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Abstract. In this paper, we establish a normed fractional Faà di Bruno inequality within the
framework of Lebesgue spaces. This extends the classical fractional chain rule from the range
0 ă s ă 1 to an arbitrarily large value of s.

1. Introduction

The Faà di Bruno formula provides an identity for the higher-order derivative of a composition.
In our goal to establish a normed fractional version of this identity, the specific coefficients are not
of interest. Therefore, we seek a suitable fractional analogue of the following expression

ˇ

ˇ

ˇ

ˇ

dm

dxm
F puq

ˇ

ˇ

ˇ

ˇ

Àm

m
ÿ

i“1

|F piqpuq|
ÿ

κi1`¨¨¨`κii“m

|upκi1q| ¨ ¨ ¨ |upκiiq|.(1.1)

This paper builds on the fractional chain rule (abbreviated by FCR) initially developed by Christ
and Weinstein [1] in the study of generalized Korteweg-de Vries (gKdV) equations. Specifically,
these authors used fractional chain and Leibniz rules to provide estimates for the solution of a
gKdV represented as an integral equation that enabled the study of the long-time behavior of the
solution. The FCR of Christ and Weinstein states that if 0 ă s ă 1, p, p1, p2 ą 0, 1

p “ 1
p1

` 1
p2
, and

F 1 is convex, then

}DspF ˝ uq}Lp À }F 1 ˝ u}Lp1 }Dsu}Lp2 .

Fractional chain rules are also useful in establishing the well-posedness of wave equations. A more
general smoothness condition, similar to that presented in Theorem 1.1, was developed by Kato [7]
and Staffilani [10] in their study of the well-posedness of gKdV and Schrödinger equations.

A more recent advancement is the extension of the fractional chain rule to weighted Triebel-
Lizorkin spaces, which, in particular, implies a FCR for Lebesgue spaces when the integrability
index p ď 1 [2]. This extension to p ď 1, and the inclusion of weights for the FCR parallels the
result of Naibo and Thomson [9] on the related fractional Leibniz rule for weighted Triebel-Lizorkin
spaces.

The focus of this paper is on extending the range of the smoothness index s ą 0. A FCR was
extended to the range 0 ă s ă mint2, ρu, ρ ě 1 by Ginibre, Ozawa, and Velo for homogeneous

Besov spaces, 9Bs
p,q, with p ą 1 and q depending on ρ, when the exterior function F behaves like

|x|ρ´1x [6]. The key insight was to use the following representation of the Besov norm,

}u} 9Bs
p,q

„

˜

ż 8

0
λ´sq´1 sup

|y|ăλ
}up¨ ´ yq ` up¨ ` yq ´ 2u}

q
Lp dλ

¸
1
q

.
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Fractional Faá di Bruno Inequality

Under the same conditions on the exterior function F , a similar result was later extended to
Lebesgue spaces by Fujiwara [3]. He employed a technique also involving a centered second order
finite difference, but in the context of Littlewood-Paley operators,

∆jupx´ yq ` ∆jupx` yq ´ 2∆jupxq.

The use of finite differences involving Littlewood-Paley operators is an idea further developed in
this paper.

As touched upon in [3] one way to establish a fractional Faà di Bruno inequality is by combining
the the classical fractional Leibniz rule of Kato and Ponce [8] , with the FCR for 0 ă s ă 1. To
illustrate, let 2 ă s ă 3, p, pki ą 1 be related in the sense of Hölder, that is 1

p “
ř

i“0
1
pki

for each

1 ď k ď 4, for simplicity suppose all integrals are over R, and assume F and its derivatives satisfy
the appropriate smoothness conditions (such as being convex), then

∥DsF puq∥Lp „

∥∥∥Ds´2
`

F 2puqu1u1 ` F 1puqu2
˘

∥∥∥
Lp

À }F3puq}
Lp10

}Ds´2u}
Lp11

}u1}
Lp12

}u1}
Lp13

` }F 2puq}
Lp20

}Ds´1u}
Lp21

}u1}
Lp22

` }F 2puq}
Lp30

}Ds´2u}
Lp31

}u2}
Lp32

` }F 1puq}
Lp40

}Dsu}
Lp41

(1.2)

by a direct application of the fractional Leibniz rule, FCR, and the fact that |¨|2

p¨q2
, p¨q

|¨|
are Lp Fourier

multipliers for p ą 1. This approach, however, has two drawbacks. The first is that the appearance
of integer order derivatives on u is unavoidable. For example, consider the first summand in (1.2);
ideally, we would like to replace it with something like

}F3puq}
Lp10

}Ds1u}
Lp11

}Ds2u}
Lp12

}Ds3u}
Lp13

,

where 0 ă s1, s2, s3 ă 1 and s1 ` s2 ` s3 “ s.
The second drawback is there are two separate summands associated with F 2puq. Ideally, we

would like to replace the expression }F 2puq}
Lp20

}Ds´1u}
Lp21

}u1}
Lp22

` }F 2puq}
Lp30

}Ds´2u}
Lp31

}u2}
Lp32

with a single summand such as

}F 2puq}
Lp20

}D 9s1u}
Lp21

}D 9s2u}
Lp22

,

where 0 ă 9s1 ă 1, 1 ă 9s2 ă 2, and 9s1 ` 9s2 “ s. Both of these issues are addressed in Theorem 1.1.
We denote the space of Schwartz functions, which are smooth functions that decay rapidly on Rn,

by S. The dual space of S, consisting of tempered distributions, is denoted by S 1. Since we are using
the homogeneous fractional derivative we need the space S0, the subspace of Schwartz functions
with all moments vanishing; specifically, f P S0 if and only if f P S and

ş

Rn x
αfpxq dx “ 0 for every

multi-index α. The dual of S0 is S 1{P, the space of tempered distributions modulo polynomials,
where two distributions are considered equivalent if their difference is a polynomial. It is known
that S0 is dense in S 1{P, and S is dense in S 1. For further details on tempered distributions, refer
to [[4], Chap. 1].

For any f P L1pRnq, the Fourier transform and its inverse are respectively defined by

pfpξq “

ż

Rn

fpyqe´2πiy¨ξ dy and F ´1pfqpξq “ qfpξq “

ż

Rn

fpyqe2πiy¨ξ dy.

The homogeneous fractional Laplacian of order s ą 0 for u P S 1{P, denoted by Dsu P S 1{P, are
defined as

2



Fractional Faá di Bruno Inequality

xDsu, φy :“ xu, p| ¨ |s qφq x y, for φ P S0,

note that p| ¨ |s qφq x P S0. A subtle point here is that by defining the homogeneous fractional
derivative by its action on S0, rather than S, we avoid the need to potentially mod out by a
polynomial. We now state our main result.

Theorem 1.1. Let s ą 0 and m be the smallest integer greater than s. Let p, pki ą 1 be related in
the sense of Hölder, that is

1

p
“

k
ÿ

i“0

1

pki

for every 1 ď k ď m. Let u be a tempered locally integrable function on Rn. Let F : C Ñ C,
G : C Ñ r0,8q and suppose F ˝ u is a tempered locally integrable function. Furthermore, suppose
that for x, y P C that

|F pmqptx` p1 ´ tqyq| ď µptq
`

Gpxq `Gpyq
˘

for all t P r0, 1s, and µ P L1pr0, 1sq. Let C “ Cs,n,µ,p11,...,pmm. Suppose the right hand side of (1.3)

is finite, then DspF puqq defined by its action on S0 coincides with a Lp function and satisfies the
following estimate:

∥DspF puqq∥Lp ď C
´

∥Gpuq∥
Lpm0

∥∥∥D 9s1u
∥∥∥
Lpm1

¨ ¨ ¨

∥∥∥D 9smu
∥∥∥
Lpmm

`

m´1
ÿ

i“1

∥∥∥F piqpuq

∥∥∥
Lpi0

ÿ

κi1`¨¨¨`κii“m

∥∥∥Ds
κi1u

∥∥∥
Lpi1

¨ ¨ ¨

∥∥∥Ds
κi
iu
∥∥∥
Lpi

i

¯(1.3)

where 0 ă 9sr ă 1,
řm
r“1 9sr “ s, κir P N, κir ´ 1 ă sκir ă κir for 1 ď r ď i and

ři
r“1 sκir “ s.

