WEIGHTED KATO-PONCE INEQUALITIES FOR MULTIPLE FACTORS

SEAN DOUGLAS AND LOUKAS GRAFAKOS

ABSTRACT. In this paper we establish a weighted Kato-Ponce inequality for m factors in the end-
point case. Furthermore, the validity of the Kato-Ponce inequality is extended from the class of
Schwartz functions to the broader class of functions living in a (weighted) fractional Sobolev space.

1. INTRODUCTION

Kato-Ponce (KP) inequalities are normed fractional Leibniz rules estimates of the form

(L.1) 17*(F DN e < Crsprpe (177 f | on 91l os +1Fon 17791 222

where f, g are Schwartz functions, s > 0 and J* is the inhomogeneous fractional derivative which
is given by multiplication by (1 + |£|?)¥/? on the Fourier transform side. Here 1 < pi,p2 < 00,
p% p% = %, and the range of the smoothness index s is determined by n and p. These types of
inequalities initially appeared in the work of Kato and Ponce [19] in connection with the Euler and
Navier-Stokes equations. Such estimates were proved using the Coifman-Meyer bilinear multiplier
theorem [7] and Stein’s complex interpolation theorem [29]. Subsequently many authors have
studied KP (and related) inequalities: we mention for instance the works of Kenig, Ponce, and
Vega [20], Christ and Weinstein [6], Gulisashvili and Kon [I§], Bae and Biswas [I], Muscalu, Pipher,
Thiele, and Tao [23], Grafakos and Oh [I5], Bernicot, Maldonado, Moen, and Naibo [3], Muscalu
and Schlag [24], Cruz-Uribe and Naibo [10], Fujiwara, Georgiev and Ozawa [12], Li [2I], Hale and
Naibo [25], Douglas and Grafakos [11].

Upon completing this manuscript, we became aware that Wu [33] had recently obtained the L!
endpoint case for Muckenhoupt weights in the case of two factors. We arrived independently at
this result but our work also includes the L' endpoint case for m factors. It should be noted that
the case of two factors does not imply the one for multiple factors, and this justifies the present
study.

We note that is valid exactly when 1 < p;,p2 < 00, 1/2<p < oo and s > max{n(% —1),0)}
or s € 2N; on this see [I5] and [24]. The fact that is actually valid in the full range of indices
1 < p1,p2 < w0 and 1/2 < p < © makes it rather intriguing in the theory of bilinear operators.
However, it should be stressed that techniques based on Calderén-Zygmund theory cannot provide
strong type estimates at endpoints when p; = 1 or po = 1 and p; = py = 0.

Bourgain and Li [4] obtained when p; = ps = o via a new technique; this endpoint case
was previously studied in [I4]. The three main ingredients of this endpoint case are Bernstein’s
inequality, an interpolation technique (similar to Lemma, and the use of a suitable commutator.
This commutator enables high-low frequency paraproducts to be treated almost like high-high
frequency paraproducts. A refinement of this technique was employed by Oh and Wu [27] to obtain
the other endpoint case when one or both of p; and py equal 1.

A weighted KP inequality is an estimate of the form

(1.2) HJS(fg)HLp(w) < Chspr p2,wi wo (HJSfHLPl(wl)HgHLP2(w2) +”fHLpl(wl)||‘]Sg||LP2(w2)>

2020 Mathematics Subject Classification. Primary 42B15, 42B25, 42B30, 42B35.
This research was supported by University of Missouri Research Council and by the Simons Foundation grant #
624733.
1



WEIGHTED KATO-PONCE INEQUALITIES DOUGLAS AND GRAFAKOS

where f, g are Schwartz functions, pi,p2 > 1, = + p% =1

7 p1 P’
functions and w = w]f/ P lwg/ P2 Naibo and Thomson [26] proved a generalized normed Leibniz rule

over weighted Triebel-Lizorkin spaces that implies when 1 < p1,p2 < 0, wy € Ay, wo € A4,
and s is sharp based on n, p1, p2, w1, we. Oh and Wu [2§] proved when 1 < p1,p2 < 00, and
wj =1 +]-)%, oj =0 where j = 1,2, and notably s depends only on n and p.

In this paper we study weighted KP inequalities for several factors that builds on the results
from [27]. As discussed in [I1] the 3-factor KP inequality may not follow from the 2-factor KP by
grouping two terms into one. When p < 1, applying the 2-factor inequality, we will unavoidably
end up with some Holder indices that are less than one. For instance, in the 3-factor case let
p1 = p2 = 3/2,p3 = 2 and observe that if ¢1, g2 are such that % + % + % = qil + % = % + q%, then
¢1 < 1 and g < 1. Then (1.1)) can not be applied in this case as it requires the indices on the right
to be greater than or equal to one.

We now state the precise formulations of our main results. The A, classes and the weighted local
Hardy space, hy(w), are defined in the next section. In the sequel we set 7, = inf{p: we A,}. All
norms below are over R”.

w1, ws are locally integrable, nonnegative

Theorem 1.1. Let m € Z™, 7}1 <Kp<ow, 1 <p,....pm <O satz’sfy% = p% + -+ Ii. Let
P _p_
wj € Ay and w = wyt ---wht . If s > max(n(%¢ —1),0) or s € 2N, then there exists a constant

C=C(n,m,s,pi,.-yPm,Wi,...,Wy) < 00 such that for all fj € S(R™) withl € {1,...,m} we have
(1.3) [EASCAREE fm)HLP(w) S C(HJSfIHLm(wl)”f2HLP2(w2) o 'Hmeme(wm) +o

il o o 12l o2 gy = 1T Finll o (1) ) -
Furthermore, (1.3) holds if J* is replaced by D?.

The following theorem extends the KP inequality from the class of Schwartz functions to functions
in a fractional Sobolev space, denoted by L%(w) defined in Section [2, Note the endpoints are not
included in this extension.

Theorem 1.2. Let m € ZT, % <p<® 1<p,....,pm <0 satisfy% = p% + 0+ Ii. If
s > max (O,n(% — 1)), then there exists a constant C' = C(n,m,s,p1,...,pm) < © such that for all

fi€ LY with j e {1,...,m} we have

172 f)lle < CUT Full o L foll oo = ol o + -
oAl e 2l e - I fonll o )

We note that in (1.4) any tuple of indices (p1,...,pm) that appears in a summand on the right of

the inequality can be replaced by any other tuple (q1,...,qm) with ]lj = q% + e+ q%'

(1.4)

Remark 1.2.1. The extension to fractional Sobolev spaces in Theorem 1.4 is not straightforward
when p < 1 due to lack of duality. Furthermore, as discussed in Section [§, Theorem can
hold in the weighted setting provided the weights, w; € Ay, satisfy some additional reverse Holder
conditions, and p < 7, <p + 1.

