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Abstract. We extend the Kato-Ponce inequality to a product of m functions, proving an estimate currently

missing from the literature. This study is motivated by the fact that the 3-factor Kato-Ponce does not follow

directly from the 2-factor version in the full range of permissible indices. Our methodology is based upon that
in [12] but our extension entails a novel decomposition that elegantly and effectively handles the technical

difficulties that arise from the combinatorial complexity of the possibly large number of factors.

1. Introduction

The lack of an explicit Leibniz rule for fractional derivatives leads to the consideration of norm inequalities,
most commonly for Lebesgue spaces. Such estimates are known in the literature as Kato-Ponce (KP)
inequalities, and they are usually expressed in terms of two factors. In this article we focus on Kato-Ponce
estimates for multiple factors. The need to study multiple factors is motivated by the fact that a 3-factor
normed Leibniz rule in the full range of indices does not follow from the corresponding 2-factor one by
grouping two terms into one.

Let pg denote the Fourier transform (precisely defined in Section 2). Let yDsf :“ | ¨ |s pf and yJsf :“

p1 ` | ¨ |2q
s
2 pf be the fractional Laplacian operators for f P SpRnq, the space of Schwartz functions. If s ą 0

then Ds and Js are the homogeneous and inhomogeneous fractional differentiation operators, respectively.
Motivated by questions in Euler and Navier-Stokes equations Kato and Ponce [16] obtained Lr norm estimates
for the inhomogeneous fractional derivative of a product. Since their work in 1988 there has been a multitude
of generalizations and variants of such estimates, which are nowadays known as Kato-Ponce inequalities or
fractional Leibniz rules. These estimates have the form

∥Jspfgq∥Lr ď Cn,s,p1,p2,q1,q2
`

∥Jsf∥Lp1 ∥g∥Lp2 `∥f∥Lq1 ∥Jsg∥Lq2

˘

,(1.1)

where f, g P SpRnq, p1, p2, q1, q2 ě 1, 1
p1

` 1
p2

“ 1
r “ 1

q1
` 1

q2
and s depends on n and r. We say the indices

vary when p1 ­“ q1 and p2 ­“ q2.
Earlier variants of the Kato-Ponce inequality were restricted to 1 ă r ă 8, see for instance [16], [4], [14].

Subsequent versions, such as [19], [2], [20], and [12], provide extensions to the range r ď 1. It turns out
that (1.1) holds exactly when 1{2 ă r ă 8 and s ą maxtnp 1

r ´ 1q, 0u or s P 2N; The work in [12] provides
counterexamples when s is outside that range. These proofs rely on Coifman-Meyer bilinear multipliers for
high-low frequency paraproducts (diagonal paraproducts) and also use shifted square function estimates on
the high-high frequency paraproducts (off-diagonal paraproducts). Other works on the KP inequality, that
use different methodology or provide new estimates, can be found in [11], [3], [1], [8], [18], [22], [21], [15], [7].

The motivation for our study arises from two main obstacles. These are already apparent when one
attempts to derive the 3-factor KP from the 2-factor KP inequality: (a) when r ă 1, applying the 2-factor
inequality, we will unavoidably end up with some Hölder indices that are less than one. For instance, in the
3-factor case let p1 “ p2 “ 3{2, p3 “ 2 and observe that if q1, q2 are such that 2

3 ` 2
3 ` 1

2 “ 1
q1

` 1
2 “ 2

3 ` 1
q2
,

then q1 ă 1 and q2 ă 1. Then (1.1) can not be applied in this case as it requires the indices on the right
to be greater than or equal to one; (b) when the indices vary (as defined in Theorem 1.1) then the 2-factor
case is not applicable, as it may be the case that a subcollection of two of them is not related to the third
index as in Hölder’s relationship.
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It should be noted that Theorem 1.1 is not unexpected, as it is stated as Exercise 2.2 on page 76 in [20].
However, its detailed proof is rather technical and was missing from the literature until now.

We now state the precise formulations of our main result. All norms below are over Rn.

Theorem 1.1. Let m P Z`, 1
m ă r ă 8, 1 ă p1, . . . , pm ď 8 satisfy 1

r “ 1
p1

`¨ ¨ ¨` 1
pm

. If s ą maxpnr ´n, 0q

or s P 2N, then there exists a constant C “ Cpn, q, s, p1, . . . , pmq ă 8 such that for all fl P SpRnq with
l P t1, . . . ,mu we have

∥Dspf1 ¨ ¨ ¨ fmq∥Lr ď C
`

∥Dsf1∥Lp1 ∥f2∥Lp2 ¨ ¨ ¨∥fm∥Lpm ` ¨ ¨ ¨ `∥f1∥Lp1 ∥f2∥Lp2 ¨ ¨ ¨∥Dsfm∥Lpm

˘

(1.2)

∥Jspf1 ¨ ¨ ¨ fmq∥Lr ď C
`

∥Jsf1∥Lp1∥f2∥Lp2 ¨ ¨ ¨∥fm∥Lpm ` ¨ ¨ ¨ `∥f1∥Lp1∥f2∥Lp2 ¨ ¨ ¨∥Jsfm∥Lpm

˘

.(1.3)

Furthermore, we note that in (1.2), (1.3) any tuple of indices pp1, . . . , pmq that appears in a summand on
the right of the inequality can be replaced by any other tuple pq1, . . . , qmq when 1

r “ 1
q1

` ¨ ¨ ¨ ` 1
qm

. When this

is the case we say the indices vary.

2. Preliminary Material

For a measurable function f : Rn Ñ C and r ą 0 we use ∥f∥Lr to denote the usual Lebesgue Lr norm
(or quasi-norm if r ă 1). For A,B P R we use A À B to mean A ď CB for some constant C. We also

define A „ B when simultaneously A À B and B À A. We denote elements of pRnqm by ξ⃗ “ pξ1, . . . , ξmq

and dξ⃗ “ dξ1 ¨ ¨ ¨ dξm. The Fourier transform and inverse Fourier transform of a function f P L1pRnq are
respectively defined by

pfpξq “

ż

Rn

fpyqe´2πiy¨ξdy qfpξq “

ż

Rn

fpyqe2πiy¨ξdy.

The space of Schwartz functions SpRnq is the space of all C8pRnq functions that rapidly decay at infinity.

