NORM ESTIMATES FOR THE FRACTIONAL DERIVATIVE OF MULTIPLE
FACTORS

SEAN DOUGLAS AND LOUKAS GRAFAKOS

ABSTRACT. We extend the Kato-Ponce inequality to a product of m functions, proving an estimate currently
missing from the literature. This study is motivated by the fact that the 3-factor Kato-Ponce does not follow
directly from the 2-factor version in the full range of permissible indices. Our methodology is based upon that
in [I2] but our extension entails a novel decomposition that elegantly and effectively handles the technical
difficulties that arise from the combinatorial complexity of the possibly large number of factors.

1. Introduction

The lack of an explicit Leibniz rule for fractional derivatives leads to the consideration of norm inequalities,
most commonly for Lebesgue spaces. Such estimates are known in the literature as Kato-Ponce (KP)
inequalities, and they are usually expressed in terms of two factors. In this article we focus on Kato-Ponce
estimates for multiple factors. The need to study multiple factors is motivated by the fact that a 3-factor
normed Leibniz rule in the full range of indices does not follow from the corresponding 2-factor one by
grouping two terms into one.

Let g denote the Fourier transform (precisely defined in Section . Let D/\f = | - \Sf and j\f =
1+]- |2)§f be the fractional Laplacian operators for f € S(R™), the space of Schwartz functions. If s > 0
then D*® and J* are the homogeneous and inhomogeneous fractional differentiation operators, respectively.
Motivated by questions in Euler and Navier-Stokes equations Kato and Ponce [16] obtained L" norm estimates
for the inhomogeneous fractional derivative of a product. Since their work in 1988 there has been a multitude
of generalizations and variants of such estimates, which are nowadays known as Kato-Ponce inequalities or
fractional Leibniz rules. These estimates have the form

(1.1) ”Js(fg)”Lr < Ch,s,p1,p2,01,02 (”JSfHLm ||g||LP2 +||fHLQ1 ”JSQHL%) )

where f,g € S(R™), p1,p2,q1,q2 = 1
vary when p1 + ¢1 and p2 + go.

Earlier variants of the Kato-Ponce inequality were restricted to 1 < r < o0, see for instance [16], [4], [14].
Subsequent versions, such as [19], [2], [20], and [12], provide extensions to the range r < 1. It turns out
that holds exactly when 1/2 < r < o0 and s > max{n(1 —1),0} or s € 2N; The work in [I2] provides
counterexamples when s is outside that range. These proofs rely on Coifman-Meyer bilinear multipliers for
high-low frequency paraproducts (diagonal paraproducts) and also use shifted square function estimates on
the high-high frequency paraproducts (off-diagonal paraproducts). Other works on the KP inequality, that
use different methodology or provide new estimates, can be found in [11J, [3], [1], [8], [18], [22], [21], [15], [7].

The motivation for our study arises from two main obstacles. These are already apparent when one
attempts to derive the 3-factor KP from the 2-factor KP inequality: (a) when r < 1, applying the 2-factor
inequality, we will unavoidably end up with some Hélder indices that are less than one. For instance, in the
3-factor case let p; = py = 3/2,p3 = 2 and observe that if g1, g2 are such that % + % + % = q% + % = % + q%,
then ¢; < 1 and ¢ < 1. Then can not be applied in this case as it requires the indices on the right
to be greater than or equal to one; (b) when the indices vary (as defined in Theorem then the 2-factor
case is not applicable, as it may be the case that a subcollection of two of them is not related to the third
index as in Holder’s relationship.

, p% + p% = } = q% + q% and s depends on n and r. We say the indices
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It should be noted that Theorem is not unexpected, as it is stated as Exercise 2.2 on page 76 in [20].
However, its detailed proof is rather technical and was missing from the literature until now.

We now state the precise formulations of our main result. All norms below are over R™.