We note that Theorem [1.1] can also be proved with weights of the form (1+|-|)* for « > 0 and s
independent of the choice of weights in analogy with Oh and Wu in [28]; though we do not provide
details here.

We summarize the contributions of this article in the relevant literature: (a) use of an efficient
decomposition that manages the large array of paraproducts inherited by the complexity of m
factors. This requires a further decomposition than that in [I1] due to the use of a commutator;
(b) a dilation argument that allows the derivation of the homogeneous weighted KP inequality from
its inhomogeneous counterpart; and (c) an extension of Theorem from Schwartz functions to

2
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functions living in a weighted fractional Sobolev space (Theorem , which is new even in the
unweighted case.

Overall, our work not only provides multilinear extensions but also contains certain ingredients
that add new perspectives to the existing literature on KP inequalities.

2. NOTATION

For locally integrable function w > 0 a.e. and 0 < p < o0, the space LP(w), is defined as the set
of Lebesgue measurable functions on R™ such that

12w = <JRH |f(z)[Pw(z) dx) . < 0.

For p = o0, Lebesgue measure and wdzx are mutually absolutely continuous, thus the essential
supremum with respect to wdz and Lebesgue measure are the same, hence ||| oo = [||| oo (1) We
denote by M the uncentered Hardy-Littlewood maximal function with respect to cubes. For a
locally integrable function g and ¢ > 0, the maximal operator M; is given by M;(g) := M(| g|t)%.
For real numbers A, B we use A < B to mean A < CB for some positive constant C. We also say
A and B are comparable, denoted by A ~ B, if and only if A < B and B < A.

For f e L'(R") the Fourier transform and inverse Fourier transform are respectively defined by

fe) = . fly)e ™ edy fe) = . fly)e*™dy.

We also use F to denote the Fourier transform, that is F(f) = fand F () = f. The space
of Schwartz functions is denoted by S(R™). The dual space of S(R™) is the space of tempered
distributions and is denoted by &’. We denote by Jou = (1 +|-]?)24 the fractional Laplacian
operator for u € 8’ and by Dsu = | - |°U its homogeneous counterpart.

Let &D(f ) be a positive radially decreasing C*(R"™) function on R™ supported in twice the unit ball
and equal to one on the unit ball. Let ‘I’(f) = @(g ) — &)(25), which is non-negative and supported in
the annulus 5 < [£| < 2. The frequency isolation operators A; and S; are defined to be convolution
with 2/"W(27.) and 2/"®(27.) respectively. The shifted frequency isolation operators for pu € R™
are denoted by A;, and S;, are given by convolution with 27"W(27 - +cqp) and 27"®(27 - +cop)
respectively, where the constants cj,co are independent of j and . By looking on the Fourier
transform side we also have the identity >}, A; = Sj, for any jo € Z. The operator };_; A; will
be denoted by A<g.

A Muckenhoupt weight or A, weight is a non-negative locally integrable function w on R" such
that 0 < w < o a.e, and for 1 < p < oo and for all cubes ) in R™ with sides parallel to the axes,

we have
p—1
= su =S w(x) dx x wx_ﬁ T
[w]a, = Qp<‘Q| JQ (z)d ) <|Q! JQ (z) d) < .

= su i w(z)dz | [w™?
[w]a, = Qp<’Q‘ L (2)d ) [0 e gy < -

Now for the some basic facts about A, weights. If w € A; then M(w) < C’n’[w]Alw a.e. It is well
known that if 1 < p < o and w € Ay then [[M(f)|1p(,) < Cp,n,[w]AprHLp(w). If we A, then
the measure wdz is doubling, specifically for A > 0 we have w(AQ) < A"P[w]4,w(Q). If w e A,

7>k

We say w e A if

1
for p > 1 then w’s dual weight § := w »1 is in Ay. For w € Ay = | )Ap we denote

pe(1,00
Tw = inf{p : w € A,}. A non-negative locally integrable function, w, on R" satisfies the reverse
3
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Holder property with ¢ > 1 (w € RHy) if for all cubes @ in R™ with sides parallel to the axes, we

have
1 t.’IJ X ' Q wl\x X
(mfgw“d> <iqrJ,m@

It is well known that A, weights for p > 1 satisfy the reverse Holder property where ¢ > 1 depends
on [w]a,.

The weighted fractional Sobolev space LE(w) for 1 < p < o0 and w € A, is defined to be the
space of tempered distributions, u, such that J¢(u) is a function in LP(w). The local Hardy space
hP(w) for 0 < p < o0, and w € Ay is defined to be the space of tempered distributions, wu, such
that [[ul[p(,) = |supgese [t P(t1) = u]HLp(w) < oo. It is known that hP(w) is complete and
continuously embeds in the space of tempered distributions. For more information on local Hardy
spaces we refer to [13], [2], and [32].

3. INHOMOGENEOUS DECOMPOSITION

In this section we decompose the inhomogeneous fractional derivative, J5(f1--- f,), into para-
products of 4 types. The initial decomposition is the same as that in [I1], but we will require
a further decomposition for the commutator. Observe for f; € S(R™), x € R™ and using that

ZjeZ @(Q_jf) =1 for £ + 0 we obtain
J*(f1fz- - fm)(x)
- f mn(l + &4+ §m|2)§f1(§1>f2(§2) . ﬁ\n(gm)ezm(gﬁ...%m),xd& g,

[ ]2 Sera)be e e g,
(3.1) " Senm

X (L4164 Enl) 2 N6 &) - Fin (€)™ gy - d.

We now partition Z™ into 2™ subsets, then breaking up the kernel of as a sum over these
subsets will provide the desired paraproducts. For 7 = (n1,...,1mm) € {0, 1}’”\{6} let ¢1,...,%, be
all the indices of 7 corresponding to a 1; that is, 1 =7, = --- = 1, and the remaining entries are
zero. Define

B i :={f = (J1,---»Jm) €Z™ : iy, ..., Ji, are equal, strictly positive, and strictly bigger than

the remaining entries of ;}

Furthermore, let %5 = (Z<o)™ = {0, —1,-2,...}™.