The key ingredients in the proof of Theorem (1.1) are Littlewood-Paley theory, elementary com-
binatorial arguments and natural extensions of the techniques used to prove the classical fractional
chain rule. More specifically, we use forward finite differences to obtain the appropriate derivatives.
The main challenge lies in balancing the use of finite differences while simultaneously being able to
bound by the Hardy-Littlewood maximal operator. To illustrate with a simplified example, after a
decomposition, we obtain sums over l1, l2, and j of the form:

ż

2jn|ψp2jyq||∆l1upx` k1yq||∆l2upx` k2yq| dy.

With careful management of the finite differences, we can set k1 “ k2 in the expression above,
which then transforms the above integral into convolution with an L1 dilate of a Schwartz function.
This makes it bounded by the maximal operator. Our decomposition in Section 4 and the lemmas
involving simple combinatorial arguments ensure that this is always the case.

2. Notation

All functions are assumed to be defined on Rn, so we omit Rn in the notation for simplicity.
Bp0, kq denotes a ball centered at the origin with radius k. We denote by M the uncentered
Hardy-Littlewood maximal function with respect to cubes. The Lppℓ2q norm is defined by

›

›fj
›

›

Lppℓ2q
“

›

›

´

ÿ

jPZ
|fj |

2
¯

1
2
›

›

Lp “

´

ż

Rn

´

ÿ

jPZ
|fjpyq|2

¯

p
2
dy

¯
1
p

for p ą 1.
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Fractional Faá di Bruno Inequality

For real numbers A,B we use A À B to mean A ď CB for some positive constant C. The
dependence of C on other variables and parameters will often be suppressed and clear from the
context. The notation A „ B means A À B and B À A.

Let pϕpξq be a positive radially decreasing C8pRnq function on Rn supported in Bp0, 2q and equal

to one on the unit ball. Let pψpξq “ pϕpξq ´ pϕp2ξq, which is non-negative and supported in the
annulus 1

2 ď |ξ| ď 2. Note that ψ is radial and has average value zero. The Littlewood-Paley

operator ∆j is defined to be convolution with 2jnψp2j ¨q for j P Z. For ease of notation denote

ψj :“ 2jnψp2j ¨q.

If a Littlewood-Paley operator is defined with a Shwartz function, φ, different than ψ then it will
be denoted by ∆φ

j .

Let k,m P N0 and l P Z, and u : Rn Ñ C. Define akpx, yq :“ upx` kyq and

ak,lpx, yq :“ ∆lupx` kyq.

We will often omit the variables x and y for simplicity. Note that a0 “ a0px, yq “ upxq is indepen-
dent of y. Let k ě m, a mth order forward finite difference is denoted by bmk :“

řm
i“0

`

m
i

˘

p´1qiak´i

and

bmk,l :“
m
ÿ

i“0

ˆ

m

i

˙

p´1qiak´i,l,

which is implicitly a function of x and y.
We will frequently use the Cauchy-Schwarz inequality for multiple factors, that is for d1,j , d2,j , . . . , dm,j P

R
ÿ

jPZ

˜

m
ź

i“1

di,j

¸2

ď

m
ź

i“1

ÿ

jPZ
d2i,j .

Additionally, we will use the vector-valued Fefferman-Stein inequality,

}Mpfjq}Lqpℓ2q À }fj}Lqpℓ2q, for 1 ă q ă 8.

3. Preliminaries

For Lemmas 3.1, 3.2 and 3.3 the frequency isolator index l does not play a role, so it will be
omitted from the proofs. In fact, the following three lemmas are purely combinatorial in nature,
so, for simplicity, we may assume that taiuiPN0 is a finite sequence.

Lemma 3.1. Let k,m P N0, l P Z and k ě m, then

bmk,l “ bm´1
k,l ´ bm´1

k´1,l.

Proof. Recall the identity
ˆ

m` 1

k

˙

“

ˆ

m

k

˙

`

ˆ

m

k ´ 1

˙

(3.1)

for k ą 0. Observe,

bm´1
k ´ bm´1

k´1 “

m´1
ÿ

i“0

ˆ

m´ 1

i

˙

p´1qiak´i ´

m´1
ÿ

i“0

ˆ

m´ 1

i

˙

p´1qiak´1´i

“

m´1
ÿ

i“0

ˆ

m´ 1

i

˙

p´1qiak´i `

m
ÿ

i“1

ˆ

m´ 1

i´ 1

˙

p´1qiak´i

“

ˆ

m´ 1

0

˙

ak `

ˆ

m´ 1

m´ 1

˙

p´1qmak´m

4
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`

m´1
ÿ

i“1

”

ˆ

m´ 1

i

˙

`

ˆ

m´ 1

i´ 1

˙

ı

p´1qiak´i

“ak ` p´1qmak´m `

m´1
ÿ

i“1

ˆ

m

i

˙

p´1qiak´i(3.2)

“

m
ÿ

i“0

ˆ

m

i

˙

p´1qiak´i

“bmk

where in (3.2) we applied (3.1). □

Lemma 3.2. Let k P N, l P Z, then

ak,l ´ a0,l “

k´1
ÿ

i“0

ˆ

k

k ´ i

˙

bk´i
k´i,l.

Proof. Observe,

k´1
ÿ

i“0

ˆ

k

k ´ i

˙

bk´i
k´i “

k´1
ÿ

i“0

k´i
ÿ

m“0

ˆ

k

k ´ i

˙ˆ

k ´ i

k ´ i´m

˙

p´1qmak´i´m

“

k´1
ÿ

i“0

k´i
ÿ

m“0

k!

i!m!pk ´ i´mq!
p´1qmak´i´m

“

k´1
ÿ

i“0

k!

i!pk ´ iq!
p´1qk´ia0 `

k´1
ÿ

t“0

t
ÿ

m“0

k!

m!pt´mq!pk ´ tq!
p´1qt´mak´t(3.3)

“

k´1
ÿ

i“0

k!

i!pk ´ iq!
p´1qk´ia0 `

k´1
ÿ

t“0

k!

t!pk ´ tq!
ak´t

t
ÿ

m“0

t!

m!pt´mq!
p´1qt´m

“ ak ´ a0(3.4)

where in (3.3) we applied a change of variables, and (3.4) is a result of

t
ÿ

m“0

t!

m!pt´mq!
p´1qt´m “ 0

if t ­“ 0. This follows from the inherent symmetry in a row of Pascal’s triangle. □

The following lemma is the critical observation in Section 6.3 that allows us to attain finite
differences of the proper orders.

Lemma 3.3. Let m, d, n1, ¨ ¨ ¨ , nd P N, d ă m and n1 ` ¨ ¨ ¨ ` nd ă m then

m´1
ÿ

i“0

p´1qi
ˆ

m

i

˙ˆ

m´ i

n1

˙

¨ ¨ ¨

ˆ

m´ i

nd

˙

“ 0,

where it is understood that
`

a
b

˘

“ 0 if b ą a.

