A Normed Fractional Chain Rule Counterpart To The Faa di Bruno Identity

SEAN DOUGLAS

ABSTRACT. In this paper, we establish a normed fractional Faa di Bruno inequality within the
framework of Lebesgue spaces. This extends the classical fractional chain rule from the range
0 < s < 1 to an arbitrarily large value of s.

1. Introduction

The Faa di Bruno formula provides an identity for the higher-order derivative of a composition.
In our goal to establish a normed fractional version of this identity, the specific coefficients are not
of interest. Therefore, we seek a suitable fractional analogue of the following expression
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This paper builds on the fractional chain rule (abbreviated by FCR) initially developed by Christ
and Weinstein [I] in the study of generalized Korteweg-de Vries (gKdV) equations. Specifically,
these authors used fractional chain and Leibniz rules to provide estimates for the solution of a
gKdV represented as an integral equation that enabled the study of the long-time behavior of the
solution. The FCR of Christ and Weinstein states that if 0 < s < 1, p,p1,p2 > 0, % = p% + p%, and

F' is convex, then

|D*(F ow)re < |F o ul Lo [D*ul o

Fractional chain rules are also useful in establishing the well-posedness of wave equations. A more
general smoothness condition, similar to that presented in Theorem |1.1}, was developed by Kato [7]
and Staffilani [I0] in their study of the well-posedness of gKdV and Schrédinger equations.

A more recent advancement is the extension of the fractional chain rule to weighted Triebel-
Lizorkin spaces, which, in particular, implies a FCR for Lebesgue spaces when the integrability
index p < 1 [2]. This extension to p < 1, and the inclusion of weights for the FCR parallels the
result of Naibo and Thomson [9] on the related fractional Leibniz rule for weighted Triebel-Lizorkin
spaces.

The focus of this paper is on extending the range of the smoothness index s > 0. A FCR was
extended to the range 0 < s < min{2, p}, p = 1 by Ginibre, Ozawa, and Velo for homogeneous
Besov spaces, B | with p > 1 and ¢ depending on p, when the exterior function F behaves like

P.q’
|z|?~'z [6]. The key insight was to use the following representation of the Besov norm,
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Fractional Fad di Bruno Inequality

Under the same conditions on the exterior function F', a similar result was later extended to
Lebesgue spaces by Fujiwara [3]. He employed a technique also involving a centered second order
finite difference, but in the context of Littlewood-Paley operators,

Aju(z —y) + Aju(z + y) — 248 u(x).
The use of finite differences involving Littlewood-Paley operators is an idea further developed in
this paper.
As touched upon in [3] one way to establish a fractional Faa di Bruno inequality is by combining

the the classical fractional Leibniz rule of Kato and Ponce [§] , with the FCR for 0 < s < 1. To
illustrate, let 2 < s < 3, p,pz > 1 be related in the sense of Holder, that is = = >._, k for each

1 < k < 4, for simplicity suppose all integrals are over R, and assume F' and 1ts derlvatlves satisfy
the appropriate smoothness conditions (such as being convex), then
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by a direct application of the fractional Leibniz rule, FCR, and the fact that %, % are LP Fourier

multipliers for p > 1. This approach, however, has two drawbacks. The first is that the appearance
of integer order derivatives on u is unavoidable. For example, consider the first summand in ([1.2));
ideally, we would like to replace it with something like

[E" (@) g | D™ ull 1 D2l 1 [ D*ul

where 0 < s1, 592,83 <1 and s1 + s2 + s3 = s.
The second drawback is there are two separate summands associated with F”(u ) Ideally, we
would like to replace the expression |F”(u)|| 2| D* tul QHuIHLp% + [|F"(w)|| 3 | D2l I [

P

I s .

with a single summand such as

[F" ()], 3| D¥ul 1Dl .

where 0 < $1 < 1,1 < $9 < 2, and $1 + $2 = s. Both of these issues are addressed in Theorem

We denote the space of Schwartz functions, which are smooth functions that decay rapidly on R",
by S. The dual space of S, consisting of tempered distributions, is denoted by &’. Since we are using
the homogeneous fractional derivative we need the space Sy, the subspace of Schwartz functions
with all moments vanishing; specifically, f € Sy if and only if f € S and {,,, 2® f(x) dz = 0 for every
multi-index «. The dual of Sy is S’/P, the space of tempered distributions modulo polynomials,
where two distributions are considered equivalent if their difference is a polynomial. It is known
that Sy is dense in 8&’/P, and § is dense in 8. For further details on tempered distributions, refer
o [M], Chap. 1].

For any f € L'(R"), the Fourier transform and its inverse are respectively defined by

fo = | swentay wd #U0EQ = Fle) - | ey
R~ -

The homogeneous fractional Laplacian of order s > 0 for u € §’/P, denoted by D*u € S§'/P, are
defined as
2



Fractional Fad di Bruno Inequality

<Dsu7§0> = <U,,(| ’ ’S(\’E)A% for ()06807
note that (| - |°3) € Sop. A subtle point here is that by defining the homogeneous fractional

derivative by its action on Sy, rather than S, we avoid the need to potentially mod out by a
polynomial. We now state our main result.