Let pΦpξq be a positive, radially decreasing, and smooth function on Rn supported in |ξ| ď 2 and equal to

one on |ξ| ď 1. Let pΨpξq “ pΦpξq ´ pΦp2ξq, which is non-negative and supported in the annulus 1
2 ď |ξ| ď 2.

Notice that as the series telescopes we have
ř

jPZ
pΨp2´jξq “ 1 for ξ ­“ 1, as well as the useful identity

ř

jďj0
pΨp2´jξq “ pΦp2´j0ξq for any j0 P Z and ξ ‰ 0.

For ψ, ϕ P SpRnq let pψ be supported in an annulus centered about the origin and let pϕ be supported
in a ball centered at the origin. We denote the Littlewood-Paley frequency projection operators over Rn
by ∆ψ

j and Sϕj , which are respectively given by convolution with 2jnψp2j ¨q and 2jnϕp2j ¨q. The shifted

Littlewood-Paley operators ∆ψ
j,µ, S

ϕ
j,µ for µ P Rn are respectively given by convolution with 2jnψp2j ¨ `cµq

and 2jnϕp2j ¨ `cµq, where the constant c is independent of j, µ. When ψ “ Ψ or ϕ “ Φ the corresponding
operators are denoted by ∆j and Sj . Lastly, for s P R` and f P SpRnq we denote the homogeneous and

inhomogeneous differentiation operators as yDsf “ | ¨ |s pf and yJsf “ p1 ` | ¨ |2q
s
2 pf respectively.

The following lemma will be of great use throughout this paper and is the main ingredient in bounding
the diagonal paraproducts.

Lemma 2.1. [12] Let f P SpRnq and s ą 0. Then for any γ P r0, 1s, there exists a constant Cpn, s, fq

independent of γ, such that

|pγ2I ´ ∆q
s
2 fpxq| ď Cpn, s, fqp1 ` |x|q´n´s.

The following multiplier result was proved by Coifman and Meyer [5] when r ě 1 and was extended to
the case r ă 1 by Kenig and Stein [17] and by Grafakos and Torres [13]; for a proof see [10].

Theorem 2.2. (Coifman-Meyer Multiplier Theorem). Suppose that hpξ1, . . . , ξmq is a C8 function on
pRnqmzt0u which satisfies

(2.1) |B
β1

ξ1
¨ ¨ ¨ B

βm

ξm
hpξ1, . . . , ξmq| ď Cβ1,...,βm

p|ξ1| ` ¨ ¨ ¨ ` |ξm|q´p|β1|`¨¨¨`|βm|q

for all multi-indices β1, . . . , βm. Let T be given by

T pf1, . . . , fmqpxq “

ż

Rnm

hpξ1, . . . , ξmqxf1 pξ1q ¨ ¨ ¨ xfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗
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for f1, . . . , fm P SpRnq. Then T is a bounded linear operator from Lp1 ˆ ¨ ¨ ¨ ˆLpm into Lr when 1 ă pi ď 8

and
1

p1
` ¨ ¨ ¨ `

1

pm
“

1

r
.

We need to define some notation that will be used in the following theorem. The space Lr
`

Rn, ℓ8
L

˘

“ Lrℓ8
L

is all L-tuples of complex valued measurable functions defined on Rn, tfju1ďjďL, such that∥∥tfju
∥∥
Lrℓ8

L

“

›

›

›

›

sup
1ďjďL

|fj |

›

›

›

›

Lr

ă 8.

The following theorem is the vector valued Calderón-Zygmund Theorem applied to the Banach spaces
LrpRnq and Lr

`

Rn, ℓ8
L

˘

. Its proof can be found in [9, Theorem 5.6.1].

Theorem 2.3. Let 1 ă r ď 8, L P Z`. Suppose that K1, . . . ,KL are integrable functions defined on Rn
that satisfy

|Kj | ď
Aj
|x|n

for almost all x P Rnzt0u for some Aj ą 0, and,(2.2)

sup
y‰0

ż

|x|ě2|y|

sup
1ďjďL

|Kjpx´ yq ´Kjpxq|dx ď A for some A ą 0.(2.3)

Define

S⃗pfqpxq “

´

pK1 ˚ fqpxq, . . . , pKL ˚ fqpxq

¯

, x P Rn,

where f P
Ť

1ăpď8 LppRnq. Assume that S⃗ is a bounded linear operator from Lr
`

Rnq to Lr
`

Rn, ℓ8
L

˘

with
norm B‹. Then there exists a constant Cn such that∥∥∥S⃗pfq

∥∥∥
Lpℓ8

L

ď Cnmax
`

p, pp´ 1q´1
˘

pA`B‹q∥f∥Lp

for all f in Lp
`

Rn
˘

, whenever 1 ă p ă 8.

Next we have a lemma that will be useful to us.

Lemma 2.4. Let µ P Rn and f P SpRnq then for all 1 ă p ă 8 the following estimates hold∥∥∥∥∥∥∥
d

ÿ

jPZ
|∆ψ

j,µf |2

∥∥∥∥∥∥∥
Lp

ď Cn,ψmaxpp, pp´ 1q´1q lnp2 ` |µ|q∥f∥Lp(2.4)

∥∥∥∥∥supjPN
|Sϕj,µf |

∥∥∥∥∥
Lp

ď Cn,ϕmaxpp, pp´ 1q´1q lnp2 ` |µ|q∥f∥Lp(2.5) ∥∥∥∥∥supjPN
|∆ψ

j,µf |

∥∥∥∥∥
Lp

ď Cn,ψmaxpp, pp´ 1q´1q lnp2 ` |µ|q∥f∥Lp .(2.6)

Proof. The proof of (2.4) is given in [12] and omitted. For (2.5) we apply Theorem 2.3 where Kjpxq “

2jnϕp2jx` µq, that is the operator

S⃗pfq “
`

2nϕp2 ¨ `µq ˚ fpxq, . . . , 2Lnϕp2L ¨ `µq ˚ fpxq
˘

, x P Rn,

where f P SpRnq and L P N. For the size condition (2.2) we have

|Kj | “ |2jnϕp2jx` µq| ď
cn

p2´j ` |x` 2´jµ|qn
ď
cn,j
|x|n

since ϕ is a Schwartz function. The smoothness estimate, (2.3) follows from the inequality

sup
y‰0

ż

|x|ě2|y|

ÿ

1ďjďL

2jn|ϕp2jpx´ yq ` µq ´ ϕp2jx` µq|dx ď Cn lnp2 ` |µ|q.(2.7)

