GRAVITATION ENGLISH MEDIUM Premiumvikas.com

PHYSICS

1. An iron ball and a wooden ball of the same radius are released from a height ' h ' in vacuum. The time taken by both of them to reach the ground is
(A) Unequal
(B) Exactly equal
(C) Roughly equal
(D) Zero
2. The variation of acceleration due to gravity g with distance d from centre of the earth is best represented by $(R=$ Earth's radius):
(A)

(B)

(C)

(D)

3. If Gravitational constant is decreasing in time, what will remain unchanged in case of a satellite orbiting around earth
(A) Time period
(B) Orbiting radius
(C) Tangential velocity
(D) Angular velocity
4. Two masses m_{1} and $m_{2}\left(m_{1}<m_{2}\right)$ are released from rest from a finite distance. They start under their mutual gravitational attraction
(A) acceleration of m_{1} is more than that of m_{2}
(B) acceleration of m_{2} is more than that of m_{1}
(C) centre of mass of system will remain at rest in all the reference frame
(D) total energy of system does not remain constant
5. Figure shows the orbit of a planet P round the sun $S . A B$ and $C D$ are the minor and major axes of the ellipse.
If t_{1} is the time taken by the planet to travel along $A C B$ and t_{2} the time along $B D A$, then

(A) $t_{1}=t_{2}$
(B) $t_{1}>t_{2}$
(C) $t_{1}<t_{2}$
(D) nothing can be concluded
6. Potential energy of a satellite having mass ' m ' and rotating at a height of $6.4 \times 10^{6} \mathrm{~m}$ from the earth surface is
(A) $-0.5 m g R_{e}$
(B) $-m g R_{e}$
(C) $-2 m g R_{e}$
(D) $4 m g R_{e}$
7. Suppose that the force of earth's gravity suddenly disappears, choose the correct answer out of the following statements
(A) The weight of the body will become zero but mass remains the same
(B) The mass of the body will become zero but the weight remains the same
(C) Both the mass and weight will be the same
(D) Mass and weight will remain the same
8. Figure shows the orbit of a planet P round the sun $S . A B$ and $C D$ are the minor and major axes of the ellipse.
If U is the potential energy and K kinetic energy then $|U|>|K|$ at