Proof. We proceed by induction on m,
m
ÿ

i“0

p´1qi
ˆ

m` 1

i

˙ˆ

m` 1 ´ i

n1

˙

¨ ¨ ¨

ˆ

m` 1 ´ i

nd

˙

5
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“

ˆ

m` 1

n1

˙

¨ ¨ ¨

ˆ

m` 1

nd

˙

`

m
ÿ

i“1

p´1qi

«

ˆ

m

i

˙

`

ˆ

m

i´ 1

˙

ff

ˆ

m` 1 ´ i

n1

˙

¨ ¨ ¨

ˆ

m` 1 ´ i

nd

˙

“

m
ÿ

i“0

p´1qi
ˆ

m

i

˙ˆ

m` 1 ´ i

n1

˙

¨ ¨ ¨

ˆ

m` 1 ´ i

nd

˙

`

m
ÿ

i“1

p´1qi
ˆ

m

i´ 1

˙ˆ

m´ pi´ 1q

n1

˙

¨ ¨ ¨

ˆ

m´ pi´ 1q

nd

˙

“

m
ÿ

i“0

p´1qi
ˆ

m

i

˙

«

ˆ

m´ i

n1

˙

`

ˆ

m´ i

n1 ´ 1

˙

ff

¨ ¨ ¨

«

ˆ

m´ i

nd

˙

`

ˆ

m´ i

nd ´ 1

˙

ff

´

m
ÿ

i“0

p´1qi
ˆ

m

i

˙ˆ

m´ i

n1

˙

¨ ¨ ¨

ˆ

m´ i

nd

˙

,

(3.5)

which is equal to a sum of terms of the form
m
ÿ

i“0

p´1qi
ˆ

m

i

˙ˆ

m´ i

η1

˙

¨ ¨ ¨

ˆ

m´ i

ηd

˙

(3.6)

where ηr for 1 ď r ď d is nr or nr ´ 1. Note that due to the difference in (3.5) that ηr “ nr ´ 1 for
at least one r between 1 and d; this will allow us to apply the induction hypothesis. It is possible
that ηr “ 0, so reindex (3.6) to

m´1
ÿ

i“0

p´1qi
ˆ

m

i

˙ˆ

m´ i

η1

˙

¨ ¨ ¨

ˆ

m´ i

ηq

˙

(3.7)

such that q ď d and ηr ą 0 for 1 ď r ď q. Observe that

q
ÿ

r“1

ηr ď

´

d
ÿ

r“1

nr

¯

´ 1 ă m.

Hence, if q ă m then we can apply the induction hypothesis to obtain that (3.7) is zero. Note, it
must be the case that q ă m. To see this suppose q “ m, then d “ m. Hence n1 ` ¨ ¨ ¨ `nm ă m`1
implies that n1 “ . . . “ nm “ 1, since nr ą 0 for 1 ď r ď d. It follows ηr “ 0 for at least one
1 ď r ď m implying q ă m, a contradiction. □

Lemma 3.4. Let k ě m and |y| ď 2´l then a m order finite difference admits the following bound

|bmk,lpx, yq| À 2ml|y|mMp∆luqpxq.(3.8)

Furthermore,

|ak,l ´ a0,l| À 2l|y|Mp∆lpuqqpxq.

Proof. This proof will be by induction on m. Let ψ˚ be a Schwartz function such that its Fourier
transform is 1 on 1

2 ď |ξ| ď 2, and is supported in 1
4 ď |ξ| ď 4. First we will show that

bmk,l “ ´2ml
ż

Rn

∆lupzq

n
ÿ

r1“1

¨ ¨ ¨

n
ÿ

rm“1

ż 1

0
¨ ¨ ¨

ż 1

0

pByr1 ¨ ¨ ¨ Byrmψ
˚qlpx` ky ´

m
ÿ

i“1

tiy ´ zqyr1 ¨ ¨ ¨ yrmdt1 ¨ ¨ ¨ dtmdz.

(3.9)

For m “ 1 observe,

b1k,l “ ak,l ´ ak´1,l

6
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“ ∆ψ˚

l ∆lupx` kyq ´ ∆ψ˚

l ∆lupx` pk ´ 1qyq

“

ż

Rn

∆lupzq

´

ψ˚
l px` ky ´ zq ´ ψ˚

l px` pk ´ 1qy ´ zq

¯

dz

“ ´2l
ż

Rn

∆lupzq

ż 1

0
∇ψ˚

j px` ky ´ t1y ´ zq ¨ ydt1dz(3.10)

“ ´2l
ż

Rn

∆lupzq

n
ÿ

r1“1

ż 1

0
Byr1ψ

˚
j px` ky ´ t1y ´ zqyr1dt1dz

where in (3.10) we applied the Fundamental Theorem of Calculus. Now suppose (3.9) holds. Let
Br⃗ denote Byr1 ¨ ¨ ¨ Byrm . Using Lemma 3.1 we obtain

bm`1
k “bmk ´ bmk´1

“ ´ 2ml
ż

Rn

∆lupzq

n
ÿ

r1“1

¨ ¨ ¨

n
ÿ

rm“1

ż 1

0
¨ ¨ ¨

ż 1

0
pBr⃗ ψqlpx` ky ´

m
ÿ

i“1

tiy ´ zq

ˆ yr1 ¨ ¨ ¨ yrmdt1 ¨ ¨ ¨ dtmdz

` 2ml
ż

Rn

∆lupzq

n
ÿ

r1“1

¨ ¨ ¨

n
ÿ

rm“1

ż 1

0
¨ ¨ ¨

ż 1

0
pBr⃗ ψqlpx` pk ´ 1qy ´

m
ÿ

i“1

tiy ´ zq

ˆ yr1 ¨ ¨ ¨ yrmdt1 ¨ ¨ ¨ dtmdz

“2ml
ż

Rn

∆lupzq

n
ÿ

r1“1

¨ ¨ ¨

n
ÿ

rm“1

ż 1

0
¨ ¨ ¨

ż 1

0
yr1 ¨ ¨ ¨ yrm

ˆ

”

pBr⃗ ψqlpx` pk ´ 1qy ´

m
ÿ

i“1

tiy ´ zq ´ pBr⃗ ψqlpx` ky ´

m
ÿ

i“1

tiy ´ zq

ı

dt1 ¨ ¨ ¨ dtmdz

“ 2ml
ż

Rn

∆lupzq

n
ÿ

r1“1

¨ ¨ ¨

n
ÿ

rm“1

ż 1

0
¨ ¨ ¨

ż 1

0
yr1 ¨ ¨ ¨ yrm

ˆ

”

2l
ż 1

0
p∇Br⃗ ψqlpx` ky ´

m`1
ÿ

i“1

tiy ´ zq ¨ ´ydtm`1

ı

dt1 ¨ ¨ ¨ dtmdz

“ ´ 2pm`1ql

ż

Rn

∆lupzq

n
ÿ

r1“1

¨ ¨ ¨

n
ÿ

rm`1“1

ż 1

0
¨ ¨ ¨

ż 1

0
pBr⃗ ψqlpx` ky ´

m`1
ÿ

i“1

tiy ´ zq

ˆ yr1 ¨ ¨ ¨ yrm`1dt1 ¨ ¨ ¨ dtm`1dz

which establishes (3.9). To obtain the estimate in (3.8) we will use the following simple inequality
for v1, v2 P Rn

1

1 ` |v2 ` v1|
ď

1 ` |v1|

1 ` |v2|
.(3.11)

From (3.9) it follows the absolute value of bmk,l is bounded by a constant multiple of

2ml
n

ÿ

r1“1

¨ ¨ ¨

n
ÿ

rm“1

|yr1 ¨ ¨ ¨ yrm |

ż

Rn

|∆lupzq|

ˆ

ż 1

0
¨ ¨ ¨

ż 1

0

2lnCr⃗,ψ˚

p1 ` 2l|x` ky ´
řm
i“1 tiy ´ z|qN

dt1 ¨ ¨ ¨ dtmdz

7
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Àn,m 2ml|y|m
ż

Rn

|∆lupzq|

ż 1

0
¨ ¨ ¨

ż 1

0

2lnp1 ` 2l|y||k ´
řm
i“1 ti|q

N

p1 ` 2l|x´ z|qN
dt1 ¨ ¨ ¨ dtmdz(3.12)

Àk,m 2ml|y|m
ż

Rn

|∆lupzq|
2ln

p1 ` 2l|x´ z|qN
dz(3.13)

À 2ml|y|mMp∆luqpxq(3.14)

where N ą n, in (3.12) we applied (3.11) and in (3.13) we used the hypothesis that |y| ă 2´l. This
ends the proof of (3.8).

The second statement now follows by a simple telescoping argument,

|ak,l ´ a0,l| “

ˇ

ˇ

ˇ

k´1
ÿ

i“0

ai`1,l ´ ai,l

ˇ

ˇ

ˇ
ď

k´1
ÿ

i“0

|b1i`1,l| Àk 2
l|y|Mp∆lpuqqpxq.