Let us quickly verify that {Z;}se(0,1ym is a partition of Z™. Let j = (J1y--ydm) € Z™. If
maxy(jx) < 0 then j € %Az, so suppose that maxy(jx) > 0. Let ji, = ... = ji, = maxy(ji), where
the remaining entries of j are strictly smaller. Let 77 € {0,1}™ be the element with 7, = 1 for
k = 1,...,b and the remaining entries zero; then clearly ; € #i;. To see these sets are disjoint
suppose 77 + @&, without loss of generality let n1 = 1 and a; = 0. Then if ; € % we have
maxy(jx) = j1, while if j € 5 we have maxg (jx) > j1-

It follows the term in the square brackets of can be written as

(32) DWW RE)W@2TIng,) = DY W@ W2 RE) W27,

;‘eZm 775{0 1}m jejg_‘
4
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From (3.2) we see an 7] with exactly [y ones can be treated similarly up to permutation. Thus it is
enough to show the result for an 77 where the first [y entries are one, specifically let

770:(171,---7170707'”70)‘
N
lo

Furthermore, since ), _ ;Aj = Sj—1 on the Fourier transform side we see that the entries of 77 with
a 1 correspond to a Aj; operator, while the coordinates with a 0 correspond to a S;_1 operator.
Thus to bound J*(f1 -+ fin) it is sufficient to bound the following two terms

(3.3) JS ((Sofl) T (Sofm)>
(3.4) T (DA (8 ) (S i) - (Sj1fm) )
jeN

For notational ease we define
(3.5) ul(F) = (8, A)(Ajf2) -+ (A fi)(Sj-1figa1) -+ (Sj—1fm)-

Notice that J* <2j€N u il ( f )) is a well defined function. This follows from Lebesgue dominated

convergence theorem, the fact Vs supported in an annulus, and that f; are Schwartz functions.
Furthermore, we have supp}'(uz?o (F)) = B(0,27+m).

3.1. Further decomposition for /[y = 1. To bound the L”(w) quasi-norm of we will use
different techniques when Iy = 1 and when [y > 1. When [p = 1 (that is we have exactly one A;
operator) we need a further decomposition. As we show in this section this reduces to showing the
desired bound on terms in (3.12)) and (3.16)).

When [y = 1, this corresponds to the paraproduct

(3.6) DB (Sj-1f2) - (Sj-1fm)-

jeN

Fix a € N to be determined later. Observe that (3.6) can be written as

(3.7) DA (Sialet Y, Aeho) o (Safmt Y, Aufm):

jeN Jj—a<k<j j—a<k<j
Multiplying out the terms in (3.7) we can write (3.6)) as
(3.8) 2 (8 11)(Sj-af2)(Sj-af3) - (Sj-afm)
jeN

plus finitely many other paraproducts with at least one Ay operator where k ~ j. These finitely
many other paraproducts will behave in the same way as for lp > 1, hence we focus on .
We now pick a large enough so that the Fourier transform of a summand of is supported in
an annulus. The support of the Fourier transform of (Sj_qf2)(Sj—af3) - (Sj—afm) is contained in
the ball centered at zero with the radius (m — 1)2779*1. The support of the Fourier transform of
Aj f1 is contained in the annulus 271 < |&] < 2911, Choosing a to be some integer larger than
log,(8m) gives (2m)2/-9+1 < 2~ for all integers j. It follows on the Fourier transform side this
choice of a gives |§| < 5= |&| for [ € {2,...,m}. Hence,

(m -] _
2m -

)

61| = |61+ -+ Em| = 1] — |&2] — - = |&m| = |&1] — |§21|

thus [&1] ~ [& 4+ -+ + &l
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Now that the Fourier transform of (3.8)) is supported in an annulus we further decompose it in
terms of a commutator. For operators A, B let [A, B] = AB — BA be their commutator, then the
inhomogeneous derivative of (3.8)) can be written as

(3.9) Z[szsjfafb'"ijafm]Ajfl
jeN
(3.10) + 2 (J°Aj f1)(Sj—af2)(Sj—afs) - (Sj—afm)-
jeN

Observe for we can write
DT A ) (S-af2)(Si—afs) - (Si-afm)

jeN

(3'11) = Z(‘]SAjfl)(f2 - A>j—a.]l12)(f3 - A>j—tzf3) to (fm - A>j—afm)'

jeN

Multiplying out the terms in (3.11]) one sees it can be written as a finite linear combination of terms
of the form

(3.12) DU A1) (G f2)(GE f3) -+ (G fim),

jeN

where Gé- is either the identity operator, I, or A ;_,.
Expanding the commutator in (3.9)) and applying the fundamental theorem of calculus we obtain

[szsj—afé'"Sj—afm]A'fl(l')
[ e e @B RS aRa&) - S afn(6n)
il tm) e ge o qe
=[] st ) B S R S n)

2T &t em) T qrge, - dg,,.

(3.13)

Now observe that

%@1 &t &) =Gt &) (G &+ En)) (Gt + )T

Plugging this derivative into (3.13) and multiplying out the dot product gives that (3.13)) is a linear
combination of terms of the form

1 —_—
L | e v v ey + e+ + 60 AR ()

X Si—af2(€2) + Sj—afm(Em) ™G HE Tt e, - ey,

where ks € {2,...,m},l e {1,...,m}and & = (&, ...,£™); without loss of generality (by symmetry)
we will assume that kK = 2 and [ = 1. Recall a was chosen so that

2-]’@

(3.14)

1 L .
1< <27 +t(Ea+ -+ Em)| 277206 < 4
)

Let A(y) be a C*°(R™) function that is 1 on 47! < |y| < 4 and supported in 87! < |y| < 8. Let

oi(y) = y1(27% + [y T Ay)
6
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for y = (y1,...,yn), which is a smooth compactly supported function. It follows that (3.14)) can be
written as

1 — — —
27t~ fo f o7 (E &+ e+ G)DA(E)Sj—a 2(&2) - Simafm(Em)

x 2 U&itHem) T qrqe, e,

(3.15)

Now using the identity 6/&?,0 = (27i-)*@ for ¢ € S(R™) we move &} to the Sj/_ﬁg term and write

(3.15) as
1
260 [ e+ UG 4 AR S B al€) Sy an(n)
(316) 0 nm 211
x 2MIEE )T qtde, - dE,,.
In the sequel we will apply Lemma to (3.16). We note here that o; and all of its partials are
uniformly bounded in j due to the support of A and since j > 0. This gives that o;’s Fourier

coefficients are uniformly bounded in j.
To bound J*(f1--- fim) we have reduced bounding terms of 4 types; those given by (3.3]), (3.4))

when lp > 1, (3.12)), and (3.16).

4. PRELIMINARY MATERIAL

Lemma 4.1. [16] (Peetre’s Lemma) Let 0 < t < oo, ue CY(R") (that is its partial derivatives are
continuous) and suppose its distributional Fourier transform satisfies supp(u) < B(0,r), then

uz ) e
s (L7 = )

for every x € R™, where the constant is independent of r.

~

Lemma 4.2. [26] Let ¢ € S(R®) and 0 <t < o, p € R?, f e CY(R™) and supp(f) = B(0, D27),
then

277027 1) 5 1| < (14 ) FMu():
Proof. Let x € R™. Observe that
) ) 2Jn
2" p(27 - ) * f x’SJ - n
@@ )« N % |
_ ojn
< sup @)l ”f ' _dy
yerr (14 |27y 4+ p))t J (1 + |27y + p|)™t
n — 2Jn
LI — iy
yekr (1+ [27y))e ) (L+ |27y + p[)m+
< (L )T Mi(£) (@),

where in the last inequality we applied Lemma 4.1 ]

|f(z —y)ldy

< (1 +[ul)

Lemma 4.3. Let 1 < p < o, let w € A, then the operators J~*(s > 0),A;,S5;,>,
bounded from LP(w) to LP(w).