Theorem 1.1. Let s > 0 and m be the smallest integer greater than s. Let p,péc > 1 be related in
the sense of Holder, that is

1 Zk] 1
P ok
Ly 4
for every 1 < k < m. Let u be a tempered locally integrable function on R™. Let FF : C — C,

G : C — [0,00) and suppose F owu is a tempered locally integrable function. Furthermore, suppose
that for x,y € C that

[Ptz + (1= t)y)| < u(t) (G(z) + G(y))
for all t € [0,1], and p € L'([0,1]). Let C = Comppl,...pn- Suppose the right hand side of (1.3)

is finite, then D*(F(u)) defined by its action on Sy coincides with a LP function and satisfies the
following estimate:
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where 0 < §, <1, Y0 1 8, =5, kil €N, kL —1 < s <kl for 1 <7 <iand)_;s: =s.

The key ingredients in the proof of Theorem are Littlewood-Paley theory, elementary com-
binatorial arguments and natural extensions of the techniques used to prove the classical fractional
chain rule. More specifically, we use forward finite differences to obtain the appropriate derivatives.
The main challenge lies in balancing the use of finite differences while simultaneously being able to
bound by the Hardy-Littlewood maximal operator. To illustrate with a simplified example, after a
decomposition, we obtain sums over [q, lo, and j of the form:

f2ﬂ'”rw<2jy>|mhu<x T )l Anyu( + kay)| dy.

With careful management of the finite differences, we can set k; = ko in the expression above,
which then transforms the above integral into convolution with an L! dilate of a Schwartz function.
This makes it bounded by the maximal operator. Our decomposition in Section [4| and the lemmas
involving simple combinatorial arguments ensure that this is always the case.

2. NOTATION

All functions are assumed to be defined on R"™, so we omit R™ in the notation for simplicity.
B(0,k) denotes a ball centered at the origin with radius k. We denote by M the uncentered
Hardy-Littlewood maximal function with respect to cubes. The LP(¢3) norm is defined by

Uil =1 S158) 1 = ([ (S1500) )’
JEZ JEZ

for p > 1.
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For real numbers A, B we use A < B to mean A < CB for some positive constant C. The
dependence of C' on other variables and parameters will often be suppressed and clear from the
context, The notation A ~ B means A < B and B < A.

Let ¢(£) be a positive radially decreasing C*(R™) function on R™ supported in B(0,2) and equal
to one on the unit ball. Let 12(5) = $(§) — 5(2{), which is non-negative and supported in the

1

annulus 5 < [{| < 2. Note that 1 is radial and has average value zero. The Littlewood-Paley

operator A; is defined to be convolution with 2/m4)(27.) for j € Z. For ease of notation denote

b = 2 (20).
If a Littlewood-Paley operator is defined with a Shwartz function, ¢, different than ¢ then it will
be denoted by AY.

Let k,m e Ny and [ € Z, and u : R" — C. Define ai(z,y) = u(z + ky) and
ar(@,y) = Aw(z + ky).

We will often omit the variables  and y for simplicity. Note that ag = ao(z,y) = u(z) is indepen-
dent of y. Let k > m, a mth order forward finite difference is denoted by b := > (") (—1)‘ak—;

i
and
el = Z <i>(_1)lak—i,la
=0
which is implicitly a function of  and y.
We will frequently use the Cauchy-Schwarz inequality for multiple factors, that is for dy j,d2 j, ..., dm ; €

m 2 m
5 ([1e) <[1x
jez \i=1 i=1jeZ

Additionally, we will use the vector-valued Fefferman-Stein inequality,

IM(fi)lLages) < I fillLae),  for 1 <g<co.

R

3. PRELIMINARIES

For Lemmas B-2] and [3:3] the frequency isolator index [ does not play a role, so it will be
omitted from the proofs. In fact, the following three lemmas are purely combinatorial in nature,
so, for simplicity, we may assume that {a;}ien, is a finite sequence.

Lemma 3.1. Let k,m e Ny, l € Z and k = m, then
bel = bZ,Lz_ t— b?—_ll,l'
Proof. Recall the identity
m+1 m m
3.1 =
@ (") -G+ (")

for £k > 0. Observe,

m

m—1 m—1 __

bt b = ),
i=
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i=1
m—1
(3.2) =ap + (—1)"ag_m + Z <m> (—1)'ag—;
i=1
- Z <z )(_1)1%2‘
i=0
—bm
where in (3.2)) we applied (3.1)). O

Lemma 3.2. Let ke N, [ € Z, then

1 ‘
ap; — ao; = 2 (k _ Z) bﬁig,z-

i=0
Proof. Observe,

k—1 k—1 k—i .
k . k k—i
bkil‘ = - —i—m
‘_O(k:—z') =2 (k‘—i)(k—i—m>( J"an

7 =0 m=0
k=1 k—i
k!
= -1 —i—m
== z‘m'(k—z—m)'( )" ax
k—1 k-1 t
k! k!
(3.3) = —(—1)*ag+ ). ). (=1 ap—s
=itk —1)! = Aomlt —m)l(k —t)!
k—1 k—1 t
k! k! t!
— 1 k—i _1 t—m
Z oY a0+ ), Ak — o™ >3 it —my Y
(3.4) = ag — ag

where in (3.3) we applied a change of variables, and (3.4]) is a result of
t

t!
Y (DT =0
Kopur ml(t —m)!
if ¢ & 0. This follows from the inherent symmetry in a row of Pascal’s triangle. O

The following lemma is the critical observation in Section that allows us to attain finite
differences of the proper orders.

Lemma 3.3. Let m,d,ni,- - ,nge N, d<m andny +---+ng <m then

m—1 . .
(m\ (m—i m—i
—1)¢ =
;)()<i><n1> <nd> ’
where it is understood that (Z) =01ifb>a.

