + |y|)n+γ

dy ≤
∫
Rn

C(1 + |x|)τ

(1 + |y|)n+γ
dy <∞,

since τ < γ, so condition (4) is valid.
A direct proof of condition (4) can also be given by changing vari-

ables. Then matters reduce to showing that

(42)

∫
|y|≥θ/t

(1 + |x− ty|)τ |y|−nmin(|y|γ, |y|−γ) dy

tend to zero as t→ 0+. But for t < 1 we have

(1 + |x− ty|)τ ≤ (1 + |x|)τ (1 + |y|)τ ,
so inserting this in (42) we obtain the tail of a convergent integral which
tends to zero; thus (4) is valid in this case.

Example 8.2. Let |f(x)| ≤ Ce|x|
p
for 0 ≤ p < q < ∞ and K(x) =

e−π|x|q . We only verify condition (4). Let θ > 0. By changing variables
matters reduce to showing that

(43)

∫
|y|≥θ/t

e|x−ty|p e−π|y|qdy

tend to zero as t→ 0+. But this assertion is valid, since for t < 1

|x− ty|p ≤ cp(|x|p + |ty|p) ≤ cp(|x|p + |y|p).
Inserting this estimate in (43) and using that p < q, we obtain that
(43) tends to zero as t → 0+, being the tails of an integrable function.
This yields that (4) is satisfied for all x ∈ Rn.

We note that in both Examples 8.1 and 8.2 the a.e. convergence is
in fact everywhere convergence as the sets Ef and Df are empty and
Lf is Rn.

Example 8.3. Many texts discussing approximate identities (for in-
stance [16], [9]), such as the one in (6), prove pointwise convergence
for points at which the underlying function f is continuous. In this
example we apply Theorem 2.1 to a function that is not continuous at
any point.

Let {ak} be a positive sequence such that
∑∞

k=1 ak <∞. Define

g(x) =
∞∑
j=1

aj

|x− rj|
1
2

χ[0,1](x),
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where {rj} is an enumeration of Q
⋂
[0, 1]. Note that g is integrable

by Lebesgue monotone convergence theorem (hence finite a.e.), is not
continuous at any point in [0, 1] and is unbounded on every interval of
[0, 1]. Now define

f(x) =
∑
k∈Z

g(x− k), x ∈ R

which provides a periodic extension of g to R. Let K be a positive
compactly supported function as stated in Theorem 2.1. By Remark 5.2
we have Ef = ∅. We now determine Df . Let x ∈ Lf and k′ be the
largest integer less than or equal to x. Observe,∫

|y|≤1

f(x− y)Kt(y)dy

≤
k′+1∑

k=k′−1

∞∑
j=1

aj

∫
|y|≤2

|x− k − y − rj|−
1
2χ[0,1](x− k − y)Kt(y)dy,

where we extended the domain of integration to |y| ≤ 2 so that every
summand over j and k has an integral with a singularity; to avoid
considering cases. Moving forward we only consider the summands
relating to k = k′, as the others follow by the same argument. Thus we
continue by bounding this summand,

∞∑
j=1

aj

∫
|y|≤2

|x− k′ − y − rj|−
1
2Kt(y)dy

≤
∞∑
j=1

aj

(∫
|y|≤2

|x− k′ − y − rj|−
3
4 dy

) 2
3∥Kt∥L3(R)

≤
∞∑
j=1

aj

(∫
|y|≤3

|y|−
3
4 dy

) 2
3∥Kt∥L3(R)

which is finite as K has compact support, and the series is finite. It
follows that Df = ∅ as well, thus (6) holds on Lf .

Example 8.4. We consider a bilinear convolution which resembles the
previous example. Define the functions

h1(x) =
∑
k∈Z

|x− k|−1/3χ|x−k|≤1/2

and

h2(x) =
∑
k∈Z

∣∣x− k − 1/2
∣∣−1/3

χ|x−k−1/2|≤1/2
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on the real line. Note that h1, h2 ∈ L2
loc(R). The Lebesgue sets of h1

and h2 are Lh1 = R \Z and Lh2 = R \ (1
2
+Z), as these are the points

of continuity of the respective functions.
Consider the function on R2 given by

K(x) = |x|−4/3χ|x|≤1.

Then (h1 ⊗ h2) ∗Kt(x, x) converges to h1(x)h2(x) for x ∈ Lh1 ∩ Lh2

as t→ 0+. To see this first note that Ef = ∅ again due to the compact
support of K. Let x ∈ Lh1 ∩Lh2 and k′ be the unique integer such that
|x− k′| < 1/2. Observe,∫

|y⃗ |≤1

h1(x− y1)h2(x− y2)Kt(y1, y2)dy1dy2

≤
k′+1∑

k=k′−1

k′+1∑
j=k′−2

∫
|y⃗ |≤5/2

|x− k − y1|−
1
3

× |x− j − 1/2− y2|−
1
3 t−2(|y1|/t+ |y2|/t)−

4
3dy1dy2

where we extended to |y⃗ | ≤ 5/2 so that for each summand over j and
k the integral has a singularity. Now without loss of generality we only
consider the summand where k = j = k′, which is bounded by∫

|y1|≤5/2

|x− k′ − y1|−
1
3 t−1|y1/t|−

2
3dy1

×
∫
|y2|≤5/2

|x− k′ − 1/2− y2|−
1
3 t−1|y2/t|−

2
3dy2.

(44)

The first integral in (44) is finite by considering y1 near zero and y1
near x− k′; the only potential problem is when x− k′ is zero, but this
is not possible as x ∈ Lh1 = R \ Z. The second integral follows for the
same reason.
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