Theorem 1.1. Letme ZT, L <r <0, 1<p1,...,pm < o satisfy * 7+ +p If s > max (% —n,0)
or s € 2N, then there exists a constant C = C(n,q,$,p1,...,Pm) < © such that for all f; € S(R™) with
le{l,...,m} we have

12) D (fr - Sl < CUD fillpon 12l pon W Fmll o + - W1l pon 2l oo 1D Finll o)

<
(1-3) HJS( fm)”Lr < (||Jsf1||L,,1Hf2||L,,2 "'Hmeme +"'+||f1HLP1||f2HLP2 "'”Jsmeme)'
Furthermore, we note that in (1.2), (1.3)) any tuple of indices (p1,...,pm) that appears in a summand on

the right of the inequality can be replaced by any other tuple (q1, ..., qm) when % = q% +- 4 i. When this
is the case we say the indices vary.

r

2. Preliminary Material

For a measurable function f : R® — C and r > 0 we use || f||,. to denote the usual Lebesgue L" norm
(or quasi-norm if r < 1). For A,B € R we use A < B to mean A < CB for some constant C. We also

define A ~ B when simultancously A < B and B < A. We denote elements of (R™)™ by € = (£1,...,&m)

and dg = d&; -+ d&,. The Fourier transform and inverse Fourier transform of a function f € L!(R") are
respectively defined by

Fo = | flye vy fO =1 flyevidy.

R"L ]Rn

The space of Schwartz functions S(R™) is the space of all C*(R"™) functions that rapidly decay at infinity.

Let ®(£) be a positive, radially decreasing, and smooth function on R™ supported in [£| < 2 and equal to
one on |¢| < 1. Let ¥(&) = ®(§) — (2¢), which is non—negative and supported in the annulus 1 < [¢] < 2
Notice that as the series telescopes we have Y| jez. ( —J¢) = 1 for € # 1, as well as the useful identity
2j<io Y(2-9¢) = (2~ 305) for any jp € Z and £ # 0.

For ¢, ¢ € S(R™) let 1/1 be supported in an annulus centered about the origin and let ¢A> be supported
in a ball centered at the origin. We denote the Littlewood-Paley frequency projection operators over R™

by Aw and S¢ which are respectively given by convolution with 2/%1(27.) and 2/"¢(27-). The shifted
thtlewood Paley operators AY L Sf , for e R™ are respectively given by convolution with 294 (27 - +cp)
and 27"¢(27 - +cu), where the constant c is independent of j, u. When ¢ = ¥ or ¢ = ® the corresponding

operators are denoted by A; and 5. Lastly, for s € R and f € S(R™) we denote the homogeneous and

inhomogeneous differentiation operators as Ds f = = |-|*f and J* Jof = (1+ |- [2)35 f respectively.
The following lemma will be of great use throughout this paper and is the main ingredient in bounding
the diagonal paraproducts.

Lemma 2.1. [12] Let f € S(R™) and s > 0. Then for any v € [0,1], there exists a constant C(n,s, f)
independent of vy, such that

|(PT = A)2 (@) < Clns, £+ )"0

The following multiplier result was proved by Coifman and Meyer [5] when r > 1 and was extended to
the case r < 1 by Kenig and Stein [I7] and by Grafakos and Torres [13]; for a proof see [10].

Theorem 2.2. (Coifman-Meyer Multiplier Theorem). Suppose that h(&1,...,&m) is a C% function on
(R™)™\{0} which satisfies

(2.1) 106, - O (€ Em)| < o (2] 4+ [ ) 71815
for all multi-indices B1,...,Bm. Let T be given by

T(fiyo fm) (@) = f b ) i (@) (GG g
2
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for f1,..., fm € S(R™). Then T is a bounded linear operator from LP* x --- x LPm into L" when 1 < p; < 00
and

1 1 1

- 4 .. - =

b1 DPm r

We need to define some notation that will be used in the following theorem. The space L" (]R”, Eio) =Ly
is all L-tuples of complex valued measurable functions defined on R", {f;}1<;<z, such that

1M e =

The following theorem is the vector valued Calderén-Zygmund Theorem applied to the Banach spaces
L"(R™) and L" (R”,EOLO). Its proof can be found in [9, Theorem 5.6.1].