Proof. We proceed by induction on m,

2 ()

5
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<m+1>”.<m—|—1>+i(_1)i[<fn'1>+(.m>]<m—|—1—z’).”(m+1—i>
n1 ng = 1 1—1 n1 ng

ifm\[(m+1—1 m+1—1
() ()
0 1 Nd
s S m N\ (m—(i—1) m— (i —1)
—1)¢
2 () )
= (m m—1 m—1 m—1 m—1
=N (1)
S (|0 (o)) ()]
< Sfm\ [m—z1 m—1
-2 () ()
i=0 1 nd
which is equal to a sum of terms of the form
O (m\ (m—1 m—1
3.6 1" .
(36) ;)( )(Z)< 771) (Ud)
where 7, for 1 < r < dis n, or n, — 1. Note that due to the difference in (3.5 that n, = n, — 1 for

at least one r between 1 and d; this will allow us to apply the induction hypothesis. It is possible
that n, = 0, so reindex (3.6]) to

m—1 . .
(m\ (m—i m—1i
3.7 -1 .
(3.7) g;)( )(1>< 771> (77(1)
such that ¢ < d and 7, > 0 for 1 < r < g. Observe that
d

inrg(an>—1<m.
r=1

r=1

l
S

2

(3.5)

Hence, if ¢ < m then we can apply the induction hypothesis to obtain that is zero. Note, it
must be the case that ¢ < m. To see this suppose ¢ = m, then d = m. Hence ny +---+n,, <m+1
implies that ny = ... = n,, = 1, since n,, > 0 for 1 < r < d. It follows 7. = 0 for at least one
1 < r < m implying g < m, a contradiction. O

Lemma 3.4. Let k > m and |y| < 27 then a m order finite difference admits the following bound
(3.8) b (2, y)| < 2™ |y ™ M (Agu) ().
Furthermore,

laks — a0l S 2'[y[M(A(w))(x).

Proof. This proof will be by induction on m. Let ¥* be a Schwartz function such that its Fourier
transform is 1 on 1 < |¢| < 2, and is supported in } < [£| < 4. First we will show that

n n 1 1
km’l:_gml Alu(Z)Z”'ZJ”'J
ri=1 rm=1 0 0

m

RTL
(3.9)

(Oyp, * Oy 0™ 1 + ky — Z Ly — 2)Ypry - Y, dby -+ dbppdz.
i=1

For m = 1 observe,

1
by = Gk — ag—1,
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= A?’*Alu(x + ky) — A;b*Alu(x + (k—1)y)

— | ) (@ + ky = 2) = @+ (k= Dy = 2))dz

R”
1
(3.10) =21 Aw(z) j Vi (@ + ky — t1y — 2) - ydtidz
R
=2 Awu(z j Oy, V5 (x + ky — t1y — 2)yr, dt1dz
R ri=1

where in (3.10) we applied the Fundamental Theorem of Calculus. Now suppose (3.9) holds. Let
0r denote 0y, ---0dy, . Using Lemma [3.1) we obtain

m+1 __m m
A O

if J(a e+ ky— >ty 2)

ri=1 rm= 0 =1

ri=1 rm=1
X Yp, o A1 - - At dz
omi Az Z Z f J Yry o Yrm
R™ ri=1 rm=1
[(a D)z + Zt,y—z (Or)i(z + Ky thy—z]dtl dtydz
=1
:le Alu Z 2 f f yT1"'mi
ri=1 rm=1v0 0

m—+1

[ f (Vor)i(z + ky — Z tiy — 2) - —ydtm+1]dt1 - dtdz

m+1

— om0 [ Au) Y Zf f Wt ky— >ty —2)

R ri=1 Tm+1=1 =1
X Ypy oo y?“m+1d 1°° dtm-i—ldz
which establishes (3.9). To obtain the estimate in (3.8]) we will use the following simple inequality
for V1,09 € R™
1 < 1+ |U1|

3.11 < .
( ) 1+ |va+vi| 1+ |ve

From (3.9) it follows the absolute value of ", is bounded by a constant multiple of

2ml Z Z ‘ym' yrnL‘f |Alu

ri=1 rm=1

21 C
X dtmdz
jo fo (1 + 2z + ky — Zz my—z!)
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2in(1 + 2 y||k — 3, )Y
Ly, |m 1
. Snm " A W T
(3.12) Snm 2™yl f |Aru(z |f f Grafe o)y i
2ln
) < m2ml m A d
(3.13) <k, |y J;Rn |Aju(z)] (1 + 2|z — 2|)N z

(3.14) < 2™y M (Ayu)(x)
where N > n, in (3.12)) we applied (3.11]) and in (3.13)) we used the hypothesis that |y| < 2~'. This
(3-8)

ends the proof of (3.8
The second statement now follows by a simple telescoping argument,

k-1 k-1
lag — aoy| = ' Z Qip1] — G| < Z 161,14l <k 2y M (A (u)) ().
i20 i=0

0

The inequality in (3.15) for 0 < s < 1 is given in [[II], Lemma 4.2], here we provide a straight
forward extension to larger s.