=k Aj are

Proof. First recall that convolution with an integrable radially decreasing function is controlled by
the Hardy-Littlewood maximal function. Now we will show the operators given in the statement
of the lemma are bounded in this weighted setting. If 1 < p < oo then we have

1951l niuy = |22 @) 7|, ) SIMDN oy S 12y
7
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If p = 1 then recalling that & is radial we have
1: sy = [|[ 272 @ - ) | wierts
< [1w] | 210 @ - y)(e)dody

< f @)\ M(w) (y)dy
<[ f1 L1 ) -

Lastly, observe when p = o
195y = 1538l = |20 @7 2 1| I =1l

It is easily seen that the same proof works for A; and J™*, as they correspond to convolution with
an integrable radially decreasing function.
Lastly observe for 1 < p < o0 we have

DIAf =11 = Skfll o) SN zouw) »
ZE o)

as desired. ]

The following lemma provides an estimate, that among others, is required to show that the
inhomogenous Kato-Ponce inequality implies the homogeneous version.

Lemma 4.4. [I5] Let f € S(R™) and s > 0. Then for any v € [0,1], there exists a constant
C(n, s, f) independent of =y, such that

(V21 = D)3 f(2)] < C(n, s, ) (L + J2]) 7"

Proposition 4.5. (Bernstein’s inequalities) Let 0 < p < 00, w € Ay, s € R, and let 12({) be a
C*(R™) function supported in the annulus % < [€| £ 2. Define A;ﬁf to be convolution with 27 (27")
for f € S(R™) and j = 0, then

(4.1) [T AY Fll o) ~ 275 AY fll 1o ).

Proof. Let 1, (£) be a C* function that is 1 for 3 < |¢| < 2 and supported in § < ]€| 4. Let the

operator A% be defined by convolution with 2774, (27-). Let 0;(¢) = (272 + [¢] )% .(€) which is a
smooth compactly supported function. Expanding in Fourier series we have

2
(4.2) 0(€) = X[—aan () D, €jue®™ S
JEZT
where due to o;’s smoothness the coefficients decay rapidly in u. Moreover, the Fourier coefficients
decay independently of j since all of the partial derivatives o; are uniformly bounded in j due to
the support of ¢, and the fact that 7 > 0. Observe,

/\

JsAépf( ) = f(1+ 1£]? ) (2 ie)A f(f)e%ig.xdé
= fQjS( 2 4 |27 J§| ) (2 Jf)AWf(g)e%riﬁ-xdé
— QJSJ Z e M€2m§2 = 3“A¢f(§) 2miga e

WEL™
8
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= 278 Z chMA}%Hf(w).

HEL™

Hence we obtain

AV ()] <29° ) Jejul|AY AV f(2).
HEZL™

Applying Lemma [4.2] and using that the Fourier coefficients decay rapidly in p independent of j
we obtain

(4.3)

JSAY f‘ < 2 M(AYS).
Suppose w € Ay for q = 1, then by choosing ¢ small enough so that £ > ¢ we see applying the
LP(w)-norm to we obtaln
(4.4) [T AY Fll o) < 275 AY 1l 1o ).
To get the other direction we simply apply (4.4] .,
25| AY flpoy = 2°1T AT Flio) S 1T°AY o)
O
Lemma 4.6. [27] If a, < min(2¥*A, 2% B) for some a,b, A, B > 0 and every k € Z, then for any

u >0, we have {ay}kez € ("(Z) and
b _a_
||{ak’}k€Z||gu S Aa+bBcL+b‘

In particular, if || fill r () < lak| for 0 <r < oo, every k € Z, and a weight w then

ka $A%Bﬁ.

keZ L (w)

The following lemma is a A, weighted multifactor variation of a lemma by Oh and Wu [27] that
will allow us to bound the commutator.

Lemma 4.7. [27] Let i <Kp<w, 1 <p1,...,pm < ®© satzsfy = —1 +--- 4 i. Let w; € Ay, for
z .
le{l,...,m}, and let w = wi* ---wy™. If o is a compactly supported C*(R™) function, then for

any j,b € N we have for all fi € S(R"™) with l € {1,...,m}

1 - - | )
L f . o277 (G + &+ + &) A FLE)S 0 f2(&2) - Sjmpfm ()G T T gy

Lr(w)
S HAJﬁHLm (w1) HSj_beHLPZ(wg) ||Sj_bf3HLP3(w3) o ‘HSj—bmeme(wm) )

where the implicit constant depends on p1,...,pm,m,n,o,b. (Here dE: d&y -+ dép,.)

Proof. Let supp(o) ¢ [-M, M]™ where M > 2m. Expanding ¢ in Fourier series we have
L
o(9) = Xporarpe () 3 e ahn
HEZL™

where due to o’s smoothness the coeflicients decay rapidly in p. Now observe that

X[-aare 27 G+ &+ 4+ &m))) = 1
on the support of the integrand, that is, the support of

(4.5) Xpoy (P I€)B@T0g) - B(27TH0e,,).
9
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To see this, observe that on the support of (4.5) we have
279 (& + t(& + -+ &) < 277m2 = 2m < M.
Thus the integral in the statement of this lemma can be written as

1 y — ——— ———— . —
2 f f €T Crtt et G ST N (€1) Sy fo(2) -+ St fom (Em) 2T EF e T4 G
MGZ” 0 mn

(4.6)

= 3 (e gt [ T O NN P

UETL™

Using the subadditivity of H||§p where p = min(p, 1) and applying Hélder’s inequality to lb we
have
D

3 cutts(o+ g7t [} Simsa(o ) st + g

WEZL™
_ 1
p
<Y ol |
0
sup
te[0,1]

Lr(w)

p

p
tp
Si—pfe (I‘ + 2j+1M> ‘ dt
LP2 (w2)

UETT LP1(wq)

X

sup

te[0,1] Sj*bfm<x+ 4 )

20+ M

5i(e+ )

LP3 (w3) Lpm (wm)

Without loss of generality we will only bound the p,, term. By Lemma and for small enough p
we have

<

~

sup (1 + [tu])» Mp(Sj—sfm)
te[0,1]

sup

t
Sj+1fbsjfbfm (.%' K )
te[0,1]

t g

Lrm (’UJm) Lrm (wm)

< (1 + ‘M‘)% HSJ'*bmeLPm(wm) .
Since the Fourier coefficients, c,, have rapid decay in p we have is bounded above by a constant
multiple of
185 £l o1 ) | Si=082 £ 15555 s iy =S50 ml o
as desired. (]

The following lemma is a simple multiplier theorem that will be used in the case s is an even
integer.