< 00.

sup | fj]
1<j<L

<j< L

Theorem 2.3. Let1 < r < oo,L € Z™. Suppose that K1,...,Kr are integrable functions defined on R"
that satisfy

A,
(2.2) |K;| < |—j for almost all x € R™\{0} for some A; >0, and,
x n
(2.3) supf sup |Kj(z —y) — Kj(z)|dx < A for some A > 0.
y#0 J|z|>2|y| 1<j<L

Define
S(H@) = ((Kix H@) .o (K x @), a ek,

where f € U1<pgao LP(R™). Assume that S is a bounded linear operator from L" (R”) to L" (R",Ef) with
norm B,.. Then there exists a constant C,, such that

Hg(f)‘ < Cpmax (p,(p— 1)) (A+ B fll s

Lrep
for all f in LP (R"), whenever 1 < p < o0.

Next we have a lemma that will be useful to us.

Lemma 2.4. Let p € R™ and f € S(R™) then for all 1 < p < o the following estimates hold

(2.4) DAY P < Crymax(p, (p— 1)) I + ) £ 0
JEL o
(2.5) sup 52,01 < Cupmax(p, (p = 1)) In@ + ||| | v
JE P
(2.6) sup AT A < Cogmax(p, (p— 1)) I + [u))l| £l o -
JE Lo

Proof. The proof of (2.4) is given in [I2] and omitted. For (2.5) we apply Theorem where Kj(z) =
2in (292 + p), that is the operator

S(f) = (2742 +p) * f(z),..., 262" - +p) = f(x)), xeR",
where f € S(R™) and L € N. For the size condition we have

K| = 22" (27 < i n i < n,J
| J‘ | (b( T+ :u’)| (2_] + |$ + 2_Jﬂ‘)n |I|"

since ¢ is a Schwartz function. The smoothness estimate, ([2.3)) follows from the inequality

(2.7) sup

J PG (z — ) + 1) — H(@x + p)ldw < CIn(2 + [u]).
y#0 J|z|>2ly| 1 <<

In [12], (2.7) is proven with ¢ in place of ¢. However the same proof applies here as the only property
of ¢ used in the proof is that it is a Schwartz function. Thus, we obtain the smoothness estimate ([2.3)
3
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with A = C,, In(2 + ||). Lastly, observe that S is a bounded operator from L*(R™) to L*® (R", (F) with
B, =||¢||,;. Thus we satisfy the hypothesis of (2.3, giving

< Cpmax(p, (p— 1)) (2 + |u)f] 2 -
Lp

sup [8¢ f|

1<j<L

Applying Lebesgue monotone convergence theorem and letting L — o0 we obtain (2.5). A similar argument

can be made for (2.6). O

We will use Khintchine’s inequalities in the proof of Theorem to obtain a variant of the following
vector-valued version of the Littlewood-Paley theorem for 1 < r < co:

‘/ZZMijP < ‘/Z|Fj\2 :
keZ j=0 e 7=0 I

Theorem 2.5. (Khintchine’s Inequalities) For j = 0,1,2,... let r; be the jth Rademacher function, that is
r;(t) = sgn(sin(277t)). For any 0 < p < oo and for any real valued square summable sequences {a;} and {b;}
we have

a0 % e} 0
(2.8) Bp( N ay + z'bj|2) Z a; +ib;) < Ap( 3 lay + ibj\Q)
j=0 j=0 §=0

Lz ([0,1])

[

where 0 < A, B, < o0 depend only on p.
Define F,(t1,...,t,) = Zﬁ:o . "Z;i:o CrvoinTin (t1) oo, (tn) for t; € [0,1], where cjy,.. 5, 1S a se-
quence of complexr numbers and F, is a function defined on [0,1]™. For any 0 < p < o and for any

complez-valued square summable sequence of n variables {c;, .. ;. }ii.....;.» we have the following inequalities
for Fy:

o0 0 1
(2.9) Br( 3 D leinial?)” <UFallogogm < (Z S o)

Jj1=0 Jn=0 j1=0 Jn=0

Nl=

3. Proof of Theorem [1.1]

As highlighted in the introduction, this proof constitutes an extension of the work presented in [12]. While
many of the methods employed align with those in the referenced work, the technical intricacies are different.
For this reason we provide all the details.