Lemma 3.5. Let {d;}icz be a sequence of non-negative real numbers, then

(3.15) (Z (2”22’”“‘%)2)2 S (Z(2j8dj>2>2 ifo<s<m

JEZ I<j JEZ
1 1
) ) 2 ) 2
(3.16) (Z (2]8 > dl> ) < (Z@ﬁdj)?) if0<s
JEL g<l JEZ

Proof. Observe,

(Z (st D Qmw)dl)z)

JEL I<j

o=

N[

& 2
_ ( (Z (s=m)/2gl(s=m)/29(i~D3g, _ ) )
Jez 1=0

[N

<( i2lsm/22(] l)sd )2>
JEZ1=0
S ol(s-m) N (oD >
(;02 je%z d;_ )
1
< ()

where in the first inequality we applied the Cauchy-Schwarz inequality. The proof of (3.16) is
similar and omitted. 0

The following is the celebrated Peetre’s lemma. For our purposes we only need the below state-
ment for ¢t = 1.
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Lemma 3.6 ([12], Theorem 2.10). Let 0 <t < 0, and u be a function on R™ whose distributional
Fourier transform satisfies supp(u) < B(0, k), then

lu(z — y)|
p———— % < Cp i Mi(u)()
yeRr (1 + Kly|)

where the constant is independent of k.

4. INITIAL DECOMPOSITION FOR THEOREM [

Let s < m with m being the smallest integer bigger than s. Let

m—1
(1) b6 = %, (7)0a(m-e).
i=0

So for example, if m = 3 then \fl(g) = 12)\(35) - 312)\(25) + 312(5). It is easy to see via induction that
ZjeZ (I\I(Q_jf) for € & 0 equals either 1 or -1 depending on if m is odd or even. Since V¥ is a Schwartz
function whose Fourier transform is supported in an annulus and forms a partition of unity when
summed dyadically (multiplying by —1 if necessary), we can apply the lower Littlewood-Paley
inequality [[5], Theorem 4.5.6]. It follows that

D (F@)lr < (X 1AKD Fa) )’

JEZ L
(42) <|(Zerar F)R)’|
je

where the last inequality is the lifting property of Triebel-Lizorkin spaces, which is generally ex-
pressed as | f|| i, ~ | D £ i, Recall that D*(F(u)), as a tempered distribution, is defined by

its action on ¢ E So.- Therefore there is no need to potentially mod out by a polynomial when
applying the lower Littlewood-Paley inequality.
For simplicity let h := F o u, then A;-I’ (F(u)) can be express as

m—1
(1.3) AY(F)(x) = 3 (m) (L1 2 (D ((m— )27 ))().

i
i=0
Consider a summand of the the above sum, namely for a fixed k& observe

FB027 @) = | (PG~ )y

= J ) 27Mp (2 y)h(x + ky)dy

where in the last line we used a change and variables and the fact that 1 is radial. It follows that

(4.3)) can be written as
(4.4 w2 = S (M) [ Pt )i
1=0
Recall that for a fixed k, ar, = ax(z,y) = u(z+ky), note that ag is independent of y. Focusing on the

integral within a summand of (4.4) we proceed by repeatedly adding and subtracting expressions
to apply the Fundamental Theorem of Calculus (FTC) as follows

szj u(z + ky) dy—Jw] F(ua?—i—ky)dy F(u fwj
9
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J% f tlak + (1 — tl)ao)( ap — ao)dtldy
1
(4.5) = J¢j(y)(ak - ao)f F'(ag + (ax — ao)t1)dt1dy.
0
Adding and subtracting F’(ag) from the inner integral in (4.5 and applying the FTC we obtain
F'(ao) ij(y)(ak — ap)
1,1
(4.6) + J%(y)(ak — ao)zj‘ f tlF”(ao + (ak — ao)tltg)dtgdtldy.
0o Jo
Now add and subtract F”(ag) to the inner integral in (4.6)) and apply the FTC to obtain
11
| it [ | 6P ao)dtadndy
0o Jo

1 1 1
(4.7) + j¢j(y)(ak — ao)gf J f t1taF" (ag + (a, — ao)titats)dtsdtadt:dy
0 Jo Jo

Once more, add and subtract F”(ag) to the inner integral in (4.7) and apply the FTC to obtain

1 1 1
fwj(y)(ak — ap)” f f f t3to F" (ao)dtzdtadt,dy
0 JOo JO
1 1 1
- f ¥;(y)(ax — ap)* f f f f t313t5 F W (ag + (ag — ao)titatsts)dtadtzdtadt,dy.
0 0 JO

Continuing until the mth derivative is reached it follows

(4.8) fw] u(z + ky))dy = Z CaF'D(aqg fzp] (a — ag)?dy

(4.9) fwj (ar — ao) f J G A

X F( )(ao + (ak — ao)tltz s m)dtm - dtodt1dy
where Cy only depends on d. Combining (4.4)), (4.8) and (4.9) we obtain
AY (F(u))(x)

m 1 m Am—l
(4.10) ( ) 1Y CaF Do) [0 o a0)dy
d=1

’ m=0 <m> )if%'(y)(ami )™
(4.11) J f o

X F (ao + (am i — ao)tth )dtm - dtydy.

.