Lemma 4.8. Given p € (0,0], let 0 be a compactly supported C* function on R™, and w € Ay.
Then for any j € 7,

f o(2796)Sh(€)emE Ve

S ‘}thHLP(w)

Lr(w)

where the implicit constant is independent of j.

Proof. Let supp(c) ¢ [-M, M]™ where M » 1. Expanding ¢ in Fourier series we have

. 1
W) = Xpoarar () ) cue® v aint
/LEZ"

10
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where the Fourier coefficients decay rapidly in u. Hence we have

_ P

f o (277€)S;h(€)e* ™ dg =Y e [ Sih(e)ermis @M ) g
’ L) luez R LP (w)
D
n
<D eul||Sih(z +
= (++ 3rwr) L)
SIS oy »

where in the last line we applied Lemmal[4.2]and used the rapid decay of the Fourier coefficients. [

The following useful Theorem of Naibo and Thomson [26] enables us to side step the issue of
decay of the Fourier coefficients.

Theorem 4.9 ([26]). Let f € (L(R™)™, 0 < p < 0, w € Ay and s > n(min(1,p/7,)"" — 1).
Then for the inhomogeneous paraproduct (3.4)) we have

PR ()| | (S eEer)
jeN jeN

L(w) he (w) JeN

[NIES

Lr(w)
where the implicit constant depends only on n, s, p,w.
5. PROOF OF THEOREM [I.1]

As stated in the introduction this is an adaptation of Oh and Wu’s proof in [27] as well as the
work of Naibo and Thomson [26]. After applying our paraproduct decomposition many of the
techniques emulate the m = 2 case. For the readers convenience we supply the details. To prove
Theorem [L.1] we will show the desired bound for (3.3)),(3.4) when Iy > 1, (3.12)) and (3.16).

5.1. Low Frequency Term. First we will deal with bounding (3.3), i.e. J*((Sof1)---(Sofm)).
which can be written as

(5.1) J nm(l FlE 4+ EnDER(EN A - @(@n)ﬁn(gm)ezwi(gl+...+gm)~xd£1 L d,,
Let v == (Sof1) - (Sofm)- Note that v is supported in |£| < 2m. Thus we have

() = (2(279))*D(E) = B2 7€) S (§),
since 3)(2_7”-) equals 1 on the support of . It follows that lb can be written as

(52) f (L [EP)FR(2TE) S (€) P dE.

Letting (&) = (1+ |§|2)%§>(2_m§), which is a smooth function with compact support, and applying
Lemma [4.8 we have

J () 8m0(€)e™ € Ode

R S (CTDRECEEN] B

=11(Sof1) - (Sofm)ll Lo ()

<1150 1l zox oy - 150 Sl e

<l

LP1 (wy) ”fQHLm(wg) .. -Hmeme(wm)

< HJstHLPl (wl)HfQHLP2(w2) o 'Hmeme(wm) .
11
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The last line above is justified by the fact that the Bessel potential, J~%, is bounded on LP'(w;)
by Lemma

5.2. lp = 2. For the term in (3.4) we need to bound

(5.3) T (L) (Asfu)(Si1fosr) -+ (Si1fm))
jeN p

where at least the first two operators are A;. For a natural number j recall
U?O(JF) = (Ajf1) - (A fi))(Sj=1fig41) -+ (Sj=1fm)-

First suppose that s € 2N. Note that F(u?o(f)) is supported in |¢| < m2/*t! < 27F™ Thus we
have

F@P(£))©) = @22 F@P(£))() = (2™ O F(Sjemul (£))(E),

since &)((2j+m)_1-) equals 1 on the support of ]-"(u}fo (f)) . It follows that (X jen U u O(f)) can be
written as

S0 IR RS, P (PP

jeN
=27 f (2O F(Sjemu (F) (€)™ dg
jeN
where
aj(€) = 27 + [¢])29(27™¢)
is a smooth function with compact support. Note that the Fourier coefficients of o; will be uniformly
bounded in j since j > 0 and s/2 is an integer. Applying Lemma we obtain

2jsf 02 F (Sl (F)) (€)™ Ve

LP(w)

< 9J8||§

~

+mu_‘(fﬂ> w)
ujﬁ (f) Lo(w)’

Now suppose that s > n(min(1,p/7,) "t —1). Then by Theorem [4.9/we obtain ([5.3)) is also bounded
by a constant multiple of

(5.4) < 28

1 . = =
(5.5) (X =aP@E) | <X ()
e TN L (w)

In view of Lemma 4.6{ and the estimates (5.4)) and (5.5)) it will sufficient to obtain two upper

bounds on 27¢ u;’6 (f) Lo(w) which will cover both cases of s € 2N and s > n(min(1,p/7,) "' — 1).
P(w
By Holder’s inequality, 27¢ u;ﬁ)( f )HL ) is bounded above by
P(w

(56) 2JSHAjf1HLp1(w1 HA flgHLPlO HS] 1flo+1HLPl0+1(wlO+1)”'HSj_lmeLPm(wm)
(5.7) < 20 fill s oy L mll om o) -

12
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Applying Proposition twice on the first two A; operators we obtain that (5.6)) is bounded above
by a constant multiple of

Q_jSHAjJSleLm(wl)HAJ'JSfQHLpz(MQ) o 'HAJ’flOHL”lo (wiy)
X HSj—lflo-FlHLplo“(wlOH) o ’HSJ‘—lmeme(wm)
(5.8) < 27N fill s ) 12 F2ll oo oo 18l s = <ol Lo () -
In view of , and Lemmawith a=s,b=—s, and
A =|full zrr oy 1 f2ll Loz o) = 1 Fmll Lom ) »

B =1 full o 17° Foll oa gy - ol 7t g ) fro 1 22101 a1 Il 2

wl0+1

we obtain

J* ( DA (AGf2) -+ (A f10) (S figs1) -+ (Sj—lfm))

jeN L7 (w)

[T

S (HfluLm(wl)Hf?HLpz(wQ)"‘||fm\|me(wm)HJsleLm(wl)HJSf2||Lpz(w2)Hf3||Lp3(w3)"‘||fm||me(wm)>
S ||Jsf1HLp1(w1)||f2HLp2(w2) o 'HmeLPm(wm) +||f1HLP1(w1)||‘]sf2HLp2(w2)”f3||LP3(w3) . 'HmeLPm(wm) )

as desired. This finishes the proof for the diagonal term.
5.3. High Frequency Terms. We bound terms in ie.,
2 (A )G ) (G fs) - (G fm),
JeN
where G is either the identity operator I, or A-;_,. First if Gé =] for all l € {2,...,m} then by

Lemma A~ is a bounded operator from LP!(w;) — LP!(wy), so applying Holder’s inequality
to (JAx=of1)f2 - fm, gives the desired bound. Now assume that at least one Gé = Aj_g4; without

loss of generality we will assume Gg- =Aj_, forevery l € {1,...,m}, ie.
(5.9) DT A )Asjafo) - (Asjafm).
jeN

We proceed by a similar method used in the previous case. Note that in general for f € S(R"),
g =1, and u € A; by Lemmas [.3] and [4.5 we have

(310) [ Asjmaf Nl =|| 2 Af|| S X 2T A gy S 271 fll e -
k>j—a L(w) k>j—a

Also, using Lemma [4.3] we have

(511) “A>j—af“[,q(u) $ ”fHLQ(u) .