We begin with a decomposition of Z™. For 77 = (n1,...,nm) € {0,1}"\{0} let

Bz ={(j1,---,Jm) € Z™ : If n, = 1 for some 1 <t < m then, max{ji,...,jm} = jr and j; > 0.
If 9 = 0 then max{ji,...,Jm} > je.}-
Notice that

(3.1) zr=( I @)@

7e{0,1}m\{0}

where Z<o = {0,—1,—2,...}. Observe for f; € S(R™) we have
J*(frfer fm)(@)
J Al A ) ) (&) o Fr(€)e T ) dg dy d

Il

(3.2) > Jm L4 |6+ 4 &) Q) W@ I Fi(€r) + Fn (€ 2™ EHHEm) 2 g

JEZ’NL
For ease of notation let

U;(éx) = (L4 e+ 4 En[D)2PRTE) T2 N FL(ED) -+ fon (G )2 E T HEm) @
4
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Breaking the sum over Z™ into the 2™ disjoint sets we may write (3.2)) as

T (fufar fm)@) = 3 f uz(€ w)dé

(3.3) - > Zf )d§+ > Jm

7€{0,1}™\{0} jex; €(Z<o)™

For the second term in (3.3) we have

> [ wEn

je(Z<o)™
(3.4) - J (Ut 6nl)FRE) 1)+ B (&) Fon (E)e ™ FomI 2,
Let w = (Sof1) - (Sofm). Note that @ is supported in |¢| < 2m. Thus we have

@(§) = B2TOHD(E),
since @(2‘”-) equals 1 on the support of w. It follows that di can be written as

(35) J (1 4 |£| )%&\)(2—m5)@(€)62wi5~xd§.
Since (1 + [¢[? )53’(2*7"5) is a smooth function with compact support we can expand it in Fourier series,
(1 + |€| ) (2 mf) —gm+1, 2m+1 n Z CH 27”5 2m+2
HEL™

where the Fourier coefficients decay rapidly in u. It follows

[ a@ae = 3 [ et g

pezr L (dz)
< 3 leul[(So )@+ 27y (So )+ 27|
,U,EZ" z

< HSOflan "'||Someme
S HJ_SJSleLm ||f2||LP2 o 'Hfm”[,pm
SH‘]Sfl”Lm”JcQ”Lpz Hfm”me

The last line above is justified by the fact that the Bessel potential J~° is an LP' Fourier multiplier operator.
Now to bound the first term in , that is

) Zj (1416 + o+ EaP) B ) - B2,
(3.6) 7e{0.17\(0} jezsy

X FL(EL) - () e2miEFFEm) 2 g

From ([3.6]) we see it is sufficient to consider an 77 with exactly b ones. Moreover, by symmetry it is sufficient
to only consider when the first b entries are ones, specifically let

o = (1,1,...,1,0,0,...,0).
—_——
b

Notice that %y is the elements of Z™ where the first b entries are the same, positive and strictly bigger
then the remaining entries. It follows to estimate (3.6)) it is enough to only consider the term

JW D uz€ 2)d
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= Zf L+ 1€+ +Eul)FWQRTE) - W2 TIG) P27 g p) - B277HE,,)
(37) jeN

X Fu(EL) - (€ )e2miE1T+Em)w g

We will break the proof into two cases; when b = 1, which we call off-diagonal terms and when b > 1, which
we call diagonal terms.

3.1. b =1: Off-Diagonal Term
Fix a € N to be determined later. When b =1 (3.7)) is equal to

“X [ asla gt ( Y ) s deie) -

jeN m j—a<ja2<j

(3.8) - o ; B | :
X ( Z Y2 Img,) + <I>(2*J+a£m))fl(§1) N (A Pl GRS R

J—a<jm<j

Multiplying out the product in (3.8) we see it is equal to

Sl e iR AR TR )
(3.9) Jee Jrm

X D277, o (6 )T HEm) 2 g

plus finitely many other terms of the form

2 J (L4 6+ + &nl)3P(2" j§1)f1(§1) (f2)f2(f2) 5(&5) f3(&3)
(3.10) jan Jrmn

X ‘/jm(gm)f;n(fm)QQM(ﬁlJr"-Jrfm).wdg.

where at least one ij is @(2*’“-) with k& ~ 7 and rest are @(2*”‘1-). As j ~ k, where the implicit constant
depends on a, the finitely many terms of the form in will be handled by the same technique used in
the b > 1 case. Thus for the b = 1 case it is sufficient to only consider .