The decomposition so far has focused on representing

f () F (ulx + (m — i)y))dy
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in terms of derivatives of F. We now turn our attention to further decomposing (aym_; — ag)? =

(u(x + (m —1i)y) — u(x))? in terms of frequencies. Notice both (4.10]) and (4.11)) contain (am—; — ao)
raised to a power. Write (am_; — ag)? for 1 < d < m as

d
(4.12) DU 0 T [(ameia, — aog,)-

l1€Z ldGZ r=1

For simplicity of notation let Bn_; = Sé e Sé 75’1“7175‘;*2 ot 1 F™ (ag4 (am_i—ag)tits - - - t)dtn - - - dtadty

from (4.11). From (4.10) and (4.11) it follows that |A;I’(F (u))(x)| is bounded by
d

(113) Z CllFD @) Y- Y| f >, N [ § (T
r=1

LeZ l4€Z
(4.14) + Z Z J Z < > i%‘(y) H(am—i,lr - aO,lr)Bm—idy‘-
lLeZ Im€Z r=1

Further decomposing the sum ;- ZldeZ for 1 < d < m, break up each sum at j, that is

ez = Diy<j T 2iymg Then Yy cp -3 o can be written as 24 sums, by symmetry it is sufficient
to focus on only a sum of the form

(4.15) Dl D] 2 Z
la>j  las1>jla<

for some 0 < o < d. The low frequency sums can be further bounded by

PRI

<j hs< AeSa (L1, ,la)EZ”
In(@)S<lza) <y

where A is a permutation of {1,...,a}. Note, 3}, -+ > <; is not equal to the sum of these a!
permutation sums due to the dlagonal terms, but the absolute value in and (| allows us
to use them as bound. By symmetry it suffices to consider the followmg expressmn

Ezzﬂ

ld>] la+1>] (ll, . l )GZO‘
lo<..<l1<

Lastly, partition the integral into o + 1 pieces, that is

J - f + f + o + f + J ’
" lyl<2=tt J2mhi<y[<27t2 27la-1<fy|<27la J|y|>2-la

Thus, we have reduced estimating |A; F(u)| to bounding the following expressions which respect-

fully correspond to (4.13) and (4.14)),
m—1
Cd F( ao ‘ J
;1 Call DI VDY .

lg>j la+1>7 (I1, ,la)EZ™

(4.16) lo<...<li<j

m—1 m d

Z (z) H m—il, — ao,zr)dy’
= r=1

11
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YIRS VRS !Lwymg(T)(—mwy)

lm>j la+1>.j (llf" 7la)€Za
la<..<hi<j

(417) m 1 1 . )
X H(am*i,lr —agpy,) J .. J Ty
r=1 0 0
x F™ (ap + (am—i — ap)tite - - - tm)dty - - - dtodtdy
where 71 < 1, are consecutively from the ordered set {—o0, —l1,..., —l4, 0}.

5. TECHNIQUES

The summation indices, [, are categorized into three classes. Let ¢ € Z. A high index, [,., means
that the sum is over [, > ¢ for some ¢. A low-greater index implies the sum is over [, < ¢ and the
integral is taken over a set where |y| > 27/, A low-less index means the sum is over [, < q and the
integral is over a set where |y| < 27"

For example, consider with m =6, d =4, n1 = —Ii, and 7o = —lo, which is expressed as

5 6 ' 4
@ 55| 2 (§) 0w [ Tos-as, —oos o]

-1 —1
14>7 13> 11 <j la< 1<|y|<2 2i=0

Here, I4 and I3 are high indices, l2 is a low-less index, and [ is a low-greater index. In this section,
we discuss the three methods used to bound the sum corresponding to each type of index. The
aim is to demonstrate these methods in simpler cases to avoid excessive complexity with indices
and notation. In practice, these methods will be used in combination with additional tools, such as
Holder’s inequality, the Cauchy-Schwarz inequality. In the next section, we will explore how these
methods are combined and work together.

5.1. High indexed sum. A high indexed sum is simply bounded by the maximal function,

Z J [V (y) Aju(x + ky)|dy < M(Z Alu)

>3 I>j

Let s, > 0, then multiplying by 2/ and applying the L9(f3) norm for ¢ > 1 we obtain

(5.1) HzJ'S*M(Z A,u)
1>j

Hzﬂm uH < | D% 1o

La(t2) La(¢2)

where in the first inequality we used Lemma [3.5| and the Fefferman-Stein inequality. The benefit
of a high indexed sum is that it can “absorb” arbltrarlly large s.. This will allow a high index sum
take the highest order derivative in Section

5.2. Low-greater indexed sum. Let N >> n, and m > s, > 0. Observe,

|Ayu(x + ky)| } .
A ky)ldy = 1202 T BI)T (1 4 ol ky])d
l;jjy|>2 ZWJ( phue s hyldy = %Jy>2 ZWJ v (1 + 2l ky|)™ (1+ Zlkyl)"dy
(5.2) SZM(AZu)(x)J| 2 165 ()| (1L + 2y
I<j y|>2-1

291 (1 + 27| ky| )"
<3 M(Aw)(x) f . dy
zgj y>2-1 (14 27[y[)N+m

12
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20 (1 + 27 k|y|)"
s2-t (1 + 29|y|)N+m

< Z 9mU=3) M (Agu) () J

1<j ly

(5.3) < Y2 M (Aju)(x)

I<j

where in (5.2)) we used Lemma and j > [. Multiplying (5.3 by 2/%* and applying the L9({3)
norm, Lemma and the Fefferman-Stein inequality we obtain the bound

(5.4) |D™ull

Low-greater indexed sums also have the benefit of being able to absorb a higher order derivative.
Given a s, we are free to choose any m > s,, due to the rapid decay of ¢, to obtain the final bound

in .