In [12], (2.7) is proven with ψ in place of ϕ. However the same proof applies here as the only property
of ψ used in the proof is that it is a Schwartz function. Thus, we obtain the smoothness estimate (2.3)
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with A “ Cn lnp2 ` |µ|q. Lastly, observe that S⃗ is a bounded operator from L8pRnq to L8
`

Rn, ℓ8
L

˘

with
B‹ “∥ϕ∥1. Thus we satisfy the hypothesis of (2.3), giving∥∥∥∥∥ sup

1ďjďL
|Sϕj,µf |

∥∥∥∥∥
Lp

ď Cnmaxpp, pp´ 1q´1q lnp2 ` |µ|q∥f∥Lp .

Applying Lebesgue monotone convergence theorem and letting L Ñ 8 we obtain (2.5). A similar argument
can be made for (2.6). □

We will use Khintchine’s inequalities in the proof of Theorem 1.1 to obtain a variant of the following
vector-valued version of the Littlewood-Paley theorem for 1 ă r ă 8:∥∥∥∥∥∥∥

d

ÿ

kPZ

ÿ

jě0

|∆kFj |2

∥∥∥∥∥∥∥
Lr

À

∥∥∥∥∥∥∥
d

ÿ

jě0

|Fj |2

∥∥∥∥∥∥∥
Lr

.

Theorem 2.5. (Khintchine’s Inequalities) For j “ 0, 1, 2, . . . let rj be the jth Rademacher function, that is
rjptq “ sgnpsinp2jπtqq. For any 0 ă p ă 8 and for any real valued square summable sequences taju and tbju
we have

Bp

´

8
ÿ

j“0

|aj ` ibj |
2
¯

1
2

ď

∥∥∥∥∥∥
8
ÿ

j“0

paj ` ibjqrj

∥∥∥∥∥∥
Lppr0,1sq

ď Ap

´

8
ÿ

j“0

|aj ` ibj |
2
¯

1
2

(2.8)

where 0 ă Ap, Bp ă 8 depend only on p.
Define Fnpt1, . . . , tnq “

ř8

j1“0 ¨ ¨ ¨
ř8

jn“0 cj1,...,jnrj1pt1q . . . rjnptnq for tj P r0, 1s, where cj1,...,jn is a se-

quence of complex numbers and Fn is a function defined on r0, 1sn. For any 0 ă p ă 8 and for any
complex-valued square summable sequence of n variables tcj1,...,jnuj1,...,jn , we have the following inequalities
for Fn:

Bnp

´

8
ÿ

j1“0

. . .
8
ÿ

jn“0

|cj1,...,jn |2
¯

1
2

ď∥Fn∥Lppr0,1snq ď Anp

´

8
ÿ

j1“0

. . .
8
ÿ

jn“0

|cj1,...,jn |2
¯

1
2

.(2.9)

3. Proof of Theorem 1.1

As highlighted in the introduction, this proof constitutes an extension of the work presented in [12]. While
many of the methods employed align with those in the referenced work, the technical intricacies are different.
For this reason we provide all the details.

We begin with a decomposition of Zm. For η⃗ “ pη1, . . . , ηmq P t0, 1umzt0u let

Bη⃗ :“tpj1, . . . , jmq P Zm : If ηt “ 1 for some 1 ď t ď m then, maxtj1, . . . , jmu “ jt and jt ą 0.

If ηt “ 0 then maxtj1, . . . , jmu ą jt.u.

Notice that

(3.1) Zm “

´

ğ

η⃗Pt0,1umzt0u

Bη⃗

¯

ğ

pZď0qm,

where Zď0 “ t0,´1,´2, . . .u. Observe for fk P SpRnq we have

Jspf1f2 ¨ ¨ ¨ fmqpxq

“

ż

Rmn

p1 ` |ξ1 ` ¨ ¨ ¨ ` ξm|2q
s
2 pf1pξ1q pf2pξ2q ¨ ¨ ¨ xfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ1dξ2 ¨ ¨ ¨ dξm

“
ÿ

j⃗PZm

ż

Rmn

p1 ` |ξ1 ` ¨ ¨ ¨ ` ξm|2q
s
2 pΨp2´j1ξ1q ¨ ¨ ¨ pΨp2´jmξmq pf1pξ1q ¨ ¨ ¨ xfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗.(3.2)

For ease of notation let

uj⃗pξ⃗, xq :“ p1 ` |ξ1 ` ¨ ¨ ¨ ` ξm|2q
s
2 pΨp2´j1ξ1q ¨ ¨ ¨ pΨp2´jmξmq pf1pξ1q ¨ ¨ ¨ xfmpξmqe2πipξ1`¨¨¨`ξmq¨x.
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Breaking the sum over Zm into the 2m disjoint sets we may write (3.2) as

Jspf1f2 ¨ ¨ ¨ fmqpxq “
ÿ

j⃗PZm

ż

Rmn

uj⃗pξ⃗, xqdξ⃗

“
ÿ

η⃗Pt0,1umzt0u

ÿ

j⃗PBη⃗

ż

Rmn

uj⃗pξ⃗, xqdξ⃗ `
ÿ

j⃗PpZď0qm

ż

Rmn

uj⃗pξ⃗, xqdξ⃗.(3.3)

For the second term in (3.3) we have

ÿ

j⃗PpZď0qm

ż

Rmn

uj⃗pξ⃗, xqdξ⃗

“

ż

Rnm

p1 ` |ξ1 ` ¨ ¨ ¨ ` ξm|2q
s
2 pΦpξ1q pf1pξ1q ¨ ¨ ¨ pΦpξmqxfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗.(3.4)

Let w :“ pS0f1q ¨ ¨ ¨ pS0fmq. Note that pw is supported in |ξ| ď 2m. Thus we have

pwpξq “ pΦp2´mξq pwpξq,

since pΦp2´m¨q equals 1 on the support of pw. It follows that (3.4) can be written as
ż

Rn

p1 ` |ξ|2q
s
2 pΦp2´mξq pwpξqe2πiξ¨xdξ.(3.5)