(A) Only D
(B) Only C
(C) both $D \& C$
(D) neither D nor C
9. At the surface of a certain planet, acceleration due to gravity is one-quarter of that on earth. If a brass ball is transported to this planet, then which one of the following statements is not correct
(A) The mass of the brass ball on this planet is a quarter of its mass as measured on earth
(B) The weight of the brass ball on this planet is a quarter of the weight as measured on earth
(C) The brass ball has the same mass on the other planet as on earth
(D) The brass ball has the same volume on the other planet as on earth
10. Where can a geostationary satellite be installed
(A) Over any city on the equator
(B) Over the north or south pole
(C) At height R above earth
(D) At the surface of earth
11. Asatellite is launched into a circular orbit of radius R around the earth. A second satellite is launched into an orbit of radius $1.02 R$. The period of second satellite is larger than the first one by approximately \qquad
(A) 1.5
(B) 3
(C) 1
(D) 2
12. A body starts from rest from a point distance R_{0} from the centre of the earth. The velocity acquired by the body when it reaches the surface of the earth will be (R represents radius of the earth).
(A) $2 G M\left(\frac{1}{R}-\frac{1}{R_{0}}\right)$
(B) $\sqrt{2 G M\left(\frac{1}{R_{0}}-\frac{1}{R}\right)}$
(C) $G M\left(\frac{1}{R}-\frac{1}{R_{0}}\right)$
(D) $2 G M \sqrt{\left(\frac{1}{R}-\frac{1}{R_{0}}\right)}$
13. Suppose the law of gravitational attraction suddenly changes and becomes an inverse cube law i.e. $F \propto \frac{1}{r^{3}}$, but still remaining a central force. Then
(A) Keplers law of areas still holds
(B) Keplers law of period still holds
(C) Keplers law of areas and period still hold
(D) Neither the law of areas, nor the law of period still
holds
14. A satellite of mass m is placed at a distance r from the centre of earth (mass M). The mechanical energy of the satel-
lite is
(A) $-\frac{G M m}{r}$
(B) $\frac{G M m}{r}$
(C) $\frac{G M \stackrel{r}{m}}{2 r}$
(D) $-\frac{\stackrel{r}{G M m}}{2 r}$
15. Two satellites of masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are revolving round the earth in circular orbits of radius r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ respectively. Which of the following statements is true regarding their speeds v_{1} and v_{2} ?
(A) $v_{1}=v_{2}$
(B) $v_{1}<v_{2}$
(C) $v_{1}>v_{2}$
(D) $\frac{v_{1}}{r_{1}}=\frac{v_{2}}{r_{2}}$
16. Which of the following astronomer first proposed that sun is static and earth rounds sun
(A) Copernicus
(B) Kepler
(C) Galileo
(D) None
17. Time period of revolution of a nearest satellite around a planet of radius R is T. Period of revolution around another planet, whose radius is $3 R$ but having same density is
(A) T
(B) $3 T$
(C) $9 T$
(D) $3 \sqrt{3} T$
18. When a body is taken from the equator to the poles, its weight
(A) Remains constant
(B) Increases
(C) Decreases
(D) Increases at N -pole and decreases at S-pole
19. Height of geostationary satellite is \qquad km
(A) 16000
(B) 22000
(C) 28000
(D) 36000
20. The ratio of the radius of the earth to that of the moon is 10. The ratio of acceleration due to gravity on the earth and on the moon is 6 . The ratio of the escape velocity from the earth's surface to that from the moon is
(A) 10
(B) 6
(C) Nearly 8
(D) 1.66
21. Acceleration due to gravity on moon is $1 / 6$ of the acceleration due to gravity on earth. If the ratio of densities of earth $\left(\rho_{e}\right)$ and moon $\left(\rho_{m}\right)$ is $\left(\frac{\rho_{e}}{\rho_{m}}\right)=\frac{5}{3}$ then radius of moon R_{m} in terms of R_{e} will be
(A) $\frac{5}{18} R_{e}$
(B) $\frac{1}{6} R_{e}$
(C) $\frac{3}{18} R_{e}$
(D) $\frac{1}{2 \sqrt{3}} R_{e}$
22. A pendulum clock is set to give correct time at the sea level. This clock is moved to hill station at an altitude of 2500 m above the sea level. In order to keep correct time of the hill station, the length of the pendulum
(A) Has to be reduced
Needs no adjustment
(B) Has to be increased-
(C) Needs no adjustment but its mass has to be increased
(D) Needs no adjustment but its mass has to be increased
23. The escape velocity for a body projected vertically upwards from the surface of earth is $11 \mathrm{~km} / \mathrm{s}$. If the body is projected at an angle of 45° with the vertical, the escape velocity will be \qquad km / s
(A) $\frac{11}{\sqrt{2}}$
(B) $11 \sqrt{2}$
(C) 22
(D) 11
24. If the change in the value of ' g ' at a height h above the surface of the earth is the same as at a depth x below it, then (both x and h being much smaller than the radius of the earth)
(A) $x=h$
(B) $x=2 h$
(C) $x=\frac{h}{2}$
(D) $x=h^{2}$
25. The mass of a planet that has a moon whose time period and orbital radius are T and R respectively can be written as
(A) $4 \pi^{2} R^{3} G^{-1} T^{-2}$
(B) $8 \pi^{2} R^{3} G^{-1} T^{-2}$
(C) $12 \pi^{2} R^{3} G^{-1} T^{-2}$
(D) $16 \pi^{2} R^{3} G^{-1} T^{-2}$
26. If the radius of a planet is R and its density is ρ, the escape velocity from its surface will be
(A) $v_{e} \propto \rho R$
(B) $v_{e} \propto \sqrt{\rho} R$
(C) $v_{e} \propto \frac{\sqrt{\rho}}{R}$
(D) $v_{e} \propto \frac{1}{\sqrt{\rho} R}$
27. A man of 50 kg mass is standing in a gravity free space at a height of 10 m above the floor. He throws a stone of 0.5 kg mass downwards with a speed $2 \mathrm{~m} / \mathrm{s}$. When the stone reaches the floor, the distance of the man above the floor will be m m
(A) 9.9
(B) 10.1
(C) 10
(D) 20
28. Distance of geostationary satellite from the surface of earth radius ($R_{e}=6400 \mathrm{~km}$) in terms of R_{e} is
(A) 13.76
(B) 10.76
(C) 6.56
(D) 2.56
29. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of earth
(A) The acceleration of S is always directed towards the centre of the earth
(B) The angular momentum of S about the centre of the earth changes in direction but its magnitude remains constant
(C) The total mechanical energy of S varies periodically with time
(D) The linear momentum of S remains constant in magnitude
30. A satellite is revolving in a circular orbit at a height h from the earth surface, such that $h \ll R$ where R is the radius of the earth. Assuming that the effect of earth's atmosphere can be neglected the minimum increase in the speed required so that the satellite could escape from the gravitational field of earth is
(A) $\sqrt{2 g R}$
(B) $\sqrt{g R}$
(C) $\sqrt{\frac{g R}{2}}$
(D) $\sqrt{g R}(\sqrt{2}-1)$
31. Which of the following graphs represents the motion of a planet moving about the sun
(A)