5.3. Low-lower indexed sum. A low-lower indexed sum is more restrictive than both of the
previous cases, this is due to the fact that we can not put an arbitrarily large derivative on a low-
lower term and still achieve summablity. The decomposition’s, and , have been done
in such way that a low—lower indexed sum will always be able to be paired with a finite difference

as we will see in Section [6.3] The following illustrates the technique,
Z [0 ()] 163,11y
l<] y <2_
= Z |V (y)| | Au(z + 5y) — 3Au(z + 4y)
I<j y|<2 !
+ 3Au(x + 3y) — Az + 2y)|dy
(5.5) < 2 M(Aw)(x)
I<j

where in (5.5) we applied Lemma Multiplying (5.5) by 27¢* and applying the L7(¢3) norm,
Lemma and the Fefferman-Stein inequality we obtain the bound || D ul,.

6. BounpinG ((4.16))
Recall (4.16) is given by

m—1
T DI Y Y|
d=1 2M <ly|<2"2

lg>j la+1>7 (11, la)EL™
lag gllS]

m—1 d
x > (I?)(—l)i%(y) [ [(am—is, — ao,lr)dy‘
i=0 r=1

We consider three cases:

e Case 1: a < m, when there is at least one high indexed sum.
o Case 2: a =m and 7y # —l1, when there is at least one low-greater indexed sum.
e Case 3: @ =m and 1y = —I1, when all the sums are low-less indexed.

In Case 1 and 2, where we have at least one high or low-greater indexed sum the key idea is to
let the sum associated with corresponding index take the the highest order derivative. However, in
Case 3, where every sum is low-less indexed this is not possible, and we must rely on the cancellation
provided by combinatorial arguments.

13
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For Cases 1 and 2, it is sufficient to illustrate the techniques using a specific example, such as
m = 6 and d = 4, to avoid the proof becoming obscured by notation and since the sums split.
These techniques easily extend to different values of m and d. In Case 3, however, we will prove the
result for general m and d, as this case depends on combinatorial considerations that are specific
to those values.

6.1. Case 1: o < m. Let m = 6 and d = 4. In the classical Fa di Bruno setting (see (1.1])),
this corresponds to the expressions F') (u)u/v/uv/u”, the 1-1-1-3 derivative and F® (u)u/v/u"u", the
1-1-2-2 derivative, where the sum of the derivatives on the u’s adds up to 6. In Case 1 and Case
2 we will bound using the fractional version of the 1-1-1-3 derivative, that is 0 < s1, 892,53 < 1,
2 < s4 <3 and sy + sy + s3 + s4 = s. Here the higher frequency sum will take on the higher order
derivative, s4, corresponding to 3. The general situation for Case 1 and 2 would be bounded using
the fractional version of the 1-1-----1-m — d + 1 derivative. The only finite differences that will be
used in Case 1 and 2 are first order.

To provide a clear illustration that incorporates all three techniques discussed in Section
consider the case where oo = 2, and 9 = —ly, 72 = —l2. Observe,

F@D(ag)] Y7 37 > Z U e 121 . (?)(—1)i¢j(y)ﬁ(a6—i,zr —ao,l,.)dy‘

la>j l3>J lhi<jla<

<SP Y Y Y | > 3 st [ 1o, —ans,)

l 1
i= Ol1<112<11 L<|yl<272 5 1>

SO Y Y Y 2 M | O [

-1 —1
i=011<j la<l 27 <|yl<27t2

x 3] ‘H a6—il, — 0.l dy‘

la>jl3>j r=3

dy

(6.1)

where in (6.1) we applied Lemma to |ag—ii, — ao,,|- In general all the low-less indexed sums
would be handled in this way. Focusing on the low-greater indexed sum continuing from (6.1)) we
obtain

. o
20127y
(6.2) ! ; Zg] Z;l () 27l <|y|<27"2 (1+ [27y[)N+1

lag—i,| )
% [(1+ |2116(6Z_Z-)y|)n(1+21 (6 —d)y))" + ’a0l1:| > ‘H i1, — oy, )dy|.

ly>j5l3>j r=3

The expression in square brackets above is bounded by

(6.3) M (A u)(@) ((1+2[(6 — Dy + 1) < M(Ayu)(@)2(1 + 27|(6 — i)y|)"
by Lemma [3.6] and since I; < j. Also, note that

1

<
(1+2[yl)
14
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since |y| > 27", Applying these estimates to (6.2)) we obtain

< [F(ag IZ >, Z 227 M (A u)(2)2" 7 M (A u) (@)

1=0101<jl2a<

2”12(1+2J|( —i)y|)"|27y]
f (1+ [27))N 2 2 \H ot = G0i, )

la>jlz3>j r= 3

(6.4)

In the case where there are multiple low-greater indices, say ¢ of them, choose N sufficiently
large (specifically, N > n + 2mn) and bound [¢;(y)| by

2Jn
(14 27[y[)N+a’

This ensures the integral converges, and every low-greater indexed sum is paired with a 277,
Lastly, we address the high indexed sums. First pointwise bound the product as follows

4

[ Tl(as—iz. — aoy,)l

r=3

< |a6 1,03 |a6 1,04 ||a’0l4| + |a6 ll4||a0l3| + |a013||a’0l4|
< las—is 1| M (A u)(z)

+|a6—z‘,z4|M(Az3 u)(z )+M(Az3 ) (@) M (A, u) ().