Since p1 ` |ξ|2q
s
2 pΦp2´mξq is a smooth function with compact support we can expand it in Fourier series,

p1 ` |ξ|2q
s
2 pΦp2´mξq “ χr´2m`1,2m`1snpξq

ÿ

µPZn

cµe
2πiξ¨

µ

2m`2

where the Fourier coefficients decay rapidly in µ. It follows

∥∥∥∥ż

Rn

σpξq pwpξqe2πiξ¨xdξ

∥∥∥∥
Lrpdxq

“

∥∥∥∥∥∥
ÿ

µPZn

ż

Rn

cµe
2πiξ¨

µ

2m`2
pwpξqe2πiξ¨xdξ

∥∥∥∥∥∥
Lrpdxq

ď
ÿ

µPZn

|cµ|

∥∥∥pS0f1qpx` 2´pm`2qµq ¨ ¨ ¨ pS0fmqpx` 2´pm`2qµq

∥∥∥
Lrpdxq

À∥S0f1∥Lp1 ¨ ¨ ¨∥S0fm∥Lpm

À
∥∥J´sJsf1

∥∥
Lp1

∥f2∥Lp2 ¨ ¨ ¨∥fm∥Lpm

À∥Jsf1∥Lp1 ∥f2∥Lp2 ¨ ¨ ¨∥fm∥Lpm .

The last line above is justified by the fact that the Bessel potential J´s is an Lp1 Fourier multiplier operator.
Now to bound the first term in (3.3), that is

ÿ

η⃗Pt0,1umzt0u

ÿ

j⃗PBη⃗

ż

Rmn

p1 ` |ξ1 ` ¨ ¨ ¨ ` ξm|2q
s
2 pΨp2´j1ξ1q ¨ ¨ ¨ pΨp2´jmξmq

ˆ pf1pξ1q ¨ ¨ ¨ xfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗.

(3.6)

From (3.6) we see it is sufficient to consider an η⃗ with exactly b ones. Moreover, by symmetry it is sufficient
to only consider when the first b entries are ones, specifically let

η⃗0 “ p1, 1, . . . , 1
loooomoooon

b

, 0, 0, . . . , 0q.

Notice that Bη⃗0 is the elements of Zm where the first b entries are the same, positive and strictly bigger
then the remaining entries. It follows to estimate (3.6) it is enough to only consider the term

ż

Rmn

ÿ

j⃗PBη⃗0

uj⃗pξ⃗, xqdξ⃗

5
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“
ÿ

jPN

ż

Rmn

p1 ` |ξ1 ` ¨ ¨ ¨ ` ξm|2q
s
2 pΨp2´jξ1q ¨ ¨ ¨ pΨp2´jξbqpΦp2´j`1ξb`1q ¨ ¨ ¨ pΦp2´j`1ξmq

ˆ pf1pξ1q ¨ ¨ ¨ xfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗.

(3.7)

We will break the proof into two cases; when b “ 1, which we call off-diagonal terms and when b ą 1, which
we call diagonal terms.

3.1. b “ 1: Off-Diagonal Term

Fix a P N to be determined later. When b “ 1 (3.7) is equal to

“
ÿ

jPN

ż

Rmn

p1 ` |ξ1 ` ¨ ¨ ¨ ` ξm|2q
s
2 pΨp2´jξ1q

´

ÿ

j´aăj2ăj

pΨp2´j2ξ2q ` pΦp2´j`aξ2q

¯

¨ ¨ ¨

ˆ

´

ÿ

j´aăjmăj

pΨp2´jmξmq ` pΦp2´j`aξmq

¯

pf1pξ1q ¨ ¨ ¨ xfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗.
(3.8)

Multiplying out the product in (3.8) we see it is equal to

ÿ

jPN

ż

Rmn

p1 ` |ξ1 ` ¨ ¨ ¨ ` ξm|2q
s
2 pΨp2´jξ1q pf1pξ1qpΦp2´j`aξ2q pf2pξ2q ¨ ¨ ¨

ˆ pΦp2´j`aξmqxfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗.

(3.9)

plus finitely many other terms of the form

ÿ

jPN

ż

Rmn

p1 ` |ξ1 ` ¨ ¨ ¨ ` ξm|2q
s
2 pΨp2´jξ1q pf1pξ1qV 2

j pξ2q pf2pξ2qV 3
j pξ3q pf3pξ3q ˆ ¨ ¨ ¨

¨ ¨ ¨ ˆ V mj pξmqxfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗.

(3.10)

where at least one V kj is pΨp2´k¨q with k „ j and rest are pΦp2´j`a¨q. As j „ k, where the implicit constant
depends on a, the finitely many terms of the form in (3.10) will be handled by the same technique used in
the b ą 1 case. Thus for the b “ 1 case it is sufficient to only consider (3.9).

Now to determine a. Looking at the Fourier transform of (3.9) the idea is to pick a large enough so
that we have |ξ1| " |ξk| for k P t2, . . . ,mu. For a large enough the Fourier transform of a summand of
(3.9) is supported in the algebraic sum of an annulus with m ´ 1 relatively much smaller balls, which is
a slightly bigger annulus. Specifically, if a ą log2p8mq then on the Fourier transform side we have that
|ξk| ď 2j´a`1 ă 1

2m2j´1 ď 1
2m |ξ1|, which then implies by the reverse triangle inequality that

1

2
|ξ1| ď |ξ1 ` ¨ ¨ ¨ ` ξm| ď 2|ξ1|.

Let

Πpξ1, . . . , ξmq “
ÿ

jPN

pΨp2´jξ1qpΦp2´j`aξ2q ¨ ¨ ¨ pΦp2´j`aξmq(3.11)

then (3.9) can be expressed by
ż

Rmn

xξ1 ` ¨ ¨ ¨ ` ξmysxξy´sΠpξ1, . . . , ξmqzJsf1pξ1q ¨ ¨ ¨ xfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗.