(B)

(C)

(D)

32. Assertion: The length of the day is slowly increasing. Reason: The dominant effect causing a slowdown in the rotation of the earth is the gravitational pull of other planets in the solar system.
(A) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
(B) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
(C) If the Assertion is correct but Reason is incorrect.
(D) If both the Assertion and Reason are incorrect.
33. A satellite is to revolve round the earth in a circle of radius 8000 km . The speed at which this satellite be projected into an orbit, will be. \qquad km / s
(A) 3
(B) 16
(C) 7.15
(D) 8
34. What will be the acceleration due to gravity at height h if $h \gg R$. Where R is radius of earth and g is acceleration due to gravity on the surface of earth
(A) $\frac{g}{\left(1+\frac{h}{R}\right)^{2}}$
(B) $g\left(1-\frac{2 h}{R}\right)$
(C) $\frac{g}{\left(1-\frac{h}{R}\right)^{2}}$
(D) $g\left(1-\frac{h}{R}\right)$
35. Dependence of intensity of gravitational field (E) of earth with distance (r) from centre of earth is correctly represented by
(A)

(B)

(C)

(D)

36. An object weights $72 N$ on earth. Its weight at a height of $R / 2$ from earth is \qquad N
(A) 32
(B) 56
(C) 72
(D) 0
37. The velocity with which a projectile must be fired so that it escapes earth's gravitation does not depend on
(A) Mass of the earth
(B) Mass of the projectile
(C) Radius of the projectile's orbit
(D) Gravitational constant
38. From a solid sphere of mass M and radius R, a spherical portion of radius $R / 2$ is removed, as shown in the figure. Taking gravitational potential $V=0$ at $r=\infty$, the potential at the centre of the cavity thus formed is
($G=$ gravitational constant)