□

The inequality in (3.15) for 0 ď s ă 1 is given in [[11], Lemma 4.2], here we provide a straight
forward extension to larger s.

Lemma 3.5. Let tdlulPZ be a sequence of non-negative real numbers, then

˜

ÿ

jPZ

´

2js
ÿ

lďj

2mpl´jqdl

¯2
¸

1
2

À

˜

ÿ

jPZ
p2jsdjq

2

¸
1
2

if 0 ď s ă m(3.15)

˜

ÿ

jPZ

´

2js
ÿ

jăl

dl

¯2
¸

1
2

À

˜

ÿ

jPZ
p2jsdjq

2

¸
1
2

if 0 ď s.(3.16)

Proof. Observe,

˜

ÿ

jPZ

´

2js
ÿ

lďj

2mpl´jqdl

¯2
¸

1
2

“

˜

ÿ

jPZ

´

8
ÿ

l“0

2js2´lmdj´l

¯2
¸

1
2

“

˜

ÿ

jPZ

´

8
ÿ

l“0

2lps´mq{22lps´mq{22pj´lqsdj´l

¯2
¸

1
2

À

´

ÿ

jPZ

8
ÿ

l“0

p2lps´mq{22pj´lqsdj´lq
2
¯

1
2

“

´

8
ÿ

l“0

2lps´mq
ÿ

jPZ
p2pj´lqsdj´lq

2
¯

1
2

À

´

ÿ

jPZ
p2jsdjq

2
¯

1
2
.

where in the first inequality we applied the Cauchy-Schwarz inequality. The proof of (3.16) is
similar and omitted. □

The following is the celebrated Peetre’s lemma. For our purposes we only need the below state-
ment for t “ 1.
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Lemma 3.6 ([12], Theorem 2.10). Let 0 ă t ă 8, and u be a function on Rn whose distributional
Fourier transform satisfies suppppuq Ă Bp0, kq, then

sup
yPRn

|upx´ yq|

p1 ` k|y|q
n
t

ď Cn,tMtpuqpxq

where the constant is independent of k.

4. Initial Decomposition for Theorem 1.1

Let s ă m with m being the smallest integer bigger than s. Let

pΨpξq “

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qi pψ
`

pm ´ iqξ
˘

.(4.1)

So for example, if m “ 3 then pΨpξq “ pψp3ξq ´ 3 pψp2ξq ` 3 pψpξq. It is easy to see via induction that
ř

jPZ
pΨp2´jξq for ξ ­“ 0 equals either 1 or -1 depending on if m is odd or even. Since Ψ is a Schwartz

function whose Fourier transform is supported in an annulus and forms a partition of unity when
summed dyadically (multiplying by ´1 if necessary), we can apply the lower Littlewood-Paley
inequality [[5], Theorem 4.5.6]. It follows that

}DspF puqq}Lp À

›

›

›

´

ÿ

jPZ
|∆Ψ

j pDspF puqq|2
¯

1
2
›

›

›

Lp

À

›

›

›

´

ÿ

jPZ
|2js∆Ψ

j pF puqq|2
¯

1
2
›

›

›

Lp
(4.2)

where the last inequality is the lifting property of Triebel-Lizorkin spaces, which is generally ex-
pressed as }f} 9F s

p,q
„ }Dsf} 9F 0

p,q
. Recall that DspF puqq, as a tempered distribution, is defined by

its action on φ P S0. Therefore, there is no need to potentially mod out by a polynomial when
applying the lower Littlewood-Paley inequality.

For simplicity let h :“ F ˝ u, then ∆Ψ
j pF puqq can be express as

∆Ψ
j pF puqqpxq “

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qiF ´1p pψ
`

pm ´ iq2´j ¨
˘

phqpxq.(4.3)

Consider a summand of the the above sum, namely for a fixed k observe

F ´1p pψ
`

k2´j ¨
˘

phqpxq “

ż

Rn

1

pk2´jqn
ψ

`

k´12jy
˘

hpx´ yqdy

“

ż

Rn

2jnψp2jyqhpx` kyqdy

where in the last line we used a change and variables and the fact that ψ is radial. It follows that
(4.3) can be written as

∆Ψ
j pF puqqpxq “

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qi
ż

Rn

ψjpyqF
`

upx` pm ´ iqyq
˘

dy.(4.4)

Recall that for a fixed k, ak “ akpx, yq “ upx`kyq, note that a0 is independent of y. Focusing on the
integral within a summand of (4.4) we proceed by repeatedly adding and subtracting expressions
to apply the Fundamental Theorem of Calculus (FTC) as follows

ż

ψjpyqF
`

upx` kyq
˘

dy “

ż

ψjpyqF
`

upx` kyq
˘

dy ´ F pupxqq

ż

ψjpyqdy

9
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“

ż

ψjpyq

ż 1

0
F 1pt1ak ` p1 ´ t1qa0qpak ´ a0qdt1dy

“

ż

ψjpyqpak ´ a0q

ż 1

0
F 1pa0 ` pak ´ a0qt1qdt1dy.(4.5)

Adding and subtracting F 1pa0q from the inner integral in (4.5) and applying the FTC we obtain

F 1pa0q

ż

ψjpyqpak ´ a0q

`

ż

ψjpyqpak ´ a0q2
ż 1

0

ż 1

0
t1F

2pa0 ` pak ´ a0qt1t2qdt2dt1dy.(4.6)

Now add and subtract F 2pa0q to the inner integral in (4.6) and apply the FTC to obtain
ż

ψjpyqpak ´ a0q2
ż 1

0

ż 1

0
t1F

2pa0qdt2dt1dy

`

ż

ψjpyqpak ´ a0q3
ż 1

0

ż 1

0

ż 1

0
t21t2F

3pa0 ` pak ´ a0qt1t2t3qdt3dt2dt1dy(4.7)

Once more, add and subtract F3pa0q to the inner integral in (4.7) and apply the FTC to obtain
ż

ψjpyqpak ´ a0q3
ż 1

0

ż 1

0

ż 1

0
t21t2F

3pa0qdt3dt2dt1dy

`

ż

ψjpyqpak ´ a0q4
ż 1

0

ż 1

0

ż 1

0

ż 1

0
t31t

2
2t3F

p4qpa0 ` pak ´ a0qt1t2t3t4qdt4dt3dt2dt1dy.

Continuing until the mth derivative is reached it follows

ż

ψjpyqF
`

upx` kyq
˘

dy “

m´1
ÿ

d“1

CdF
pdqpa0q

ż

ψjpyqpak ´ a0qddy(4.8)

`

ż

ψjpyqpak ´ a0qm
ż 1

0
¨ ¨ ¨

ż 1

0
tm´1
1 tm´2

2 ¨ ¨ ¨ tm´1

ˆ F pmqpa0 ` pak ´ a0qt1t2 ¨ ¨ ¨ tmqdtm ¨ ¨ ¨ dt2dt1dy

(4.9)

where Cd only depends on d. Combining (4.4), (4.8) and (4.9) we obtain

∆Ψ
j pF puqqpxq

“

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qi
m´1
ÿ

d“1

CdF
pdqpa0q

ż

ψjpyqpam´i ´ a0qddy(4.10)

`

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qi
ż

ψjpyqpam´i ´ a0qm

ˆ

ż 1

0
¨ ¨ ¨

ż 1

0
tm´1
1 tm´2

2 ¨ ¨ ¨ tm´1

ˆ F pmqpa0 ` pam´i ´ a0qt1t2 ¨ ¨ ¨ tmqdtm ¨ ¨ ¨ dt1dy.