In the general case after multiplying out Hle |am—i 1, — ao,,| simply bound the |ag;,| terms by
M (A, u)(x). Applying this estimate to (6.4)), and using that convolution with a L! dilate of a
Shwartz function is bounded by the Maximal function we obtain

< [FD(ag)| Y] 21T M(Au)(a) Y 227 M (Au)(a)

h<j lasg
(6.5) [ (ZZ; |Al4“|lz>: |Al3u|> ZZ>: M(Ay,u) (ZZ; |A13U|)
+ M(Alsu)(x)M< 3 \Al4u|> + 3 MALu)(@) Y] M(Al3u)(x)].
I3>7] l4>] l4>] I3>]

6.1.1. Applying the LP(f2) norm. Recall 0 < s1, 89,83 < 1,2 < s4 < 3 and s1 + S2 + 83 + 84 = s.

In general we would have 0 < s1,...,8¢_1 <1l,m—d<sg<m—d+1and 51—1— —|—Sd=8. The
largest derivative s4, will be put on a higher 1ndexed sum. Let p* be such that = + p—4 = #, and

note p* > 1. We will only focus on bounding one of four terms in , namely
MY 1Auul Y 1Al
la>] l3>7

as all four can be handled similarly by the following method of using the Cauchy-Schwarz in-
equality for multiple factors, Holder’s inequality, Lemma and the Fefferman-Stein inequality.
Multiplying (6.5)) by 27¢ and applying the LP(¢2) norm we obtain

H’F @D (ag)[27° . 2" T M (A ) Y. 22T M(Au)M (Z |Agul Y [Agu ’)

h<j la<j ly>j l3>j

15
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(6.6)
gHF(d)(“)’ (Z (27 3 21T M (A w)) )5 (Z (272 )7 2l2jM(Alzu))2)é
LPo ez L<j L JEL la<j o
<J(Z (rom( Z 1ol 2 tavl)) ),
JEZ l3>j
(6.7) 1
. 2 2
<[[FO@)|, 1Dl Dl (X (20 (3 180l Y 1agul)) )] L
jez ly>j l3>j
(6.8)
<||F@ | D ul| o1 | D*ul| oo | D** ] pos || D¥*ul| Loa.
LPo

In (6.6)), we applied the Cauchy-Schwarz inequality for multiple factors and then Holder’s inequality.
(6.7), we used Lemma followed by the Fefferman-Stein inequality. In , we applied the
Fefferman-Stein inequality first, then Holder’s inequality, and finally Lemma

6.2. Case 2: a = m and 72 # —I;. For simplicity, and because the sums split, it suffices to again
consider the case where m = 6 and d = 4. In this case there are no high indexed sums. However, we
do have a low-greater index, allowing us to assign the highest-order derivative to the corresponding
sum. Therefore, we will decompose s as in Case 1, with 0 < s1,80,83 < 1, 2 < s4 < 3, and
$1 + 82 + s3 + s4 = s. We will only consider the case where we have two low-greater indices 1, lo.
Observe,

KIS . 2 (0)e iwj@)ﬁ(am,lr—ao,lr)dy

=0

< |F9D(aq !Z XD 2 24T M (Ag,u) ()27 M (Agyu) (x)

1=011<j lo<ly I3<l2 [y<

2

x j 12711273113 )| | | 1(@6—i, — aos,)ldy
2-l2 <|y|<27!3

r=1
(6.10)

5
SIFD()| 32 3 S0 ST 2 I M (A ) ()25 M (Au) (@) M(Agyu) (2) M (A ) ()

1=011<j l2<ly I3l 4<l3

x f 12727y |43 () |A(L + 27|(6 — i)y])>"dy
27l <|y|<2713

(6.11)

5
<IFD(ag)| TSN ST ST 2 M (A ) ()25 M (D) () M (D) () M (D, ) ()
1=011<j lo<l1 I13<l2 14<I3
XJ 2j”\2jy|24(1+2j|(6—i)y!)2n\2jy!2d
212 <ly| <2t (1 + 2]y )N +1+3 /
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5
SIFD () Y2 3T S ST 2 M (A ) ()25 M (Agu) (@) M(Agyu) (1) M (A ) (2)

1=011<j lo<l1 I3<<l2 14<l3

. . N Nomiei 12
" J 2741 + 271(6 —4)y)" |27y 9l2=i93(1—1) gy,
2=l <|y|<27 13

(1+ 27y
(6.12)
< [FD(ag)| Y] 22D M (A ) (x) Y 22T M(Ayu) ()
lh<j la<j
x T2 TTM(Ayu)(x) Y. 24T M (A u) ().
I3<j la<j

In , we applied Lemma to the low-less indexed terms. In , we used the estimate
given in for the less-greater indices. In we chose the exponent on (1 + 27]y|) to be
N + 1+ 3, where N is large enough to ensure the convergence of the integral and the 1 + 3 is used
to obtain 227723(1=J) In general, we set the exponent to be N + (¢ — 1) + (m — d + 1) where
N > n + 2nm, and ¢ denotes the number of low-greater indices.

Finally, multiplying by 2% and applying the LP({3) norm, we proceed as in subsection
6.1.1) using the Cauchy-Schwarz inequality for multiple factors, Holder’s inequality, Lemma [3.5
and the Fefferman-Stein inequality. This yields the desired estimate

|[F@@]|,, 10 ules |D" 52 | Dl [P 4.