Now to determine a. Looking at the Fourier transform of the idea is to pick a large enough so
that we have [&1] » || for k € {2,...,m}. For a large enough the Fourier transform of a summand of
is supported in the algebraic sum of an annulus with m — 1 relatively much smaller balls, which is
a slightly bigger annulus. Specifically, if a > log,(8m) then on the Fourier transform side we have that
€| < 2770+ < L2771 < 2L 1¢y ], which then implies by the reverse triangle inequality that

Sl <6+ &l <2
Let
(3.11) (&, Em) = D, UQ2TIE)D2TITG) - B(2770¢,,)

JeN

then (3.9) can be expressed by

Et o G O T o ) T fL(E) - Fon ()™ E ) g,

R’"l’ﬂ,
We proceed by showing that

Gt 4 6n)"
&)*

is a Coifman-Meyer multiplier, i.e., it satisfies estimates (2.1). First observe that II is a Coifman-Meyer

(?f:: we have

(3.12) (- ém)

multiplier. To see this observe for a multi-index E = (B1,...,Bm) and 07 = (7?11 e

|agn(£17 s 7€m)|
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< Z Oal,...,al |661@‘(2_j§1)2_|51‘j‘aﬁ2$|(2_j+a£2)2_|62|j T |aﬂm(’I\)|(2_j+a€m)2_|,6mlesupp(H) (g)
jez
< |2—j§1|—(|51|+“-+\5m\)2—|51\jg—\ﬁ2lj2—|ﬁm,Ijxsupp(n)(5)

(3.13) < (|&1] + - + &))" UBLIFH1BmD

where the last inequality is due to |£1] being bigger than all other |£;|. Furthermore, partials can be brought
into the sum because for any fixed value of &, it is a finite sum.
For y € R™ define

Yy) = L+ Jy*)?
where ¢ € R. We will show
(3.14) 1077(y)] < Cryp,g(1+ [y)*~ "

for multi-index 8. Let v4(t,y) = (2 + |y[*)? where ¢t € R, notice v4(1,5) = ~(y). Observe that by
homogeneity we have v, (At, \y) = A%, (t,y) for any A > 0, thus for a multi-index 8 and any (¢,y) € R x R®
we have
NIZ085, (M(t, ) = P(t, y).
Letting A = |(¢,9)|! % 0 we obtain
(3.15) |0t )] < (& 9)| 1 sup |07 vu((t,)")]-
(t’y)legn

Letting t = 1 and using that 4 is smooth on the sphere S™, so bounded there we deduce (3.14)).

Let 71 (¢ ) <§1 + -+ §m>s and 75(&1) = (€)%, then (3.12) is equal to IIyiv2. Let B = al + od + al

and (1, = of + of for k€ {2,...,m}. By Leibniz rule 6511 e 6::’ (7172I1) is a linear combination of terms of
the form

am al am al al
(3.16) [0 - Ot IL[ 0+ O 2 m[0g P2)-

By (3.14) we have the absolute value of (3.16]) is bounded by a constant multiple of
¥k 5%k _s3_|gl jud
(|§1|++|£m|) 2 1|(1+|§1+"' m)2 2 2|(1+|£1D 2~ 3‘Xsupp(l’[)(g)
(3.17) S (6] + - + [€n|) " ElotlElaz]+lai])
= (|&1| 4 - - + |&m|) " UPtIFH+1BmD)

where in (3.17) we used |1 + - - - + &n| ~ |€1] on the support of TI. Tt follows that (3.12)) is a Coifman-Meyer
multiplier, therefore applying Theorem gives the desired inequality.

3.2. b > 1: Diagonal Term

Now we focus on the diagonal term; when b > 1 is given by
D Gt G PRI AR E) fa(l) - W2 fol)
(3.18) jen JRmn
X DTG0 fort (Gora) - @27 ) fon () PTIETEGE
= I (A f)(Asf2) - (B fo)(Sj—1 forr) - - (Sj=1.fm))-
Case (I): p; < oo for at least two t € {1,...,b}.