(4.11)

The decomposition so far has focused on representing
ż

ψjpyqF
`

upx` pm ´ iqyq
˘

dy

10
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in terms of derivatives of F . We now turn our attention to further decomposing pam´i ´ a0qd “

pupx` pm´ iqyq ´upxqqd in terms of frequencies. Notice both (4.10) and (4.11) contain pam´i ´a0q

raised to a power. Write pam´i ´ a0qd for 1 ď d ď m as

ÿ

l1PZ
¨ ¨ ¨

ÿ

ldPZ

d
ź

r“1

pam´i,lr ´ a0,lrq.(4.12)

For simplicity of notation let βm´i “
ş1
0 ¨ ¨ ¨

ş1
0 t

m´1
1 tm´2

2 ¨ ¨ ¨ tm´1F
pmqpa0`pam´i´a0qt1t2 ¨ ¨ ¨ tmqdtm ¨ ¨ ¨ dt2dt1

from (4.11). From (4.10) and (4.11) it follows that |∆Ψ
j pF puqqpxq| is bounded by

m´1
ÿ

d“1

|Cd||F pdqpa0q|
ÿ

l1PZ
¨ ¨ ¨

ÿ

ldPZ

ˇ

ˇ

ˇ

ż m´1
ÿ

i“0

ˆ

m

i

˙

p´1qiψjpyq

d
ź

r“1

pam´i,lr ´ a0,lrqdy
ˇ

ˇ

ˇ
(4.13)

`
ÿ

l1PZ
¨ ¨ ¨

ÿ

lmPZ

ˇ

ˇ

ˇ

ż m´1
ÿ

i“0

ˆ

m

i

˙

p´1qiψjpyq

m
ź

r“1

pam´i,lr ´ a0,lrqβm´idy
ˇ

ˇ

ˇ
.(4.14)

Further decomposing the sum
ř

l1PZ ¨ ¨ ¨
ř

ldPZ for 1 ď d ď m, break up each sum at j, that is
ř

ldPZ “
ř

ldďj `
ř

ldąj . Then
ř

l1PZ ¨ ¨ ¨
ř

ldPZ can be written as 2d sums, by symmetry it is sufficient
to focus on only a sum of the form

ÿ

ldąj

¨ ¨ ¨
ÿ

lα`1ąj

ÿ

lαďj

¨ ¨ ¨
ÿ

l1ďj

(4.15)

for some 0 ď α ď d. The low frequency sums can be further bounded by
ÿ

lαďj

¨ ¨ ¨
ÿ

l1ďj

ď
ÿ

ΛPSα

ÿ

pl1,¨¨¨ ,lαqPZα

lΛpαqď...ďlΛp1qďj

where Λ is a permutation of t1, . . . , αu. Note,
ř

lαďj ¨ ¨ ¨
ř

l1ďj is not equal to the sum of these α!

permutation sums due to the diagonal terms, but the absolute value in (4.10) and (4.11) allows us
to use them as bound. By symmetry it suffices to consider the following expression

ÿ

ldąj

¨ ¨ ¨
ÿ

lα`1ąj

ÿ

pl1,¨¨¨ ,lαqPZα

lαď...ďl1ďj

ˇ

ˇ

ˇ

ż

ˇ

ˇ

ˇ
.

Lastly, partition the integral into α ` 1 pieces, that is
ż

Rn

“

ż

|y|ă2´l1

`

ż

2´l1ă|y|ă2´l2

` ¨ ¨ ¨ `

ż

2´lα´1ă|y|ă2´lα

`

ż

|y|ą2´lα

.

Thus, we have reduced estimating |∆jF puq| to bounding the following expressions which respect-
fully correspond to (4.13) and (4.14),

m´1
ÿ

d“1

|Cd||F pdqpa0q|
ÿ

ldąj

¨ ¨ ¨
ÿ

lα`1ąj

ÿ

pl1,¨¨¨ ,lαqPZα

lαď...ďl1ďj

ˇ

ˇ

ˇ

ż

2η1ă|y|ă2η2

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qiψjpyq

d
ź

r“1

pam´i,lr ´ a0,lrqdy
ˇ

ˇ

ˇ

(4.16)

and
11
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ÿ

lmąj

¨ ¨ ¨
ÿ

lα`1ąj

ÿ

pl1,¨¨¨ ,lαqPZα

lαď...ďl1ďj

ˇ

ˇ

ˇ

ż

2η1ă|y|ă2η2

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qiψjpyq

ˆ

m
ź

r“1

pam´i,lr ´ a0,lrq

ż 1

0
¨ ¨ ¨

ż 1

0
tm´1
1 tm´2

2 ¨ ¨ ¨ tm´1

ˆ F pmqpa0 ` pam´i ´ a0qt1t2 ¨ ¨ ¨ tmqdtm ¨ ¨ ¨ dt2dt1dy
ˇ

ˇ

ˇ

(4.17)

where η1 ă η2 are consecutively from the ordered set t´8,´l1, . . . ,´lα,8u.

5. Techniques

The summation indices, lr, are categorized into three classes. Let q P Z. A high index, lr, means
that the sum is over lr ą q for some q. A low-greater index implies the sum is over lr ď q and the
integral is taken over a set where |y| ą 2´lr . A low-less index means the sum is over lr ď q and the
integral is over a set where |y| ď 2´lr .

For example, consider (4.16) with m “ 6, d “ 4, η1 “ ´l1, and η2 “ ´l2, which is expressed as

|F pdqpa0q|
ÿ

l4ąj

ÿ

l3ąj

ÿ

l1ďj

ÿ

l2ďl1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

2´l1ă|y|ă2´l2

5
ÿ

i“0

ˆ

6

i

˙

p´1qiψjpyq

4
ź

r“1

pa6´i,lr ´ a0,lrq dy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Here, l4 and l3 are high indices, l2 is a low-less index, and l1 is a low-greater index. In this section,
we discuss the three methods used to bound the sum corresponding to each type of index. The
aim is to demonstrate these methods in simpler cases to avoid excessive complexity with indices
and notation. In practice, these methods will be used in combination with additional tools, such as
Hölder’s inequality, the Cauchy-Schwarz inequality. In the next section, we will explore how these
methods are combined and work together.

5.1. High indexed sum. A high indexed sum is simply bounded by the maximal function,

ÿ

ląj

ż

|ψjpyq∆lupx` kyq|dy À M
´

ÿ

ląj

∆lu
¯

pxq.

Let s‹ ą 0, then multiplying by 2js‹ and applying the Lqpℓ2q norm for q ą 1 we obtain
›

›

›
2js‹M

´

ÿ

ląj

∆lu
¯

›

›

›

Lqpℓ2q
À

›

›

›
2js‹∆ju

›

›

›

Lqpℓ2q
À }Ds‹u}Lq(5.1)

where in the first inequality we used Lemma 3.5 and the Fefferman-Stein inequality. The benefit
of a high indexed sum is that it can “absorb” arbitrarily large s‹. This will allow a high index sum
take the highest order derivative in Section 6.1.

5.2. Low-greater indexed sum. Let N ąą n, and m ą s‹ ą 0. Observe,

ÿ

lďj

ż

|y|ą2´l

|ψjpyq∆lupx` kyq|dy “
ÿ

lďj

ż

|y|ą2´l

|ψjpyq|
|∆lupx` kyq|

p1 ` 2l|ky|qn
p1 ` 2l|ky|qndy

À
ÿ

lďj

Mp∆luqpxq

ż

|y|ą2´l

|ψjpyq|p1 ` 2l|ky|qndy(5.2)

À
ÿ

lďj

Mp∆luqpxq

ż

|y|ą2´l

2jnp1 ` 2j |ky|qn

p1 ` 2j |y|qN`m
dy

12
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ď
ÿ

lďj

2mpl´jqMp∆luqpxq

ż

|y|ą2´l

2jnp1 ` 2jk|y|qn

p1 ` 2j |y|qN`m
dy

À
ÿ

lďj

2mpl´jqMp∆juqpxq(5.3)

where in (5.2) we used Lemma 3.6 and j ě l. Multiplying (5.3) by 2js‹ and applying the Lqpℓ2q

norm, Lemma 3.5, and the Fefferman-Stein inequality we obtain the bound

∥Ds‹u∥Lq .(5.4)

Low-greater indexed sums also have the benefit of being able to absorb a higher order derivative.
Given a s‹ we are free to choose any m ą s‹, due to the rapid decay of ψ, to obtain the final bound
in (5.4).