LPo

6.3. Case 3: a = m and 72 = —I[;. In the final case there are no high or low-greater indexed
terms to absorb the highest order derivative. We will use combinatorial arguments to eliminate all
terms except for the desired finite differences. In this case we seek to bound an expression of the
form,

m—1
Y ICIF@ Y Y Y B ] )
1 1 lyl<2=h

d= 1] lo<ly I3<2 lg<lg—

x mf <‘?> (1) i[l(ami,h ~ a0y, )dy|

1=0

(6.13)

To begin we will focus on the sum in the integrand,

mz_ll (T) (1) H(am—i,lT —aop,,)

i=0 r=1
m=l n m—i—1 M
.14 = -1 A bm*lifl’
(6 ) i—0 (’L > ( ) 11:[1 Vg() (m — 7 — l/> m—i—v,l,

J

~
multiply out

(6.15) - N f (“;) (~1) (‘“/; Z> - <‘“H; l) L,
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where (3) = 0 for b > a, and in (6.14) we applied Lemma Using Lemma [3.3| we obtain that
(6.15)) is equal to

(6.16) > mz_]l (T) (=1)' <m; Z) T (m,_; Z) beni " rta

(k1)L m}d =0
K1+ +Krg=m

For each (k1,...,kq) € {1,...,m}¢ such that k1 + - - - + kg > m associate a (71,...,74) € {1,..., m}¢
in the following way: select the smallest index r for which s, > 1 and replace k, with x, — 1.
Repeat this process until (m, ...,Kq) becomes (71,...,7q) where 71 + - -+ + 74 = m. By repeatedly

applying Lemma b’;i L bﬁj , can be written as a linear combination of terms of the form

(6.17) A XL

01,01 od,ld

where 0, = 7, and 71 + -+ + 7y = m. Thus (6.16]) can be written as a linear combination of terms
of the form in (6.17) where the coefficients of the linear combination depend on m,d. Hence we
have reduced bounding ([6.13) to bounding a term of following form

a() | Z Z Z Z j |wj 01 Iy’ ;C(liald|dy'

<jloshils< <lg, VlI< <2
By Lemma [3.4] the above expression is bounded by a constant multiple of

(6.18) |F@D (ag)] Z Z Z Z 2Tl(ll—j)M(Allu)(x)...QTd(ld_j)M(Aldu)(x)'
14<j

h<jlo<jlz<j

Now select s; such that 7, — 1 < s; < 7; and Zglzl s; = s. Multiplying (6.18) by 27¢ and applying
the LP({2) norm, we proceed as in 5ubsection using the Cauchy-Schwarz inequality for multiple
factors, Holder’s inequality, Lemma[3.5] and the Fefferman-Stein inequality. This yields the desired
estimate

|[F@@)| 1Dl D%l

7. BOUNDING (4.17])

Split s such that 0 < s; < 1 and Y, s; = s. Bringing the absolute value inside the integral,
(4.17)) is bounded by constant multiple (depending on m) of

m
PIDINED V| 950 T ] mst, — aoy,
2771<|y|<2”72 r=1

=0 lm>j  la+1>7 (I1, la)EL®
(7.1) la<.. <11<J

1
X J e f trln—ltan—Q cee tm_1|F(m) (ao + (am_i — ao)t1t2 .. -tm)|dtm cee dtgdtldy
By the smoothness condition on F(™ the second line of (7.1)) is bounded by
(G(ao G(am—q) f f Wt T2ty dby - diadt

Smyu (G(ao) + G(am—i)>~
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Which follows from a simple change of variables namely ¢/, =ty - - - t;,—1t;,. Applying this estimate
to ([7.1) yields

SEI Y YRS RS Y N CCORRS et [0y | (RSP

=0 lm>j  la+1>J (L, ,la)EZ”
lagv..gllgj

(73) ZZ Y ¥ L|2 G(ao) 5 |H|amm ao., |dy
=0 In>j M1 <|y| <272

la+l>j (llz"' 7la)€Za
la$<11$]

m—1
SRR S D N IIC S 0] ) (S

=0 ln>j  lat1> (I, la)EL
lo<...<hi<j
Bounding follows a proof very similar to that used for in the previous section. Addi-
tionally, we do not need to consider the combinatorial arguments from subsection because we
can directly apply Lemma to |am—ig,. — aoy,.| when I, is a low-less index, since s, < 1. The
only difference from the proof in Section [f] is the addition of (G(ap) + G(am—;)) to the integrand.
The expression in can be bounded using the same argument from Section |§|, with F@ (u(z))
replaced by G(ag) = G(u(z)).

The effects of the addition of G(am—i) = G(u(x + (m — 7)y)) in are minimal since all
integrability indices involved are greater than 1, allowing us to use the boundedness of the maximal
operator. To illustrate first suppose that we have all low-less or low-greater indices then using
Lemma and Lemma [3.6| we can pull all the Littlewood-Paley operators (by bounding them with
M (A, u)(z) as seen in (5.2) and (5.3)) out of the integral leaving

| e G + (= )y s M(G o))

The situation for when there are high index sums is similar since the integral is a convolution.
To illustrate, suppose all low-less or low-greater indices have been extracted from the integral using
Lemma [3.4] or Lemma This leaves an integral of the form

2im
J(1+2J|y| CEUDINDY H | @it |dy,

lm>J lo+1>j r=a+1

which is bounded by

m
M(GouZ--- 2 H \Alruo.
lm>j laot1>jr=a+1
The proof then proceeds in the same manner as in Subsection Specifically, by multiplying
by 27% and applying the LP(¢3) norm, then the Cauchy-Schwarz inequality for multiple factors,

Holder’s inequality, Lemma and the Fefferman-Stein inequality. O
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