Suppose without loss of generality that p; < 00, ps < 0. Observe that @((m?ﬂl)*l(& +--+&mn)) equals
1 on the support of the integrand in (3.18]). Let

0;(€) = (27 + €[ 2 2((2m)~"¢).

Expanding o; in Fourier series we have

o (y) = X[—am,am]~ (¥ Z €Y
pezr



FRACTIONAL DERIVATIVES OF MULTIPLE FACTORS DOUGLAS AND GRAFAKOS

By Lemma we have |6 ()] = |¢u] < (14 |p])™"° independent of j since j > 0. Notice in the case
s € 2N we have arbitrarily fast decay, that is, |c; | < (1+ |p|)! independent of j > 0 and for any [ € N. Since
this simplifies the proof we will assume s ¢ 2N. Let ‘I’;(f )= ¢ |*S‘I’(§ ) and A¥ by given by convolution with
27727 - |75W,(27-). Furthermore, let A, ;f(x) == A;f(x +m™127973u), A% f(x) = A% f(z +m~ 127772 p),
and S, ; f(z) = S; f(z + m™127973p). It follows is equal to

S e a)tea) Rl ene e ake)

jeN
X ‘5(273-*1&)4_1)]7});(&)“) e (/I\’(Qijﬂfm)f:n(Em)e%i(ﬁﬁ'"%m)'mdg

=2 2 G i V(2796|6026 [i()¥(276) falo) - W(277,) fo(Es)
JEN pezZm m

—

X D2 ) For1 (Epa1) -+ - D(27ITLE) Fom (€ ) 2T (1T HEm) (xm™ 270750 g
- Z Z CJH A* DS )( )( u,jfZ)(x)"'(Amjfb)(l‘)

(3.19) jEN pezn
X (Su,jflfb+l)(m) T (Su;jflfm)(x)’

where the we can drop the characteristic function due to the support of the integrand. Then taking the
absolute value of (3.19) and applying the Cauchy-Schwarz inequality we deduce

D2 Ak D ) (A fa) - (B fo) (Spj1 for1) -+ (Spj1fm)

jeN pezZ™
<) (1+|M‘)_n_S<Z‘A:7jDSf1‘2) (Z\ wif2)- H,jfb)(Sw_lfbH)-~-(Su,j_1fm)!2>%
HEZ™ jeN
< S s (S i (S
(3.20)  wezn geN

X S_UP’Ap,jf3| : "sup|Au,jfb| S_UP|5#,j—1fb+1| "’S_up|s,u,j—lfm| .
jeN jJeN JEN jeN

Let 7 = min{r,1}. In view of the subadditivity property of the expression || - ||72T and Holder’s inequality,
applying ||-||%.. to (3.20) we obtain the bound

< Cnamspryn Yy (L 1) (2 + ()™ D full o [ f2 e 1L fin e
HEL™

where we used Lemma Since D*J~* is a LP* multiplier we obtain || D* f1|;», < ||J%f1ll1e, so all that
remains to show is

(3.21) DA+ )T (2 + |u)) ™ < .
pezm

Since (n + s)7 > n by hypothesis, « can be picked small enough so that n < (n + $)7 — mifa = n + €; with
€1 > 0, thus

1
— ] < 0
(1 + [u))rte

S+ )T @ 4 e Y

HEL™ PEL™

completing Case (I).

Case (II): p; < oo for only one t € {1,...,b}.

This case requires a more delicate approach since we can not directly apply the Cauchy-Schwarz inequality.