(A) $\frac{-G M}{R}$
(B) $\frac{-2 G M}{3 R}$
(C) $\frac{-2 G M}{R}$
(D) $\frac{-G M}{2 R}$
39. A satellite of mass m is orbiting the earth (of radius R) at a height h from its surface. The total energy of the satellite in terms of g_{0}, the value of acceleration due to gravity at the earth's surface, is
(A) $\frac{2 m g_{0} R^{2}}{R+h}$
(B) $-\frac{2 m g_{0} R^{2}}{R+h}$
(C) $\frac{m g_{0} R^{2}}{2(R+h)}$
(D) $-\frac{m g_{0} R^{2}}{2(R+h)}$
40. If mass of earth is M, radius is R and gravitational constant is G, then work done to take 1 kg mass from earth surface to infinity will be
(A) $\sqrt{\frac{G M}{2 R}}$
(B) $\frac{G M}{R}$
(C) $\sqrt{\frac{2 G M}{R}}$
(D) $\frac{G M}{2 R}$
41. The diameters of two planets are in the ratio $4: 1$ and their mean densities in the ratio $1: 2$. The acceleration due to gravity on the planets will be in ratio
(A) $1: 2$
(B) $2: 3$
(C) $2: 1$
(D) $4: 1$
42. Escape velocity on the earth
(A) Is less than that on the moon
(B) Depends upon the mass of the body
(C) Depends upon the direction of projection
(D) Depends upon the height from which it is projected
43. The periodic time of a communication satellite is \qquad hours
(A) 6
(B) 12
(C) 18
(D) 24
44. If the density of the earth is doubled keeping its radius constant then acceleration due to gravity will be. \qquad . m / s^{2}. ($g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(A) 19.6
(B) 9.8
(C) 4.9
(D) 2.45
45. The kinetic energy needed to project a body of mass m from the earth surface (radius R) to infinity is
(A) $m g R / 2$
(B) $2 m g R$
(C) $m g R$
(D) $m g R / 4$
46. Two satellites, A and B, have masses m and $2 m$ respectively. A is in a circular orbit of radius R, and B is in a circular orbit of radius $2 R$ around the earth. The ratio of their kinetic energies, K.E.A/K.E.B, is
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) $\sqrt{\frac{1}{2}}$
47. The acceleration due to gravity is g at a point distant r from the centre of earth of radius R. If $r<R$, then
(A) $g \propto r$
(B) $g \propto r^{2}$
(C) $g \propto r^{-1}$
(D) $g \propto r^{-2}$
48. The gravitational field due to a mass distribution is $E=$ K / x^{3} in the X-direction. (K is a constant). Taking the gravitational potential to be zero at infinity, its value at a distance X is
(A) K / x
(B) $K / 2 x$
(C) K / x^{2}
(D) $K / 2 x^{2}$
49. An astronaut orbiting the earth in a circular orbit 120 km above the surface of earth, gently drops a spoon out of space-ship. The spoon will
(A) Fall vertically down to
(B) Move towards the moon the earth
(C) Will move along with space-ship
(D) Will move in an irregular way then fall down to earth
50. The escape velocity from the earth is about $11 \mathrm{~km} /$ second. The escape velocity from a planet having twice the radius and the same mean density as the earth, is \qquad $\mathrm{km} / \mathrm{sec}$
(A) 22
(B) 11
(C) 5.5
(D) 15.5
51. A particle of mass M is at a distance a from surface of a thin spherical shell of equal mass and having radius a.

(A) Gravitational field and potential both are zero at centre of the shell.
(B) Gravitational field is zero not only inside the shell but at a point outside the shell also.
(C) Inside the shell, gravitational field alone is zero.
(D) Neither gravitational field nor gravitational potential is zero inside the shell.
52. Assuming the earth to be a sphere of uniform density, the acceleration due to gravity inside the earth at a distance of r from the centre is proportional to
(A) r
(B) r^{-1}
(C) r^{2}
(D) r^{-2}
53. A point particle is held on the axis of a ring of mass m and radius r at a distance r from its centre C. When released, it reaches C under the gravitational attraction of the ring. Its speed at C will be
(A) $\sqrt{\frac{2 G m}{r}(\sqrt{2}-1)}$
(B) $\sqrt{\frac{G m}{r}}$
(C) $\sqrt{\frac{2 G m}{r}\left(1-\frac{1}{\sqrt{2}}\right)}$
(D) $\sqrt{\frac{2 G m}{r}}$
54. The figure shows the motion of a planet around the sun in an elliptical orbit with sun at the focus. The shaded areas A and B are also shown in the figure which can be assumed to be equal. If t_{1} and t_{2} represent the time for the planet to move from a to b and d to c respectively, then