We proceed by showing that

xξ1 ` ¨ ¨ ¨ ` ξmys

xξ1ys
Πpξ1, . . . , ξmq(3.12)

is a Coifman-Meyer multiplier, i.e., it satisfies estimates (2.1). First observe that Π is a Coifman-Meyer

multiplier. To see this observe for a multi-index β⃗ “ pβ1, . . . , βmq and Bβ⃗ “ B
β1

ξ1
¨ ¨ ¨ B

βm

ξm
we have

|Bβ⃗Πpξ1, . . . , ξmq|

6
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ď
ÿ

jPZ
Cα1,...,αl

|Bβ1
pΨ|p2´jξ1q2´|β1|j |Bβ2

pΦ|p2´j`aξ2q2´|β2|j ¨ ¨ ¨ |Bβm
pΦ|p2´j`aξmq2´|βm|jχsupppΠqpξ⃗ q.

À |2´jξ1|´p|β1|`¨¨¨`|βm|q2´|β1|j2´|β2|j2´|βm|jχsupppΠqpξ⃗ q

À p|ξ1| ` ¨ ¨ ¨ ` |ξm|q´p|β1|`¨¨¨`|βm|q(3.13)

where the last inequality is due to |ξ1| being bigger than all other |ξk|. Furthermore, partials can be brought
into the sum because for any fixed value of ξ, it is a finite sum.

For y P Rn define

γpyq “ p1 ` |y|2q
q
2

where q P R. We will show

|Bβγpyq| ď Cn,β,qp1 ` |y|qq´|β|(3.14)

for multi-index β. Let γ˚pt, yq “ pt2 ` |y|2q
q
2 where t P R, notice γ˚p1, yq “ γpyq. Observe that by

homogeneity we have γ˚pλt, λyq “ λqγ˚pt, yq for any λ ą 0, thus for a multi-index β and any pt, yq P RˆRn
we have

λ|β|´qBβγ˚pλpt, yqq “ Bβγ˚pt, yq.

Letting λ “ |pt, yq|´1 ­“ 0 we obtain

|Bβγ˚pt, yq| ď |pt, yq|q´|β| sup
pt,yq1PSn

|Bβγ˚ppt, yq1q|.(3.15)

Letting t “ 1 and using that γ˚ is smooth on the sphere Sn, so bounded there we deduce (3.14).

Let γ1pξ⃗ q “ xξ1 ` ¨ ¨ ¨ ` ξmys, and γ2pξ1q “ xξ1y´s, then (3.12) is equal to Πγ1γ2. Let β1 “ α1
1 ` α1

2 ` α1
3

and βk “ αk1 ` αk2 for k P t2, . . . ,mu. By Leibniz rule B
β1

ξ1
¨ ¨ ¨ B

βm

ξm
pγ1γ2Πq is a linear combination of terms of

the form

rB
αm

1

ξ1
¨ ¨ ¨ B

α1
1

ξm
ΠsrB

αm
2

ξ1
¨ ¨ ¨ B

α1
2

ξm
γ1srB

α1
3

ξ1
γ2s.(3.16)

By (3.14) we have the absolute value of (3.16) is bounded by a constant multiple of

p|ξ1| ` ¨ ¨ ¨ ` |ξm|q´
ř

|αk
1 |p1 ` |ξ1 ` ¨ ¨ ¨ ` ξm|q

s
2 ´

ř

|αk
2 |p1 ` |ξ1|q´ s

2 ´|α1
3|χsupppΠqpξ⃗ q

À p|ξ1| ` ¨ ¨ ¨ ` |ξm|q´p
ř

|αk
1 |`

ř

|αk
2 |`|α1

3|q(3.17)

“ p|ξ1| ` ¨ ¨ ¨ ` |ξm|q´p|β1|`¨¨¨`|βm|q

where in (3.17) we used |ξ1 ` ¨ ¨ ¨ ` ξm| „ |ξ1| on the support of Π. It follows that (3.12) is a Coifman-Meyer
multiplier, therefore applying Theorem 2.2 gives the desired inequality.

3.2. b ą 1: Diagonal Term

Now we focus on the diagonal term; (3.7) when b ą 1 is given by
ÿ

jPN

ż

Rmn

xξ1 ` ¨ ¨ ¨ ` ξmyspΨp2´jξ1q pf1pξ1qpΨp2´jξ2q pf2pξ2q ¨ ¨ ¨ pΨp2´jξbq pfbpξbq

ˆ pΦp2´j`1ξb`1qzfb`1pξb`1q ¨ ¨ ¨ pΦp2´j`1ξmqxfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗

(3.18)

“ Js
`

p∆jf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq
˘

.

Case pIq: pt ă 8 for at least two t P t1, . . . , bu.

Suppose without loss of generality that p1 ă 8, p2 ă 8. Observe that pΦppm2j`1q´1pξ1 `¨ ¨ ¨`ξmqq equals
1 on the support of the integrand in (3.18). Let

σjpξq :“ p2´2j ` |ξ|2q
s
2 pΦpp2mq´1ξq.

Expanding σj in Fourier series we have

σjpyq “ χr´4m,4msnpyq
ÿ

µPZn

cj,µe
2πiy¨

µ
8m .

7
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By Lemma 2.1 we have | pσjpµq| “ |cj,µ| À p1 ` |µ|q´n´s independent of j since j ą 0. Notice in the case
s P 2N we have arbitrarily fast decay, that is, |cj,µ| À p1` |µ|ql independent of j ą 0 and for any l P N. Since
this simplifies the proof we will assume s R 2N. Let xΨ˚pξq “ |ξ|´spΨpξq and ∆˚

j by given by convolution with

2jn|2j ¨ |´sΨ˚p2j ¨q. Furthermore, let ∆µ,jfpxq :“ ∆jfpx`m´12´j´3µq, ∆˚
µ,jfpxq :“ ∆˚

j fpx`m´12´j´3µq,

and Sµ,jfpxq :“ Sjfpx`m´12´j´3µq. It follows (3.18) is equal to

ÿ

jPN

ż

Rmn

2jsσjp2
´jpξ1 ` ¨ ¨ ¨ ` ξmqqpΨp2´jξ1q pf1pξ1qpΨp2´jξ2q pf2pξ2q ¨ ¨ ¨ pΨp2´jξbq pfbpξbq

ˆ pΦp2´j`1ξb`1qzfb`1pξb`1q ¨ ¨ ¨ pΦp2´j`1ξmqxfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗

“
ÿ

jPN

ÿ

µPZn

cj,µ

ż

Rmn

xΨ˚p2´jξ1q|ξ1|spΨp2´jξ1q pf1pξ1qpΨp2´jξ2q pf2pξ2q ¨ ¨ ¨ pΨp2´jξbq pfbpξbq

ˆ pΦp2´j`1ξb`1qzfb`1pξb`1q ¨ ¨ ¨ pΦp2´j`1ξmqxfmpξmqe2πipξ1`¨¨¨`ξmq¨px`m´12´j´3µqdξ⃗

“
ÿ

jPN

ÿ

µPZn

cj,µp∆˚
µ,jD

sf1qpxqp∆µ,jf2qpxq ¨ ¨ ¨ p∆µ,jfbqpxq

ˆ pSµ,j´1fb`1qpxq ¨ ¨ ¨ pSµ,j´1fmqpxq,

(3.19)

where the we can drop the characteristic function due to the support of the integrand. Then taking the
absolute value of (3.19) and applying the Cauchy-Schwarz inequality we deduce∣∣∣∣∣∣

ÿ

jPN

ÿ

µPZn

cj,µp∆˚
µ,jD

sf1qp∆µ,jf2q ¨ ¨ ¨ p∆µ,jfbqpSµ,j´1fb`1q ¨ ¨ ¨ pSµ,j´1fmq

∣∣∣∣∣∣
ď

ÿ

µPZn

p1 ` |µ|q´n´s
´

ÿ

jPN

∣∣∣∆˚
µ,jD

sf1

∣∣∣2 ¯
1
2

´

ÿ

jPN

∣∣p∆µ,jf2q ¨ ¨ ¨ p∆µ,jfbqpSµ,j´1fb`1q ¨ ¨ ¨ pSµ,j´1fmq
∣∣2 ¯

1
2

ď
ÿ

µPZn

p1 ` |µ|q´n´s
´

ÿ

jPN

∣∣∣∆˚
µ,jD

sf1

∣∣∣2 ¯
1
2

´

ÿ

jPN

∣∣∆µ,jf2
∣∣2 ¯

1
2

ˆ sup
jPN

∣∣∆µ,jf3
∣∣ ¨ ¨ ¨ sup

jPN

∣∣∆µ,jfb
∣∣ sup
jPN

∣∣Sµ,j´1fb`1

∣∣ ¨ ¨ ¨ sup
jPN

∣∣Sµ,j´1fm
∣∣ .(3.20)

Let r̃ “ mintr, 1u. In view of the subadditivity property of the expression ∥ ¨ ∥r̃Lr and Hölder’s inequality,

applying ∥¨∥r̃Lr to (3.20) we obtain the bound

ď Cn,m,s,p1,...,pl
ÿ

µPZn

p1 ` |µ|qr̃p´n´sq lnp2 ` |µ|qmr̃∥Dsf1∥r̃Lp1∥f2∥
r̃
Lp2 ¨ ¨ ¨∥fm∥r̃Lpm ,

where we used Lemma 2.4. Since DsJ´s is a Lp1 multiplier we obtain ∥Dsf1∥Lp1 À ∥Jsf1∥Lp1 , so all that
remains to show is

ÿ

µPZn

p1 ` |µ|qr̃p´n´sq lnp2 ` |µ|qmr̃ ă 8.(3.21)

Since pn ` sqr̃ ą n by hypothesis, α can be picked small enough so that n ă pn ` sqr̃ ´ mr̃α “ n ` ϵ1 with
ϵ1 ą 0, thus

ÿ

µPZn

p1 ` |µ|q´r̃pn`sqp2 ` |µ|qmr̃α À
ÿ

µPZn

1

p1 ` |µ|qn`ϵ1
ă 8

completing Case pIq.
Case pIIq: pt ă 8 for only one t P t1, . . . , bu.
This case requires a more delicate approach since we can not directly apply the Cauchy-Schwarz inequality.
Suppose without loss of generality that 1 ă p1 ă 8 and pt “ 8 for all t P t2, . . . ,mu. This implies
1 ă r “ p1 ă 8, thus we can use square function estimates. Thus the Lr norm of (3.18) is bounded by a

8
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constant multiple of

À

∥∥∥∥∥∥∥∥
g

f

f

f

e

ÿ

kPZ

∣∣∣∣∣∣∆k

´

ÿ

jPN
Js

`

p∆jf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq
˘

∣∣∣∣∣∣
2
∥∥∥∥∥∥∥∥
Lr

.(3.22)

We now consider two subcases where k ą 0 and k ď 0. Let σk,spξq :“ pΨp2´kξqp2´2k ` |2´kξ|2q
s
2 and

Ωk,s be the associated multiplier operator. Let xΨ˚pξq “ |ξ|´spΨpξq and ∆˚
j be given by convolution with

2jn|2j ¨ |´sΨ˚p2j ¨q. First suppose that k ą 0. Let c0 “ log2p4mq, now observe
ˇ

ˇ

ˇ

ÿ

jPN
∆kJ

s
`

p∆jf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq
˘

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

jěmaxp1,k´c0q

2ks
ż

Rmn

pΨp2´kpξ1 ` ¨ ¨ ¨ ` ξmqqp2´2k ` |2´kpξ1 ` ¨ ¨ ¨ ` ξmq|2q
s
2 2´js

ˆ |2´jξ1|´spΨp2´jξ1q|ξ1|s pf1pξ1qpΨp2´jξ2q pf2pξ2q ¨ ¨ ¨ pΨp2´jξbq pfbpξbq

ˆ pΦp2´j`1ξb`1qzfb`1pξb`1q ¨ ¨ ¨ pΦp2´j`1ξmqxfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗
ˇ

ˇ

ˇ

ď 2ks
ÿ

jěmaxp1,k´c0q

2´js
ˇ

ˇ

ˇ

ż

Rmn

σk,sp2
´kpξ1 ` ¨ ¨ ¨ ` ξmqqpΨ˚p2´jξ1q zDsf1pξ1q

ˆ pΨp2´jξ2q pf2pξ2q ¨ ¨ ¨ pΨp2´jξbq pfbpξbq

ˆ pΦp2´j`1ξb`1qzfb`1pξb`1q ¨ ¨ ¨ pΦp2´j`1ξmqxfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ1 ¨ ¨ ¨ dξm

ˇ

ˇ

ˇ

“ 2ks
ÿ

jěmaxp1,k´c0q

2´js
ˇ

ˇ

ˇ
Ωk,s

`

p∆˚
jD

sf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq
˘

ˇ

ˇ

ˇ

À

g

f

f

e

ÿ

jěmaxp1,k´c0q

ˇ

ˇ

ˇ
Ωk,s

`

p∆˚
jD

sf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq
˘

ˇ

ˇ

ˇ

2

(3.23)

where in the last line we applied the Cauchy-Schwarz inequality.