Suppose without loss of generality that 1 < p; < o0 and p; = oo for all ¢ € {2,...,m}. This implies

1 <7 =p; < oo, thus we can use square function estimates. Thus the L™ norm of is bounded by a
8
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constant multiple of

(3.22) <>

keZ

Ak(Z o (A 1) (D f2) - (A fo)(Sj-1for1) -+ (Sj-1fm))

JjeN

LT

We now consider two subcases where k& > 0 and &k < 0. Let oy 5(§) = @(2’]“5)(2’2’“ + 127%¢?)5 and
Qs be the associated multiplier operator. Let W, (§) = |§|*5@(§) and A¥ be given by convolution with
29m|27 . | 75Y,(27.). First suppose that k > 0. Let ¢y = log,(4m), now observe

| 3 AR (A5G F2) (A fy) (Sioaforr) - (Sy-1fm)|

JEN

=| X 2 et e @ 2R+ G )R

j=max(1l,k—cop) Rmn

x 27967 W) |6 fi() W27 &) fala) - W(277E) fr(&)
X B2 1) For1 (1) -+ P2 fin ()21 1+ HEm) 2 g
g 2k‘s 2 2—js

j=max(1,k—co)

x W(2796) fal&a) - - W(2776) fio (€b)
X D27 1) Foin (Gpan) - B2 7THE) i (E) 2T E T FER) T g e,

oks Z 27js‘ﬂk,s((A;<Dsfl)(Ajf2)"'(Ajfb)(sj—lflﬂ—l)"'(Sj—lfm)))

j=max(1l,k—co)

[ ot 6T 2 ) DR )

‘ 2

j=max(1,k—co)

(3.23) < \J 2 ’Qk,s((A;{Dsfl)(Aij) (DG f)(Si 1 fog1) - (Sim1fm))

where in the last line we applied the Cauchy-Schwarz inequality.
We now derive a similar estimate for k < 0. Denote Ng = N u {0}. Let ®5 = (1 +|-|?)2® and S§ be the
operator given by convolution with ®,. Notice since k < 0 then ®¥(27%.) = ¥(27*.) and we have

|2 AR (A A f2) - (A f) (S fosn) -+ (Sj1fm)

J€No

| X EeR 6B+ 2 2R G )

Jj€Ng

x W(2796) fal&a) - W(2776) fo (&)
x <f><2—f+1sb+1)ﬁi(gbm&»(z-f‘“am)ﬁ(fm>e2m‘<fl+~--+fm>-rdg\

< 2 27| ASE(AFD )5 F2) - (A fo) (Sioafon) - (Sy-1fm)|

j€No

(3.24) < \/Z )Aksg((A}FDsfl)(Ajh) (A fo)(Sj-1fo41) - (Sj-1fm))

J€No

2

)

where in the last line we applied the Cauchy-Schwarz inequality, since s > 0. We define a sequence of
measurable functions defined on R™, {f;};en,, to be in L"¢? if

( i |fj|2)%
=0
9
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It is clear that {S¥Ag}ren, : L™ — L"¢% in (3.24) is bounded for 1 < r < o0 by standard Littlewood-Paley
theory. Also, {Q s}ken : L™ — L"¢% in (3.23)) is bounded for 1 < r < 0 and k > 0. To see this let A be a
C*(R™) function that is 1 on 271 < |¢| < 2 and supported in 471 < |¢| < 4. Expanding in Fourier series we
have
(@7 4 [27RP)EAE) = Xpmaap (€) D) cupe®™ %
HEL™

where the Fourier coefficients decay rapidly in p and are uniformly bounded in & due to the support A and
the fact £ > 0. Then for f € S(R") we obtain

~

Ouu($e) = [ ona(@Femeag

~

- [ e+ e Re g floemeu

(3.25) = > cunlif(a+ 27 p).
HETL™
Letting A, x f(2) = Apf(x +27%734) we have
2
Al | <D (D teliag)
keN k€EZ — pezn Ir
(3.26) S DI N DI WL
HEL™ keN
L’r‘
< 2 )T D AP
UEL™ keN I
(3.27) < D (U +[u) ™ (2 + )
HEL™
<Al g

where in (3.26|) we used Minkowski’s integral inequality with respect to counting measures, and in (3.27)
we used Lemma Breaking the sum up at k¥ = 0 and substituting in (3.23) and (3.24) we have (3.22) is
bounded by