Applying the LP(w) quasi-norm to each summand in gives
[(T* 85 1) (Asjaf2) -+ (Bsjmafm)|| o)
(5.12) < HJSAjﬁHLpl (wl)HA>]'—af2HLp2(w2)||f3||Lp3(w3) " ‘”meme(wm) :
It follows by , that is bounded above by a constant multiple of both
23917 1ll s o 1 2y I gy e

and 27 £l 1o (uoy) 1f21 20 a0 131 205 ) 1 Foml m (-
13
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Applying Lemma [.6] with @ = b = s and using the AMGM inequality again gives the desired
estimate.

5.4. Commutator. Lastly this leaves the estimate for the commutator, which recall we reduced

to the term in ie.,
260 [ e +1(6h oo+ AT E) ey Sy o) 5ol
x 2miEit ) Tat e, . . dg,,.
Taking the LP(w) quasi-norm and applying Lemma yields
(5.13) 1[5, Sj-afz-- 'ijafm]AjleLp(w)
(5.14) < 2j(s_1)||Ajf]_HLT_,I(wl)HSj—aalfQHLPQ(w2)||f3||LP3(w3) o ‘”fm”me(wm) )

where the implicit constant is independent of j. Let A}g be the operator associated with the Fourier
multiplier &3®(27%.) (here £ is the first coordinate of &) and let 0 < ¢ < min{1, s}. Observe,

“Sj—aﬁlfQHLPQ(w2)< Z HAkaleHLW(’wQ)

k<j—a
- ¥ 2aln|
ké;a ka LP2(w2)
5.15 _ 9k(1-c)gek || Al ‘ .
( ) kg:'—a /> LP2 (w2)

Noting that by Proposition 4.5| we have

2€k‘ A]]%fQ‘ S min (2E]€Hf2HLp2 (wz) ’2]43(5—8) HJSf2HLp2 (w2) )

LPr2 (wz)
and taking the geometric mean with respect to 1 — £, < gives

2% abs

1-< —
LP2 (ws) $Hf2”Lp2(w2)||J f2HLp2(w2)-

Plugging this estimate into (5.15) and using geometric series we obtain
o 1—¢€ €
||Sj—aalf2HLp2(w2) < 2](1 6)Hf2HLp25(w2)HJSfQHsz(wQ) :
Applying this estimate to 1' we have H[JS, Si—afa-Sj—afm]Ajfi HLP(w) is bounded above by

a constant multiple of

—Je€ s 17% s §
277N T2 fill Lo oy 121l pos” (17 F2ll £ (1) 131 o3 () + L Fom | Lo )
and

2j8Hf1HLP1 (wl)Hf2||LP2 (wz)Hf3||LP3(w3) o '”meme(wm) :
Applying Lemma [£.6] with a = s and b = € gives

Z [JS, Sj—af? s Sj—afm]Ajfl

JEL™ L7 (w)

5 <”f1HLP1(w1)HfQHLPQ(wg)Hf3HLP3(w3) - 'Hmeme(wm))m

S 1_§ S § SSE
X (HJ f1||Lp1(w1)||f2||Lp2(w2)||J f2”Lp2(w2)||f3HLP3(w3)""|fm”me(w3)> ’
14
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€

= <”f1HLP1(w1)HJsf2HLP2(w2)Hf3HLP3(w3) - 'Hmeme(wm))SJre

S

X (HJSleLm (w1)||f2||Lp2(w2)||f3||Lz>3(w3) o 'Hfm”me(wm) ) a
< HleLm (wl)HJsf2HLP2(w2)Hf3HLT—’3(w3) o 'Hmeme(wm)

+||Jsf1”LP1(w1)||f2HLP2(w2)||f3HLP3(w3) . 'HmeLPm(wm)

where the last line follows from concavity of the natural logarithm. This completes the proof of
the inhomogeneous estimate in (1.3)). O

6. ABOUT THEOREM

With the paraproducts in (3.3) and (3.4) the proof of Theorem can be quickly handled for
Schwartz functions by Theorem recall Theorem [1.2]does not include the L' endpoints. In fact, it

will be enough to show the desired bound for (3.3) and (3.4]). Recall p; > 1 for [ € {1,...,m}. First
assume that fi,..., fi, are Schwartz functions. The bound for (3.3, i.e. J* ((Sofl) e (Sofm)> was

—

given in the proof of Theorem So we focus our attention on (3.4), i.e. Js(ZjeN uio(f )) By
Theorem we obtain

1
F(RuP@)| || (S dR)’
jeN he (w) jeN L7 (w)
1
(X127 )@ £2) - (D) St figin) -+ (S fa) )
jeN 17 (w)
1
<[ (X1 anP)? sup |4 (f2)| ++|[sup |25 (fiy)
jeN LP1 (wy) ’ LP2 (ws) ’ LP10 (wy)
< [sup 1S (o 1) - |lsup 185 (fm)]
J LPlo+ (wy 41) / Lpm (wm )

S ||Jsf1||Lp1 (w1)||f2||Lp2(wQ) o '||fm||me(wm)

where in the last line we used the well known equivalence between the Triebel-Lizorkin norm and
Lebesgue norm for p; > 1, and the other operators are dominated by the Hardy-Littlewood maximal
operator. This proves Theorem for Schwartz functions, in Section [8| we extend this to weighted
fractional Sobolev spaces. t

7. INHOMOGENEOUS WEIGHTED KP IMPLIES HOMOGENEOUS WEIGHTED KP

We now show that implies the homogeneous variant. While it is possible to directly verify
the homogeneous KP inequality, it is worth noting that the process is slightly more delicate since
it requires a different paraproduct decomposition, and the sums are over j € Z rather than j € N.
The forthcoming method appears to offer a more intuitive pathway for achieving the homogeneous
version. Though the unweighted version of this technique is mentioned in the literature [8], [18] it
does not appear to be adapted in more recent publications.