(A) $t_{1}<t_{2}$
(B) $t_{1}>t_{2}$
(C) $t_{1}=t_{2}$
(D) $t_{1} \leq t_{2}$
55. A simple pendulum has a time period T_{1} when on the earth's surface and T_{2} when taken to a height R above the earth's surface, where R is the radius of the earth. The value of T_{2} / T_{1} is
(A) 1
(B) $\sqrt{2}$
(C) 4
(D) 2
56. Planet A has mass M and radius R . Planet B has half the mass and half the radius of Planet A. If the escape velocities from the Planets A and B are v_{A} and v_{B}, respectively, then $\frac{v_{\mathrm{A}}}{v_{\mathrm{B}}}=\frac{\mathrm{n}}{4}$ The value of n is
(A) 4
(B) 1
(C) 2
(D) 3
57. Suppose, the acceleration due to gravity at the Earth's surface is $10 \mathrm{~m} \mathrm{~s}^{-2}$ and at the surface of Mars it is $4.0 \mathrm{~m} \mathrm{~s}^{-2}$. A 60 kg pasenger goes from the Earth to the Mars in a spaceship moving with a constant velocity. Neglect all other objects in the sky. Which part of figure best represents the weight (net gravitational force) of the passenger as a function of time?

(A) A
(B) B
(C) C
(D) D
58. The escape velocity from the surface of earth is V_{e}. The escape velocity from the surface of a planet whose mass and radius are 3 times those of the earth will be
(A) V_{e}
(B) $3 V_{e}$
(C) $9 V_{e}$
(D) $27 V_{e}$
59. A planet is revolving around the sun as shown in elliptical path the orbital velocity of the planet will be minimum at