3 ) [0k (A2 ) (A ) - (g ) (S foen) - (S fu))|

k=0j=0 r
(3.28) L

\/2 S A ST (ATD 1) (A )+ (A (S fosr) -+ (Syo1 i)

k=035=0

‘2
LT'
Let Fj := (A;.‘Dsfl V(A f2) - (A fu)(Sj—1fo41) - - (Sj—1fm) and let G}, be either Qs or A_pS§ then either

summand in (3.28]) can be expressed as
MYTIGEP|
k=040
Lr
Now to bound this term we have
2\ %
J (EZ’GkF () dz

k=075=0

(3.29) <A, J f J ‘Z N GFj(@)rj(tr)ri(ts)| dizdtrde
"0 J0 T p>05>0

10
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1 T
(3.30) < A;J f < DIGE Y. Fi(@)ri(t)) > dtydx
™ J0 k>0 =0

(3.31) f f <\/§0 Gk 3 Fy(a)ry(t) ’ >dedt1

j=0

1 T
(3.32) < s f f > Fywyry ()] dedty
n j>0

(3.33) - ”f f‘ZF 2)r; tl‘dtldx

Jj=0

(3.34) - nf ( /;|F ) dr,

where in (3.29) we applied (2.9), in (3.30) we applied (2.8) with respect to ta, (3.31) and (3.33)) is just
Fubini’s theorem, (3.32) we used that {Gy}ken, : L™ — L"¢? is bounded, and lastly in (3.34)) we applied

(2.8). Continuing from (3.34) we obtain

I
j=0
L’V‘

\/Z‘ AXDs f1)(Ajf2) -+ (A fo)(Sj-1fp+1) - (ijlfm))z

>
j=0 I

b m
<\ [Zwssone| Tswiae] 1 Jowis-o)
720 = L© p=b+1] j=0 Lo

SID® full -l fall g - ||meL°C
S fullpellf2ll e -l fmll oo s
as desired. [

4. Homogeneous KP from Inhomogeneous KP

In [I2] a dilation argument was used to show the sharpness of the range of s for the inhomogeneous
Kato-Ponce inequality. In this section we use a similar dilation argument to derive directly from .
This is quite advantageous since a direct proof of the homogeneous case requires a different paraproduct
decomposition, and hence a different, albeit similar, proof.

We will use the following proposition to obtain the homogeneous Kato-Ponce inequality from the inhomo-
geneous one. Though this method is mentioned in the literature [6],[14] it needs some variant of Lemma [2.1]
to obtain a uniform upper bound in the application of Lebesgue dominated convergence theorem, as done in
the following proposition.

Proposition 4.1. Let 0 <r < oo, f € S(R"™), ff:;f =(R2+]|- |2)§f, and s > max(0,n(1/r — 1)), then
Jim ([ T3 fll - =D
Proof. First Suppose p < 0. By Lebesgue dominated convergence theorem Jj converges pointwise to D f.

By Lemma 2.1| we have the estlmate |JRf( )" < (1 + |z|)~(*+2)7 thus by Lebesgue dominated convergence
=||D? ~. Now suppose r = o0 and observe that
L

(41) Uaf = D@1 = | [ (R4 1 = ) Fwemray

(42) < [ @ - W Fwld,

As (4.2) is a uniform upper bound by Lebesgue dominated convergence theorem we can bring the limit over
R inside the integral of (4.1)) to obtain the desired result. O

11
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We now derive (1.2)) from (1.3): For f € S(R™) let fr := f(R-). Let % <r<ow,1<p,...,pm < o for

te{l,...,m} satisfy 1 = p%+~-+i. Observe,

J*(fr)(&) = f (1+ |y SR f(R 'y)eX™ v dy

n

- f (BT [y fly)e ™ e dy
= R°JR(f)(RE).

It follows applying the inhomogeneous KP inequality to the dilated functions (f1--- fim)r = (fi)r - (fm)r
gives

[JRCSL - ) (Bl e
< C(llszfl(R')HLm 1 foll oo =l fmll pom + o+ fillpo 1 f2ll oz - 1R S (B Lo )

where the R® term cancels from both sides. By a change of variables and using that % = p% +o L we

Pm
obtain
TR Cfr - fo)ll e
< C(Ia Ao W ollss = mllom + = 4110 ol - IRl )

after canceling the R~ from both sides. We then deduce (I.2)) by letting R — oo and using Proposition
41l O
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