5.3. Low-lower indexed sum. A low-lower indexed sum is more restrictive than both of the
previous cases, this is due to the fact that we can not put an arbitrarily large derivative on a low-
lower term and still achieve summablity. The decomposition’s, (4.16) and (4.17), have been done
in such way that a low-lower indexed sum will always be able to be paired with a finite difference
as we will see in Section 6.3. The following illustrates the technique,

ÿ

lďj

ż

|y|ă2´l

|ψjpyq||b35,l|dy

“
ÿ

lďj

ż

|y|ă2´l

|ψjpyq||∆lupx` 5yq ´ 3∆lupx` 4yq

` 3∆lupx` 3yq ´ ∆lupx` 2yq|dy

À
ÿ

lďj

23lMp∆luqpxq(5.5)

where in (5.5) we applied Lemma 3.4. Multiplying (5.5) by 2js‹ and applying the Lqpℓ2q norm,
Lemma 3.5, and the Fefferman-Stein inequality we obtain the bound ∥Ds‹u∥Lq .

6. Bounding (4.16)

Recall (4.16) is given by

m´1
ÿ

d“1

|Cd||F pdqpa0q|
ÿ

ldąj

¨ ¨ ¨
ÿ

lα`1ąj

ÿ

pl1,¨¨¨ ,lαqPZα

lαď...ďl1ďj

ˇ

ˇ

ˇ

ż

2η1ă|y|ă2η2

ˆ

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qiψjpyq

d
ź

r“1

pam´i,lr ´ a0,lrqdy
ˇ

ˇ

ˇ

We consider three cases:

‚ Case 1: α ă m, when there is at least one high indexed sum.
‚ Case 2: α “ m and η2 ‰ ´l1, when there is at least one low-greater indexed sum.
‚ Case 3: α “ m and η2 “ ´l1, when all the sums are low-less indexed.

In Case 1 and 2, where we have at least one high or low-greater indexed sum the key idea is to
let the sum associated with corresponding index take the the highest order derivative. However, in
Case 3, where every sum is low-less indexed this is not possible, and we must rely on the cancellation
provided by combinatorial arguments.

13
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For Cases 1 and 2, it is sufficient to illustrate the techniques using a specific example, such as
m “ 6 and d “ 4, to avoid the proof becoming obscured by notation and since the sums split.
These techniques easily extend to different values of m and d. In Case 3, however, we will prove the
result for general m and d, as this case depends on combinatorial considerations that are specific
to those values.

6.1. Case 1: α ă m. Let m “ 6 and d “ 4. In the classical Fa di Bruno setting (see (1.1)),

this corresponds to the expressions F p4qpuqu1u1u1u3, the 1-1-1-3 derivative and F p4qpuqu1u1u2u2, the
1-1-2-2 derivative, where the sum of the derivatives on the u’s adds up to 6. In Case 1 and Case
2 we will bound using the fractional version of the 1-1-1-3 derivative, that is 0 ă s1, s2, s3 ă 1,
2 ă s4 ă 3 and s1 ` s2 ` s3 ` s4 “ s. Here the higher frequency sum will take on the higher order
derivative, s4, corresponding to 3. The general situation for Case 1 and 2 would be bounded using
the fractional version of the 1-1-¨ ¨ ¨ -1-m ´ d` 1 derivative. The only finite differences that will be
used in Case 1 and 2 are first order.

To provide a clear illustration that incorporates all three techniques discussed in Section 5,
consider the case where α “ 2, and η1 “ ´l1, η2 “ ´l2. Observe,

|F pdqpa0q|
ÿ

l4ąj

ÿ

l3ąj

ÿ

l1ďj

ÿ

l2ďl1

ˇ

ˇ

ˇ

ż

2´l1ă|y|ă2´l2

5
ÿ

i“0

ˆ

6

i

˙

p´1qiψjpyq

4
ź

r“1

pa6´i,lr ´ a0,lrqdy
ˇ

ˇ

ˇ

À |F pdqpa0q|

5
ÿ

i“0

ÿ

l1ďj

ÿ

l2ďl1

ż

2´l1ă|y|ă2´l2

ÿ

l4ąj

ÿ

l3ąj

ˇ

ˇ

ˇ
ψjpyq

4
ź

r“1

pa6´i,lr ´ a0,lrq

ˇ

ˇ

ˇ
dy

À |F pdqpa0q|

5
ÿ

i“0

ÿ

l1ďj

ÿ

l2ďl1

2l2´jMp∆l2uqpxq

ż

2´l1ă|y|ă2´l2

|2jy||ψjpyq||a6´i,l1 ´ a0,l1 |

ˆ
ÿ

l4ąj

ÿ

l3ąj

ˇ

ˇ

ˇ

4
ź

r“3

pa6´i,lr ´ a0,lrqdy
ˇ

ˇ

ˇ

(6.1)

where in (6.1) we applied Lemma 3.4 to |a6´i,l2 ´ a0,l2 |. In general all the low-less indexed sums
would be handled in this way. Focusing on the low-greater indexed sum continuing from (6.1) we
obtain

À |F pdqpa0q|

5
ÿ

i“0

ÿ

l1ďj

ÿ

l2ďl1

2l2´jMp∆l2uqpxq

ż

2´l1ă|y|ă2´l2

2jn|2jy|

p1 ` |2jy|qN`1

ˆ

”

|a6´i,l1 |

p1 ` |2l1p6 ´ iqy|qn
p1 ` 2l1 |p6 ´ iqy|qn ` |a0,l1 |

ı

ÿ

l4ąj

ÿ

l3ąj

ˇ

ˇ

ˇ

4
ź

r“3

pa6´i,lr ´ a0,lrqdy
ˇ

ˇ

ˇ
.

(6.2)

The expression in square brackets above is bounded by

Mp∆l1uqpxq
`

p1 ` 2l1 |p6 ´ iqy|qn ` 1
˘

ď Mp∆l1uqpxq2p1 ` 2j |p6 ´ iqy|qn(6.3)

by Lemma 3.6 and since l1 ď j. Also, note that

1

p1 ` 2j |y|q
ă 2l1´j
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since |y| ą 2´l1 . Applying these estimates to (6.2) we obtain

À |F pdqpa0q|

5
ÿ

i“0

ÿ

l1ďj

ÿ

l2ďl1

2l2´jMp∆l2uqpxq2l1´jMp∆l1uqpxq

ˆ

ż

2jn2p1 ` 2j |p6 ´ iqy|qn|2jy|

p1 ` |2jy|qN

ÿ

l4ąj

ÿ

l3ąj

ˇ

ˇ

ˇ

4
ź

r“3

pa6´i,lr ´ a0,lrqdy
ˇ

ˇ

ˇ
.

(6.4)

In the case where there are multiple low-greater indices, say q of them, choose N sufficiently
large (specifically, N ą n` 2mn) and bound |ψjpyq| by

2jn

p1 ` 2j |y|qN`q
.

This ensures the integral converges, and every low-greater indexed sum is paired with a 2lr´j .
Lastly, we address the high indexed sums. First pointwise bound the product as follows

4
ź

r“3

|pa6´i,lr ´ a0,lrq|

ď |a6´i,l3 ||a6´i,l4 | ` |a6´i,l3 ||a0,l4 | ` |a6´i,l4 ||a0,l3 | ` |a0,l3 ||a0,l4 |

À |a6´i,l3 ||a6´i,l4 | ` |a6´i,l3 |Mp∆l4uqpxq

` |a6´i,l4 |Mp∆l3uqpxq `Mp∆l3uqpxqMp∆l4uqpxq.

In the general case after multiplying out
śd
r“1 |am´i,lr ´ a0,lr | simply bound the |a0,lr | terms by

Mp∆lruqpxq. Applying this estimate to (6.4), and using that convolution with a L1 dilate of a
Shwartz function is bounded by the Maximal function we obtain

À |F pdqpa0q|
ÿ

l1ďj

2l1´jMp∆l1uqpxq
ÿ

l2ďj

2l2´jMp∆l2uqpxq

ˆ

”

M
´

ÿ

l4ąj

|∆l4u|
ÿ

l3ąj

|∆l3u|

¯

pxq `
ÿ

l4ąj

Mp∆l4uqpxqM
´

ÿ

l3ąj

|∆l3u|

¯

pxq

`
ÿ

l3ąj

Mp∆l3uqpxqM
´

ÿ

l4ąj

|∆l4u|

¯

pxq `
ÿ

l4ąj

Mp∆l4uqpxq
ÿ

l3ąj

Mp∆l3uqpxq

ı

.