We now derive a similar estimate for k ď 0. Denote N0 “ N Y t0u. Let xΦs “ p1 ` | ¨ |2q
s
2 pΦ and S˚

0 be the

operator given by convolution with Φs. Notice since k ă 0 then pΦpΨp2´k¨q “ pΨp2´k¨q and we have
ˇ

ˇ

ˇ

ÿ

jPN0

∆kJ
s
`

p∆jf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq
˘

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

jPN0

ż

Rmn

pΨp2´kpξ1 ` ¨ ¨ ¨ ` ξmqqxΦspξ1 ` ¨ ¨ ¨ ` ξmq2´js|2´jξ1|´spΨp2´jξ1q|ξ1|s pf1pξ1q

ˆ pΨp2´jξ2q pf2pξ2q ¨ ¨ ¨ pΨp2´jξbq pfbpξbq

ˆ pΦp2´j`1ξb`1qzfb`1pξb`1qpΦp2´j`1ξmqxfmpξmqe2πipξ1`¨¨¨`ξmq¨xdξ⃗
ˇ

ˇ

ˇ

ď
ÿ

jPN0

2´js
ˇ

ˇ

ˇ
∆kS

˚
0

`

p∆˚
jD

sf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq
˘

ˇ

ˇ

ˇ

À

d

ÿ

jPN0

ˇ

ˇ

ˇ
∆kS

˚
0

`

p∆˚
jD

sf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq
˘

ˇ

ˇ

ˇ

2

,(3.24)

where in the last line we applied the Cauchy-Schwarz inequality, since s ą 0. We define a sequence of
measurable functions defined on Rn, tfjujPN0

, to be in Lrℓ2 if∥∥∥∥∥∥
´

8
ÿ

j“0

|fj |
2
¯

1
2

∥∥∥∥∥∥
Lr

ă 8.

9
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It is clear that tS˚
0∆kukPN0

: Lr Ñ Lrℓ2 in (3.24) is bounded for 1 ă r ă 8 by standard Littlewood-Paley
theory. Also, tΩk,sukPN : Lr Ñ Lrℓ2 in (3.23) is bounded for 1 ă r ă 8 and k ą 0. To see this let Λ be a
C8pRnq function that is 1 on 2´1 ď |ξ| ď 2 and supported in 4´1 ď |ξ| ď 4. Expanding in Fourier series we
have

p2´2k ` |2´kξ|2q
s
2Λpξq “ χr´4,4snpξq

ÿ

µPZn

cµ,ke
2πiξ¨

µ
8

where the Fourier coefficients decay rapidly in µ and are uniformly bounded in k due to the support Λ and
the fact k ą 0. Then for f P SpRnq we obtain

Ωk,spfqpxq “

ż

Rn

σk,spξq pfpξqe2πiξ¨xdξ

“

ż

Rn

rΛp2´kξqp2´2k ` |2´kξ|2q
s
2 spΨp2´kξq pfpξqe2πiξ¨xdξ

“
ÿ

µPZn

cµ,k∆kfpx` 2´k´3µq.(3.25)

Letting ∆µ,kfpxq :“ ∆kfpx` 2´k´3µq we have∥∥∥∥∥∥
d

ÿ

kPN

ˇ

ˇ

ˇ
Ωk,spfq

ˇ

ˇ

ˇ

2

∥∥∥∥∥∥
Lr

ď

∥∥∥∥∥∥
d

ÿ

kPZ

´

ÿ

µPZn

|cµ,k||∆µ,kf |

¯2

∥∥∥∥∥∥
Lr

À

∥∥∥∥∥∥
ÿ

µPZn

p1 ` |µ|q´n´1

d

ÿ

kPN
|∆µ,kf |2

∥∥∥∥∥∥
Lr

(3.26)

ď
ÿ

µPZn

p1 ` |µ|q´n´1

∥∥∥∥∥∥
d

ÿ

kPN
|∆µ,kf |2

∥∥∥∥∥∥
Lr

À
ÿ

µPZn

p1 ` |µ|q´n´1 lnp2 ` |µ|q∥f∥Lr(3.27)

À∥f∥Lr ,

where in (3.26) we used Minkowski’s integral inequality with respect to counting measures, and in (3.27)
we used Lemma 2.4. Breaking the sum up at k “ 0 and substituting in (3.23) and (3.24) we have (3.22) is
bounded by

À

∥∥∥∥∥∥
d

ÿ

kě0

ÿ

jě0

ˇ

ˇ

ˇ
Ωk,s

`

p∆˚
jD

sf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq
˘

ˇ

ˇ

ˇ

2

∥∥∥∥∥∥
Lr

`

∥∥∥∥∥∥
d

ÿ

kě0

ÿ

jě0

ˇ

ˇ

ˇ
∆´kS

˚
0

`

p∆˚
jD

sf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq
˘

ˇ

ˇ

ˇ

2

∥∥∥∥∥∥
Lr

.

(3.28)

Let Fj :“ p∆˚
jD

sf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq and let Gk be either Ωk,s or ∆´kS
˚
0 then either

summand in (3.28) can be expressed as ∥∥∥∥∥∥∥
d

ÿ

kě0

ÿ

jě0

|GkFj |2

∥∥∥∥∥∥∥
Lr

.