(A) A
(B) B
(C) C
(D) D
60. Assuming earth to be a sphere of a uniform density, what is the value of gravitational acceleration in a mine 100 km below the earth's surface \qquad $\mathrm{m} / \mathrm{s}^{2}$. (Given $R=6400 \mathrm{~km}$)
(A) 9.66
(B) 7.64
(C) 5.06
(D) 3.10
61. An astronaut of mass m is working on a satellite or biting the earth at a distance h from the earth's surface. The radius of the earth is R, while its mass is M. The gravitational pull F_{G} on the astronaut is
(A) Zero since astronaut feels weightless
(B) $\frac{G M m}{(R+h)^{2}}<F_{G}<\frac{G M m}{R^{2}}$
(C) $F_{G}=\frac{G M m}{(R+h)^{2}}$
(D) $0<F_{G}<\frac{G M m}{R^{2}}$
62. Weightlessness experienced while orbiting the earth in space-ship, is the result of
(A) Inertia
(B) Acceleration
(C) Zero gravity
(D) Free fall towards earth
63. The escape velocity of a projectile from the earth is approximately \qquad km/sec
(A) 0.112
(B) 112
(C) 11.2
(D) 11200
64. v_{e} and v_{p} denotes the escape velocity from the earth and another planet having twice the radius and the same mean density as the earth. Then
(A) $v_{e}=v_{p}$
(B) $v_{e}=v_{p} / 2$
(C) $v_{e}=2 v_{p}$
(D) $v_{e}=v_{p} / 4$
65. If a new planet is discovered rotating around Sun with the orbital radius double that of earth, then what will be its time period (in earth's days)
(A) 1032
(B) 1023
(C) 1024
(D) 1043
66. Assuming that the gravitational potential energy of an object at inflinity is zero, the change in potential energy (finalinitial) of an object of mass m, when to a height h from the surface of earth (of radius R), is given
(A) $-\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}$
(B) $\frac{\mathrm{GMmh}}{\mathrm{R}(\mathrm{R}+\mathrm{h})}$
(C) $m g h$
(D) $\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}$
67. Consider earth to be a homogeneous sphere. Scientist A goes deep down in a mine and scientist B goes high up in a balloon. The value of g measured by
(A) A goes on decreasing
(B) B goes on decreasing and that by B goes on increasing and that by A goes on increasing
(C) Each decreases at the same rate
(D) Each decreases at different rates
68. The force of gravitation is
(A) repulsive
(B) conservative
(C) electrostatic
(D) non-conservative
69. A spaceship orbits around a planet at a height of 20 km from its surface. Assuming that only gravitational field of the plant acts on the spaceship. What will be the number of complete revolutions made by the spaceship in 24 hours around the plane? [Given: Mass of plane $=8 \times 10^{22} \mathrm{~kg}$, Radius of planet $=2 \times 10^{6} \mathrm{~m}$, Gravitational constant $\left.G=6.67 \times 10^{-11} \mathrm{Mn}^{2} / \mathrm{kg}^{2}\right]$
(A) 9
(B) 11
(C) 13
(D) 17
70. Who among the following gave first the experimental value of G
(A) Cavendish
(B) Copernicus
(C) Brook Teylor
(D) None of these
71. If R is the radius of the earth and g the acceleration due to gravity on the earth's surface, the mean density of the earth is
(A) $4 \pi G / 3 g R$
(B) $3 \pi R / 4 g G$
(C) $3 g / 4 \pi R G$
(D) $\pi R G / 12 G$
72. Aplanet of mass m is in an elliptical orbit about the sun ($m \ll M_{\text {sun }}$) with an orbital period T. If A be the area of orbit, then its angular momentum would be :
(A) $\frac{2 m A}{T}$
(B) $m A T$
(C) $\frac{m A}{2 T}$
(D) $2 m A T$
73. The angular velocity of the earth with which it has to rotate so that acceleration due to gravity on 60° latitude becomes zero is (Radius of earth $=6400 \mathrm{~km}$. At the poles $g=10 \mathrm{~ms}^{-2}$)
(A) $2.5 \times 10^{-3} \mathrm{rad} / \mathrm{s}$
(B) $5.0 \times 10^{-1} \mathrm{rad} / \mathrm{s}$
(C) $10 \times 10^{1} \mathrm{rad} / \mathrm{s}$
(D) $7.8 \times 10^{-2} \mathrm{rad} / \mathrm{s}$
74. At what height over the earth's pole, the free fall acceleration decreases by one percent \qquad km . (assume the radius of earth to be 6400 km)
(A) 32
(B) 80
(C) 1.253
(D) 64
75. The mass of the moon is about 1.2% of the mass of the earth. Compared to the gravitational force the earth exerts on the moon, the gravitational force the moon exerts on earth
(A) Is the same
(B) Is smaller
(C) Is greater
(D) Varies with its phase
76. A geostationary satellite is orbiting the earth at a height $5 R$ above the surface of the earth , R being the radius of the earth. The time period of another satellite in hours at a height of $2 R$ from the surface of the earth is
(A) $5 h r$
(B) 10 hr
(C) $6 \sqrt{2} h r$
(D) $10 \sqrt{2} \mathrm{hr}$
77. A spring balance is graduated on sea level. If a body is weighed with this balance at consecutively increasing heights from earth's surface, the weight indicated by the balance
(A) Will go on increasing
(B) Will go on decreasing continuously
(C) Will remain same
(D) Will first increase and then decrease
78. Radius of earth is around 6000 km . The weight of body at height of 6000 km from earth surface becomes
(A) Half
(B) One-fourth
(C) One third
(D) No change
79. Out of the following, the only incorrect statement about satellites is
(A) A satellite cannot move in a stable orbit in a plane passing through the earth's centre
(B) Geostationary satellites are launched in the equatorial plane
(C) We can use just one geostationary satellite for global communication around the globe