(6.5)

6.1.1. Applying the Lppℓ2q norm. Recall 0 ă s1, s2, s3 ă 1, 2 ă s4 ă 3 and s1 ` s2 ` s3 ` s4 “ s.
In general we would have 0 ă s1, . . . , sd´1 ă 1, m ´ d ă sd ă m ´ d` 1 and s1 ` ¨ ¨ ¨ ` sd “ s. The
largest derivative s4, will be put on a higher indexed sum. Let p˚ be such that 1

p3
` 1

p4
“ 1

p˚ , and

note p˚ ą 1. We will only focus on bounding one of four terms in (6.5), namely

M
´

ÿ

l4ąj

|∆l4u|
ÿ

l3ąj

|∆l3u|

¯

,

as all four can be handled similarly by the following method of using the Cauchy-Schwarz in-
equality for multiple factors, Hölder’s inequality, Lemma 3.5, and the Fefferman-Stein inequality.
Multiplying (6.5) by 2js and applying the Lppℓ2q norm we obtain

›

›

›
|F pdqpa0q|2js

ÿ

l1ďj

2l1´jMp∆l1uq
ÿ

l2ďj

2l2´jMp∆l2uqM
´

ÿ

l4ąj

|∆l4u|
ÿ

l3ąj

|∆l3u|

¯
›

›

›

Lppℓ2q
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ď

∥∥∥F pdqpuq

∥∥∥
Lp0

›

›

›

´

ÿ

jPZ

`

2js1
ÿ

l1ďj

2l1´jMp∆l1uq
˘2

¯
1
2
›

›

›

Lp1

›

›

›

´

ÿ

jPZ

`

2js2
ÿ

l2ďj

2l2´jMp∆l2uq
˘2

¯
1
2
›

›

›

Lp2

ˆ

›

›

›

´

ÿ

jPZ

´

2jps3`s4qM
´

ÿ

l4ąj

|∆l4u|
ÿ

l3ąj

|∆l3u|

¯¯2¯
1
2
›

›

›

Lp˚

(6.6)

À

∥∥∥F pdqpuq

∥∥∥
Lp0

}Ds1u}Lp1 }Ds2u}Lp2

›

›

›

´

ÿ

jPZ

´

2jps3`s4qM
´

ÿ

l4ąj

|∆l4u|
ÿ

l3ąj

|∆l3u|

¯¯2¯
1
2
›

›

›

Lp˚

(6.7)

À

∥∥∥F pdqpuq

∥∥∥
Lp0

}Ds1u}Lp1 }Ds2u}Lp2 }Ds3u}Lp3 }}Ds4u}Lp4 .

(6.8)

In (6.6), we applied the Cauchy-Schwarz inequality for multiple factors and then Hölder’s inequality.
In (6.7), we used Lemma 3.5 followed by the Fefferman-Stein inequality. In (6.8), we applied the
Fefferman-Stein inequality first, then Hölder’s inequality, and finally Lemma 3.5.

6.2. Case 2: α “ m and η2 ‰ ´l1. For simplicity, and because the sums split, it suffices to again
consider the case where m “ 6 and d “ 4. In this case there are no high indexed sums. However, we
do have a low-greater index, allowing us to assign the highest-order derivative to the corresponding
sum. Therefore, we will decompose s as in Case 1, with 0 ă s1, s2, s3 ă 1, 2 ă s4 ă 3, and
s1 ` s2 ` s3 ` s4 “ s. We will only consider the case where we have two low-greater indices l1, l2.
Observe,

|F pdqpa0q|
ÿ

l1ďj

ÿ

l2ďl1

ÿ

l3ďl2

ÿ

l4ďl3

ˇ

ˇ

ˇ

ż

2´l2ă|y|ă2´l3

5
ÿ

i“0

ˆ

6

i

˙

p´1qiψjpyq

4
ź

r“1

pa6´i,lr ´ a0,lrqdy
ˇ

ˇ

ˇ

À |F pdqpa0q|

5
ÿ

i“0

ÿ

l1ďj

ÿ

l2ďl1

ÿ

l3ďl2

ÿ

l4ďl3

2l4´jMp∆l4uqpxq2l3´jMp∆l3uqpxq

ˆ

ż

2´l2ă|y|ă2´l3

|2jy||2jy||ψjpyq|

2
ź

r“1

|pa6´i,lr ´ a0,lrq|dy

(6.9)

À |F pdqpa0q|

5
ÿ

i“0

ÿ

l1ďj

ÿ

l2ďl1

ÿ

l3ďl2

ÿ

l4ďl3

2l4´jMp∆l4uqpxq2l3´jMp∆l3uqpxqMp∆l2uqpxqMp∆l1uqpxq

ˆ

ż

2´l2ă|y|ă2´l3

|2jy||2jy||ψjpyq|4p1 ` 2j |p6 ´ iqy|q2ndy

(6.10)

À |F pdqpa0q|

5
ÿ

i“0

ÿ

l1ďj

ÿ

l2ďl1

ÿ

l3ďl2

ÿ

l4ďl3

2l4´jMp∆l4uqpxq2l3´jMp∆l3uqpxqMp∆l2uqpxqMp∆l1uqpxq

ˆ

ż

2´l2ă|y|ă2´l3

2jn|2jy|24p1 ` 2j |p6 ´ iqy|q2n|2jy|2

p1 ` 2j |y|qN`1`3
dy

(6.11)
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À |F pdqpa0q|

5
ÿ

i“0

ÿ

l1ďj

ÿ

l2ďl1

ÿ

l3ďl2

ÿ

l4ďl3

2l4´jMp∆l4uqpxq2l3´jMp∆l3uqpxqMp∆l2uqpxqMp∆l1uqpxq

ˆ

ż

2´l2ă|y|ă2´l3

2jn4p1 ` 2j |p6 ´ iqy|q2n|2jy|2

p1 ` 2j |y|qN
2l2´j23pl1´jqdy

À |F pdqpa0q|
ÿ

l1ďj

23pl1´jqMp∆l1uqpxq
ÿ

l2ďj

2l2´jMp∆l2uqpxq

ˆ
ÿ

l3ďj

2l3´jMp∆l3uqpxq
ÿ

l4ďj

2l4´jMp∆l4uqpxq.

(6.12)

In (6.9), we applied Lemma 3.4 to the low-less indexed terms. In (6.10), we used the estimate
given in (6.3) for the less-greater indices. In (6.11) we chose the exponent on p1 ` 2j |y|q to be
N ` 1 ` 3, where N is large enough to ensure the convergence of the integral and the 1 ` 3 is used
to obtain 2l2´j23pl1´jq. In general, we set the exponent to be N ` pq ´ 1q ` pm ´ d ` 1q where
N ą n` 2nm, and q denotes the number of low-greater indices.

Finally, multiplying (6.12) by 2js and applying the Lppℓ2q norm, we proceed as in subsection
6.1.1, using the Cauchy-Schwarz inequality for multiple factors, Hölder’s inequality, Lemma 3.5,
and the Fefferman-Stein inequality. This yields the desired estimate∥∥∥F pdqpuq

∥∥∥
Lp0

}Ds1u}Lp1 }Ds2u}Lp2 }Ds3u}Lp3 }}Ds4u}Lp4 .