Now to bound this term we have
ż

Rn

ˆ

ÿ

kě0

ÿ

jě0

ˇ

ˇ

ˇ
GkFjpxq

ˇ

ˇ

ˇ

2
˙

r
2

dx

ď Ar

ż

Rn

ż 1

0

ż 1

0

ˇ

ˇ

ˇ

ÿ

kě0

ÿ

jě0

GkFjpxqrjpt1qrkpt2q

ˇ

ˇ

ˇ

r

dt2dt1dx(3.29)

10
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ď A1
r

ż

Rn

ż 1

0

ˆ
d

ÿ

kě0

|Gk
ÿ

jě0

Fjpxqrjpt1q|2

˙r

dt1dx(3.30)

“ A1
r

ż 1

0

ż

Rn

ˆ

d

ÿ

kě0

ˇ

ˇ

ˇ
Gk

ÿ

jě0

Fjpxqrjpt1q

ˇ

ˇ

ˇ

2
˙r

dxdt1(3.31)

ď Ar,n,s

ż 1

0

ż

Rn

ˇ

ˇ

ˇ

ÿ

jě0

Fjpxqrjpt1q

ˇ

ˇ

ˇ

r

dxdt1(3.32)

“ Ar,n,s

ż

Rn

ż 1

0

ˇ

ˇ

ˇ

ÿ

jě0

Fjpxqrjpt1q

ˇ

ˇ

ˇ

r

dt1dx(3.33)

“ A1
r,n,s

ż

Rn

ˆ
d

ÿ

jě0

|Fjpxq|2

˙r

dx,(3.34)

where in (3.29) we applied (2.9), in (3.30) we applied (2.8) with respect to t2, (3.31) and (3.33) is just
Fubini’s theorem, (3.32) we used that tGkukPN0

: Lr Ñ Lrℓ2 is bounded, and lastly in (3.34) we applied
(2.8). Continuing from (3.34) we obtain∥∥∥∥∥∥∥

d

ÿ

jě0

|Fj |2

∥∥∥∥∥∥∥
Lr

“

∥∥∥∥∥∥
d

ÿ

jě0

ˇ

ˇ

ˇ
p∆˚

jD
sf1qp∆jf2q ¨ ¨ ¨ p∆jfbqpSj´1fb`1q ¨ ¨ ¨ pSj´1fmq

ˇ

ˇ

ˇ

2

∥∥∥∥∥∥
Lr

ď

∥∥∥∥∥∥∥
d

ÿ

jě0

|∆˚
jD

sf1|2

∥∥∥∥∥∥∥
Lr

b
ź

ρ“2

∥∥∥∥∥supjě0
|∆jpfρq|

∥∥∥∥∥
L8

m
ź

ρ“b`1s

∥∥∥∥∥supjě0
|Sj´1pfρq|

∥∥∥∥∥
L8

À∥Dsf1∥Lr∥f2∥L8 ¨ ¨ ¨∥fm∥L8

À∥Jsf1∥Lr∥f2∥L8 ¨ ¨ ¨∥fm∥L8 ,

as desired. l

4. Homogeneous KP from Inhomogeneous KP

In [12] a dilation argument was used to show the sharpness of the range of s for the inhomogeneous
Kato-Ponce inequality. In this section we use a similar dilation argument to derive (1.2) directly from (1.3).
This is quite advantageous since a direct proof of the homogeneous case requires a different paraproduct
decomposition, and hence a different, albeit similar, proof.

We will use the following proposition to obtain the homogeneous Kato-Ponce inequality from the inhomo-
geneous one. Though this method is mentioned in the literature [6],[14] it needs some variant of Lemma 2.1
to obtain a uniform upper bound in the application of Lebesgue dominated convergence theorem, as done in
the following proposition.

Proposition 4.1. Let 0 ă r ď 8, f P SpRnq, yJsRf “ pR´2 ` | ¨ |2q
s
2 pf , and s ą maxp0, np1{r ´ 1qq, then

lim
RÑ8

∥JsRf∥Lr “∥Dsf∥Lr .

Proof. First suppose p ă 8. By Lebesgue dominated convergence theorem JsR converges pointwise to Dsf .

By Lemma 2.1 we have the estimate |JsRfpxq|r À p1 ` |x|q´pn`sqr, thus by Lebesgue dominated convergence
theorem again we have limRÑ8

∥∥JsRf∥∥Lr “∥Dsf∥Lr . Now suppose r “ 8 and observe that

|pJsRf ´Dsfqpξq| “

ˇ

ˇ

ˇ

ż

Rn

ppR´2 ` |y|2q
s
2 ´ |y|sq pfpyqe2πiy¨ξdy

ˇ

ˇ

ˇ
(4.1)

ď

ż

Rn

pp1 ` |y|2q
s
2 ´ |y|sq| pfpyq|dy.(4.2)

As (4.2) is a uniform upper bound by Lebesgue dominated convergence theorem we can bring the limit over
R inside the integral of (4.1) to obtain the desired result. □
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We now derive (1.2) from (1.3): For f P SpRnq let fR :“ fpR¨q. Let 1
m ď r ď 8, 1 ď p1, . . . , pm ď 8 for

t P t1, . . . ,mu satisfy 1
r “ 1

p1
` ¨ ¨ ¨ ` 1

pm
. Observe,

JspfRqpξq “

ż

Rn

p1 ` |y|2q
s
2R´nfpR´1yqe2πiy¨ξdy

“ Rs
ż

Rn

pR´2 ` |y|2q
s
2 fpyqe2πiy¨Rξdy

“ RsJsRpfqpRξq.

It follows applying the inhomogeneous KP inequality to the dilated functions pf1 ¨ ¨ ¨ fmqR “ pf1qR ¨ ¨ ¨ pfmqR

gives

∥JsRp f1 ¨ ¨ ¨ fmqpR¨q∥Lr

ď C
´

∥JsRf1pR¨q∥Lp1 ∥f2∥Lp2 ¨ ¨ ¨∥fm∥Lpm ` ¨ ¨ ¨ `∥f1∥Lp1 ∥f2∥Lp2 ¨ ¨ ¨∥JsRfmpR¨q∥Lpm

¯

where the Rs term cancels from both sides. By a change of variables and using that 1
r “ 1

p1
` ¨ ¨ ¨ ` 1

pm
we

obtain

∥JsRp f1 ¨ ¨ ¨ fmq∥Lr

ď C
´

∥JsRf1∥Lp1 ∥f2∥Lp2 ¨ ¨ ¨∥fm∥Lpm ` ¨ ¨ ¨ `∥f1∥Lp1 ∥f2∥Lp2 ¨ ¨ ¨∥JsRfm∥Lpm

¯

after canceling the R´ n
r from both sides. We then deduce (1.2) by letting R Ñ 8 and using Proposition

4.1. □
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