~

Proposition 7.1. Let 0 < p < o, f € SR"), J5f = F H((R?+ |- 12)2f), w € Ay, and
s > max(0,n(7y/p — 1)), then
TR Loy = 1D Fll Lo ) -

15
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Proof. Let € be small enough so that 7 = 7, + € and s > max(0,n(7/p—1)); notice w € A,. First let
p < 0. By Lebesgue dominated convergence theorem J3, f converges pointwise to D° f. By Lemma

we have the estimate |J5f(x)[? < (1 + |z])~("**)P where the implicit constant is independent
of R. Now observe

| A D00 S vt [ (@ o) Pu(a)

lz|=1

]20 Lj§£|<2j+1

< Cuspn + Y 2SI
j=0
which is finite due to the relationship between the indices. Here we used the fact that Muckenhoupt
weights are doubling, ie. if w € Ay, then w(AQ) < NPw(Q). Thus by Lebesgue dominated
convergence theorem again we have limR_,ooHJf%fHLp(w) = |D*fll 1r(w)- Now suppose p = oo.
Observe that

Uif =D Pl = | | (B2 + 16 — el o)<
< | R 1) —leIfene

Notice that ((1 + |£[2)5 — [€]*)|f(€)] is a uniform upper bound. Thus by Lebesgue dominated
convergence theorem we can bring the limit inside, giving the desired equality. O

To prove the homogeneous case from the inhomogeneous case we will use a dilation argument.
For f e S(R") let f(®) := f(R-). Observe,

T (F ) (¢) = fR (1+ lyP)s R F(RLy)emvtay

- [ iryPE femay
Rn

~

B RSJ (R2 + |y*)2 fly)e* ™ Feay
Rn
= R*J3(f)(RE)
thus,
(7.1) TN (©) = RETR(f)(RE).

It follows applying the inhomogeneous KP inequality to (fi--- fm)" = ()5 - (f,,)® with
dilated weights w;(R-) and using (7.1]) gives

1781 ) (R oy
2 <C(TRAR ol 2B oz 1 R oy +

- +||f1(R')HLpl(w1(R-))”fQ(R')||LP2(w2(R~)) “NIRSm (B Lom (o (R)) )

where the R® term cancels from both sides. By a change of variables on both sides of ([7.2)) we note
that the factor R » cancels from both sides and thus we obtain

175 Fadllioy < € (1731 s oy 1ol = Il +

Ul s 2l o gy Wl ) )
16
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The constant C' in this inequality is a function of [w;(R-)] Ay, » but it is easy to see from the definition
of Muckenhoupt weight that [w;(R-)] Ap, = [w;] Ay, - Thus the constant C'is independent of R. The
homogeneous Kato-Ponce inequality is then attained by letting R — oo and using Proposition

7l O

8. DENSITY AND COMPLETION OF THEOREM

The existing literature regarding KP inequalities with an integrability index p < 1 has primarily
focused on Schwartz functions. In this section, we present a density argument that extends these
results to fractional Sobolev spaces within the framework of Muckenhoupt weights that satisfy
certain reverse Holder conditions.

It’s important to note that if f; are Schwartz functions, then J*(f1 - fin) is a well-defined func-
tion, allowing us to compute its weighted LP-norm. However, when dealing with general functions
fi € LY (wj), J5(f1,- .., fm) is defined solely as a tempered distribution. Consequently, we cannot
directly employ LP(w) on the left-hand side of equation . To proceed with the proof, we must
first establish the well-defined nature of J*(f;--- f,) as a tempered distribution. To prove this we
need the following statements about weights.

Proposition 8.1. Let g € Li(w), 1 < ¢ < %0 where w € Ay, then g is a well defined tempered
distribution.

Proof. Let ¢ € S(R™), and 6 = w™ ¢ which is the dual weight of w € A,. Observe
1 1
R”

<lglzagu |1+ 1- D7D sup (14 fa)™ (@)

Lq'(G) zeR™
8.1 < w H 1+ 7("“)‘ sup |z|%lo(x)].
(8.1) bl 14107, 3 smp et et

The result will follow from (8.1)) once we show H(l + |-+ H is finite. To see this observe,

L7 (6)

H(1 41 D—(nﬂ)) v sj (1 + |2))~ ™9 (2 do + ZJ 29It (1) dy
La(0) lz|<1 750 VY <[a| <20t
< Cp+ ) 279D f 0(z) dx
3=0 |z|<29+1
(8.2) < Cy+ 2 9—i(n+1)q’ 9ing’
j=0
<
where in (8.2)) we used that 6dz is a doubling measure. O

Let Q,.m < R™ denote, for v € Ny and m € Z", the n-dimensional cube with sides parallel to the
coordinate axes, centered at 27Ym, and with side length 27”. Furthermore, let w(Q) = SQ w(z) dx
for a weight w and a cube Q. We will need the following weighted Sobolev embedding theorem.

Theorem 8.2. [22] Let s > 0,1 <p < q < 0, wy € 4y, and wy € A;. Then LE(wg) — LI(w1) if
and only if

_1 1
(83) sup 2_VSwO(QV,m) pwl(Qu,m)q < 0.
veNg,mezZ™
17
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To obtain (8.3) in the sequel we will use weights living in A, (| RH;s for some ¢ and §. In doing
this we do not use any information about the position of the weight, i.e. the m € Z™ in Theorem
We remark that if one instead opts to use power weights, i.e. for 5, > —n, let wg, € Ay be
defined by
2P if |2 <1
|z|* if |z > 1,

wﬁ,a(w) = {

then the position information can also be used. Indeed, [[22], Proposition 4.1] gives a complete
characterization of power weights that satisfy (8.3)).
We will need the following two lemmas connecting Muckenhoupt and reverse Holder classes.

Lemma 8.3. [9] Let 1 <t < o0, then w € RHy if and only if w' € Ay
Lemma 8.4. [9] Let 1 <t < o0, then w € Ay (| RH; if and only if w' € A,, where g =t(p—1) + 1.

b _p_
Let w; € Ap,, w = wi' - wh" and recall if %‘” > 1 then the lower bound on the smoothness
Tw

index is o= 1 < 2. Now suppose that p < 7, < p+ 1 then (p +1 —Tw) =1 Let 7 =7y + ¢
where € > 0 is small enough that

1
5:=7>1andz—1<f.
p+1—71 P n

Pick 6; > 1 such that

-1 1
8.4) — =,
( 321 (5jpj 5])
For example, we could choose d; = 0 for j = 1,...,m. Note the ;s depend on p1, ..., pm, w1, ..., Wy, S.

2 B
Definition 8.5. Let wj € Ay, w = wi" ---wiy" and suppose that p < 7, < p+ 1. Then we say

(w1, ..., wm) satisfy the joint reverse Holder condition if w; € RHs;, where 0; satisfy (8.4)).

Theorem was stated in the unweighted case for simplicity, we will now prove a weighted
version of Theorem [I.2] that implies the unweighted case.