6.3. Case 3: α “ m and η2 “ ´l1. In the final case there are no high or low-greater indexed
terms to absorb the highest order derivative. We will use combinatorial arguments to eliminate all
terms except for the desired finite differences. In this case we seek to bound an expression of the
form,

m´1
ÿ

d“1

|Cd||F pdqpa0q|
ÿ

l1ďj

ÿ

l2ďl1

ÿ

l3ďl2

¨ ¨ ¨
ÿ

ldďld´1

ˇ

ˇ

ˇ

ż

|y|ă2´l1

ψjpyq

ˆ

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qi
d

ź

r“1

pam´i,lr ´ a0,lrqdy
ˇ

ˇ

ˇ

(6.13)

To begin we will focus on the sum in the integrand,

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qi
d

ź

r“1

pam´i,lr ´ a0,lrq

“

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qi
d

ź

r“1

m´i´1
ÿ

ν“0

ˆ

m ´ i

m ´ i´ ν

˙

bm´i´ν
m´i´ν,lr

looooooooooooooooooomooooooooooooooooooon

multiply out

(6.14)

“
ÿ

pκ1,...,κdqPt1,...,mud

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qi
ˆ

m ´ i

κ1

˙

¨ ¨ ¨

ˆ

m ´ i

κd

˙

bκ1κ1,l1 ¨ ¨ ¨ bκdκd,ld(6.15)
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where
`

a
b

˘

“ 0 for b ą a, and in (6.14) we applied Lemma 3.2. Using Lemma 3.3 we obtain that
(6.15) is equal to

ÿ

pκ1,...,κdqPt1,...,mud

κ1`¨¨¨`κděm

m´1
ÿ

i“0

ˆ

m

i

˙

p´1qi
ˆ

m ´ i

κ1

˙

¨ ¨ ¨

ˆ

m ´ i

κd

˙

bκ1κ1,l1 ¨ ¨ ¨ bκdκd,ld .(6.16)

For each pκ1, . . . , κdq P t1, . . . ,mud such that κ1 ` ¨ ¨ ¨ `κd ě m associate a pτ1, . . . , τdq P t1, . . . ,mud

in the following way: select the smallest index r for which κr ą 1 and replace κr with κr ´ 1.
Repeat this process until pκ1, . . . , κdq becomes pτ1, . . . , τdq where τ1 ` ¨ ¨ ¨ ` τd “ m. By repeatedly
applying Lemma 3.1, bκ1κ1,l1 ¨ ¨ ¨ bκdκd,ld can be written as a linear combination of terms of the form

bτ1σ1,l1 ¨ ¨ ¨ bτdσd,ld(6.17)

where σr ě τr and τ1 ` ¨ ¨ ¨ ` τd “ m. Thus (6.16) can be written as a linear combination of terms
of the form in (6.17) where the coefficients of the linear combination depend on m, d. Hence we
have reduced bounding (6.13) to bounding a term of following form

|F pdqpa0q|
ÿ

l1ďj

ÿ

l2ďl1

ÿ

l3ďl2

¨ ¨ ¨
ÿ

ldďld´1

ż

|y|ă2´l1

|ψjpyqbτ1σ1,l1 ¨ ¨ ¨ bτdσd,ld |dy.

By Lemma 3.4 the above expression is bounded by a constant multiple of

|F pdqpa0q|
ÿ

l1ďj

ÿ

l2ďj

ÿ

l3ďj

¨ ¨ ¨
ÿ

ldďj

2τ1pl1´jqMp∆l1uqpxq ¨ ¨ ¨ 2τdpld´jqMp∆lduqpxq.(6.18)

Now select si such that τi ´ 1 ă si ă τi and
řd
i“1 si “ s. Multiplying (6.18) by 2js and applying

the Lppℓ2q norm, we proceed as in subsection 6.1.1, using the Cauchy-Schwarz inequality for multiple
factors, Hölder’s inequality, Lemma 3.5, and the Fefferman-Stein inequality. This yields the desired
estimate ∥∥∥F pdqpuq

∥∥∥
Lp0

}Ds1u}Lp1 ¨ ¨ ¨ }Dsdu}Lpd .

□

7. Bounding (4.17)

Split s such that 0 ă si ă 1 and
řm
i“1 si “ s. Bringing the absolute value inside the integral,

(4.17) is bounded by constant multiple (depending on m) of

m´1
ÿ

i“0

ÿ

lmąj

¨ ¨ ¨
ÿ

lα`1ąj

ÿ

pl1,¨¨¨ ,lαqPZα

lαď...ďl1ďj

ż

2η1ă|y|ă2η2
|ψjpyq|

m
ź

r“1

|am´i,lr ´ a0,lr |

ˆ

ż 1

0
¨ ¨ ¨

ż 1

0
tm´1
1 tm´2

2 ¨ ¨ ¨ tm´1|F pmqpa0 ` pam´i ´ a0qt1t2 ¨ ¨ ¨ tmq|dtm ¨ ¨ ¨ dt2dt1dy

(7.1)

By the smoothness condition on F pmq the second line of (7.1) is bounded by

´

Gpa0q `Gpam´iq

¯

ż 1

0
¨ ¨ ¨

ż 1

0
µpt1 ¨ ¨ ¨ tmqtm´1

1 tm´2
2 ¨ ¨ ¨ tm´1dtm ¨ ¨ ¨ dt2dt1

Àm,µ

´

Gpa0q `Gpam´iq

¯

.
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Which follows from a simple change of variables namely t1m “ t1 ¨ ¨ ¨ tm´1tm. Applying this estimate
to (7.1) yields

m´1
ÿ

i“0

ÿ

lmąj

¨ ¨ ¨
ÿ

lα`1ąj

ÿ

pl1,¨¨¨ ,lαqPZα

lαď...ďl1ďj

ż

2η1ă|y|ă2η2

´

Gpa0q `Gpam´iq

¯

|ψjpyq|

m
ź

r“1

|am´i,lr ´ a0,lr |dy(7.2)

“

m´1
ÿ

i“0

ÿ

lmąj

¨ ¨ ¨
ÿ

lα`1ąj

ÿ

pl1,¨¨¨ ,lαqPZα

lαď...ďl1ďj

ż

2η1ă|y|ă2η2
Gpa0q|ψjpyq|

m
ź

r“1

|am´i,lr ´ a0,lr |dy(7.3)

`

m´1
ÿ

i“0

ÿ

lmąj

¨ ¨ ¨
ÿ

lα`1ąj

ÿ

pl1,¨¨¨ ,lαqPZα

lαď...ďl1ďj

ż

2η1ă|y|ă2η2
Gpam´iq|ψjpyq|

m
ź

r“1

|am´i,lr ´ a0,lr |dy(7.4)

Bounding (7.2) follows a proof very similar to that used for (4.16) in the previous section. Addi-
tionally, we do not need to consider the combinatorial arguments from subsection 6.3 because we
can directly apply Lemma 3.4 to |am´i,lr ´ a0,lr | when lr is a low-less index, since sr ă 1. The
only difference from the proof in Section 6 is the addition of pGpa0q ` Gpam´iqq to the integrand.

The expression in (7.3) can be bounded using the same argument from Section 6, with F pdqpupxqq

replaced by Gpa0q “ Gpupxqq.
The effects of the addition of Gpam´iq “ Gpupx ` pm ´ iqyqq in (7.3) are minimal since all

integrability indices involved are greater than 1, allowing us to use the boundedness of the maximal
operator. To illustrate first suppose that we have all low-less or low-greater indices then using
Lemma 3.4 and Lemma 3.6 we can pull all the Littlewood-Paley operators (by bounding them with
Mp∆lruqpxq as seen in (5.2) and (5.3)) out of the integral leaving

ż

2jn

p1 ` 2j |y|qN
Gpupx` pm ´ iqyqqdy Àm,i MpG ˝ uqpxq.

The situation for when there are high index sums is similar since the integral is a convolution.
To illustrate, suppose all low-less or low-greater indices have been extracted from the integral using
Lemma 3.4 or Lemma 3.6. This leaves an integral of the form

ż

2jn

p1 ` 2j |y|qN
Gpam´iq

ÿ

lmąj

¨ ¨ ¨
ÿ

lα`1ąj

m
ź

r“α`1

|am´i,lr |dy,

which is bounded by

M
´

G ˝ u
ÿ

lmąj

¨ ¨ ¨
ÿ

lα`1ąj

m
ź

r“α`1

|∆lru|

¯

.

The proof then proceeds in the same manner as in Subsection 6.1.1. Specifically, by multiplying
(6.18) by 2js and applying the Lppℓ2q norm, then the Cauchy-Schwarz inequality for multiple factors,
Hölder’s inequality, Lemma 3.5, and the Fefferman-Stein inequality. □
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