Theorem 8.6. Let m € 7™, % <p<w, 1l <pr,...,Pm < © Satisfy%= p%—l----+li. Let
p

p P
wj € Ay, w=w;" - wp" and that s > max (O,n(%’” —1). If T <1 then there exists a constant
C = C(n,m, 8,1, Pm, Wi, -, W) < 0 such that for all f; € LY (w;) with j € {1,...,m} we
have

1T (fr = )l oy < U Fill os oy 12l o2 () = | Fonll o (uy + 7

(8.5)

T +||f1HLpl(wl)”fQHLPZ(wg) o 'HJSmeLPm(wm) )
Furthermore, if p < 17y < p+ 1 and (w1, ...,wy) satisfy the joint reverse Hélder condition then
holds with hP(w) in place of LP(w). We note that in any tuple of indices (p1,...,pm) that
appears in a summand on the right of the inequality can be replaced by any other tuple (q1,. .., ¢m)
with 5 = -+ 4 -

8.1. J*(f1--- fm) is a well-defined tempered distribution.

In this subsection we show that if f; € LY (w;) and p < 7, < p+ 1 and (wy, . .., wy,) satisfy the
joint reverse Holder condition then J*(fi--- fp,) is a well defined tempered distribution.

Since wj € Ay, N RHjs; we have that w e As;p;- Indeed by Lemma w; € Ay where

t= 5j(pj — 1) +1< 6jpj-
18
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Let v; = w?j, d;pj = qj, and ¢ = dp. Notice that ¢ > 1. Observe that

Since w® is a geometric average of Ay weights we have w’ € Ay. Hence by Lemma w e RHj;.
Thus w € A, (| RHs, furthermore observe
T—1
r—=1)+1=———+4+1=pf=gq.
(T—=1)+ o e
Hence, by Lemma [8.4v € A,.
Applying the L9(v) norm we obtain

1 1

[ f1- meLq(v) < (JRH \fl\qwldfr)a " <fRn \fm]qmvmdaz) m

We now show by using Theorem [8.2] that

1 1
(JRn \fj!qjvj@?) S JRn |Jsfj|pjwjdl’> 7.

Without loss of generality we will assume that j = 1. For a cube @) with side length 27 we obtain

1

<mlg| JQ w1 () dx) " (@ fQ w () d$> -

1

st (1 e "
(8.6) <2727 P2 <|Q| JQ w1 () d:c) <|Q| JQ wi () dx)

gy
:2V( s+p1 tn)

1 1

2wy (Q) Py Q) £ 272 e

==

-

where in we applied the reverse Holder inequality. It follows we need that

1 1 S
D1 q1 n’
But this holds since
1 1 US| 1 1 1 1
Y e —(ptl-T)) =L —1<
poo@ 4P 4 P op P D n

By Proposition fi-+- fm is a well defined tempered distribution, hence so is J*(f1 -+ fin)-

1
4m
Pick Schwartz functions fz] , for i € {1,...,m} converging to f; respectively in LL'(w;) as j — oo.
Then fl] also converge to f; respectively in L% (v;) as j — o0 by Theorem We will show this
implies ff -+ f, converge to fi--- fm in Li(v) as j — . By induction (adding and subtracting
mixed terms) one can show for a;,b; € C that

8.2. Density Argument. First suppose p < 7, < p+ 1. Recall ¢; = §;p; and % = qil +

m

(8.7) - am = by bl < D g = bl 1] ] )yl ] |
j=1

where di is either ay or bg. Applying (8.7)) to ’ fi o fm— ff e f& we will without loss of generality

only consider a summand of the form |f; — ff llg2| - - - |gm]|, where g; is either f; or fg . We now proceed
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by bounding

. |17 = Allgel - lgml |, ., = (fR (1 - ff!\g2\---\gm!)qv>q

< Hfl B ffHqu (vl)”gQHLqQ(W) o ‘Hgm”Lqm(Um)

letting j — oo gives the desired result.
Since f{,--- fi, converges to fi--- fm in L(v) this implies convergence in &’. To see this let
gj — g in L(v) and let ¢ € S(R™) then

1 1
89 — : = — 9 q < i . ’
(8.9) J]Rn |9 — gjllel fRn l9 = gkllelvivTe <|lg g]HLq(U)HSOHLq,(U,%)

/
q

which goes to zero as j — o0 in view of the fact that the dual weight of ve A;isv <.
Convergence of ff o fto fi++ fm in & then implies Js(ff, ..., f1) converges to J*(f1, ..., fm)
in §'. Also, by the KP inequality proved in Section 6 for Schwartz functions the sequence
J5(f],..., fin) is Cauchy in h?(w), and thus it converges to G in hP(w), hence it converges to
G in §'. By the uniqueness of the limit in &', we have that G = J*(f1,..., fm). We conclude that

(8-5) holds.

8.3. Now suppose %‘” < 1. For this case we may work with general Muckenhoupt weights, that is
assume w; € Ay, Furthermore, notice that w € A, since 7, < p. Observe,

11 Fnll oy < (fw <f1|...|fm|wf11...w;;n)lﬂ>p

1

< <J;Rn ’f1|p1w1>pl1 e (fRn |fm‘pmwm)m

< Q0

where in the last line we applied Theorem By Proposition it follows that J5(f1--- fi) is
a well defined tempered distribution. The same density argument now works with with LP(w) in
place of h?(w).

Combining these facts we conclude the proof of Theorem

Remark: Suppose that {g;};en is a sequence of Schwartz function that is Cauchy in h?(R"™) for

some p < 1. (In our context, g; = f{ -+ fi.) Then as h?(R™) is a complete space, the sequence g;
converges in hP(R™) as j — o to a tempered distribution g4. But for locally integrable functions,
the hP quasi-norm controls the L” quasi-norm, so the sequence g; is also Cauchy in LP(R"™). Hence,
gj converges in LP(R") as j — o0 to a function g € LP(R™). A natural question is then how do the
function g and the tempered distribution g4 relate. Let P; be the Poisson kernel. We claim that
the a.e. nontangential limit of P; * g4 as t — 0T, which we call go, is equal to g a.e.

To verify this assertion we make some remarks. The characterizations of local hardy spaces in
terms of truncated maximal averages and truncated maximal Poisson averages (see Goldberg [13],
Stein [31, Chapter III, 5.17], and Wang, Yang, and Yang [32, Def 4.2 and Lemma 4.3]) provide
the necessary ingredients to conclude that Calderén’s theorem [5], [30, Chapter 7] on nontangential
limits of P; *u as t — 0T for u in HP is also valid for u in hP.

Then to verify that go = g a.e. we argue as follows: Suppose that P, x gq — go for all z € R"\E,
where |E| = 0. For points in R"\E we write

g0—9=1(90—Pr*ga) + Pr*(9a—9;) + (Prxg; —g;) + (95 — 9).
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For such points we take the pointwise limit as t — 0% to obtain

l90 — g <limsup [P * (94 — g5)| + g9j — 9] < Sup |Py * (94 — g5)| + lg; — gl-
<t<

t—0t

Raising to the power p and integrating over R™\E yields,

lgo — g5 < Cllga — 957, + |95 — 9|2,

so letting j — o0 we obtain that gy = g a.e.
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