(D) The speed of a satellite increases with an increase in the radius of its orbit
80. If a body describes a circular motion under inverse square field, the time taken to complete one revolution T is related to the radius of the circular orbit as
(A) $T \propto r$
(B) $T \propto r^{2}$
(C) $T^{2} \propto r^{3}$
(D) $T \propto r^{4}$
81. If radius of the earth contracts 2% and its mass remains the same, then weight of the body at the earth surface
(A) Will decrease
(B) Will increase
(C) Will remain the same
(D) None of these
82. Hubble's law states that the velocity with which milky way is moving away from the earth is proportional to
(A) Square of the distance of the milky way from the earth
(B) Distance of milky way from the earth
(C) Mass of the milky way
(D) Product of the mass of the milky way and its distance from the earth
83. When a satellite moves around the earth in a certain orbit, the quantity which remains constant is :
(A) angular velocity
(B) kinetic energy
(C) aerial velocity
(D) potential energy
84. The least velocity required to throw a body away from the surface of a planet so that it may not return is (radius of the planet is $6.4 \times 10^{6} \mathrm{~m}, g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$)
(A) $9.8 \times 10^{-3} \mathrm{~m} / \mathrm{sec}$
(B) $12.8 \times 10^{3} \mathrm{~m} / \mathrm{sec}$
(C) $9.8 \times 10^{3} \mathrm{~m} / \mathrm{sec}$
(D) $11.2 \times 10^{3} \mathrm{~m} / \mathrm{sec}$
85. The escape velocity of a rocket launched from the surface of the earth
(A) Does not depend on the mass of the rocket
(B) Does not depend on the mass of the earth
(C) Depends on the mass of the planet towards which it is moving
(D) Depends on the mass of the rocket
86. 3 particles each of mass m are kept at vertices of an equilateral triangle of side L. The gravitational field at centre
due to these particles is
(A) Zero
(B) $\frac{3 G M}{L^{2}}$
(C) $\frac{9 G M}{L^{2}}$
(D) $\frac{12}{\sqrt{3}} \frac{G M}{L^{2}}$
87. Orbital velocity of an artificial satellite does not depend upon
(A) Mass of the earth
(B) Mass of the satellite
(C) Radius of the earth
(D) Acceleration due to gravity
88. A body is projected vertically upwards from the surface of a planet of radius R with a velocity equal to half the escape velocity for that planet. The maximum height attained by the body is
(A) $R / 3$
(B) $R / 2$
(C) $R / 4$
(D) $R / 5$
89. A body of mass $m \mathrm{~kg}$. starts falling from a point $2 R$ above the Earth's surface. Its kinetic energy when it has fallen to a point ' R ' above the Earth's surface [R-Radius of Earth, M-Mass of Earth, G-Gravitational Constant]
(A) $\frac{1}{2} \frac{G M m}{R}$
(B) $\frac{1}{6} \frac{G M m}{R}$
(C) $\frac{2}{2} \frac{G R m}{R}$
(D) $\frac{1}{3} \frac{G R m}{R}$
90. A planet has orbital radius twise as the earth's orbital radius then the time period of planet is \qquad years
(A) 4.2
(B) 2.8
(C) 5.6
(D) 8.4
91. The additional kinetic energy to be provided to a satellite of mass m revolving around a planet of mass M, to transfer it from a circular orbit of radius R_{1} to another of radius $R_{2}\left(R_{2}>R_{1}\right)$ is
(A) $\operatorname{GMm}\left(\frac{1}{R_{1}{ }^{2}}-\frac{1}{R_{2}{ }^{2}}\right)$
(B) $\operatorname{GMm}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
(C) $2 \mathrm{GMm}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
(D) $\frac{1}{2} \mathrm{GMm}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$.
92. Choose the correct statement from the following :Weightlessness of an astronaut moving in a satellite is a situation of
(A) Zero g
(B) No gravity
(C) Zero mass
(D) Free fall
93. At what distance from the centre of the earth, the value of acceleration due to gravity g will be half that on the surface ($R=$ radius of earth)
(A) $2 R$
(B) R
(C) $1.414 R$
(D) $0.414 R$
94. Let g be the acceleration due to gravity at earth's surface and K be the rotational kinetic energy of the earth. Suppose the earth's radius decreases by 2% keeping all other quantities same, then
(A) g decreases by 2% and K decreases by 4%
(B) g decreases by 4% and K increases by 2%
(C) g increases by 4% and K
(D) g decreases by 4% and increases by 4%
K increases by 4%
95. Weight of a body is maximum at
(A) Moon
(B) Poles of earth
(C) Equator of earth
(D) Centre of earth
96. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth. Then,
(A) the acceleration of S is always directed towards the centre of the earth.
(B) the angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant.
(C) the total mechanical energy of S varies periodically with time.
(D) the linear momentum of S remains constant in magnitude.
97. The mass and diameter of a planet are twice those of earth. What will be the period of oscillation of a pendulum on this planet if it is a seconds pendulum on earth ?
(A) $\sqrt{2}$ second
(B) $2 \sqrt{2}$ seconds
(C) $\frac{1}{\sqrt{2}}$ second
(D) $\frac{1}{2 \sqrt{2}}$ second
98. At what distance from the centre of the moon is the point at which the strength of the resultant field of earth's and moon's gravitational field is equal to zero. The earth's mass is 81 times that of moon and the distance between centres of these planets is $60 R$ where R is the radius of the earth
(A) $6 R$
(B) $4 R$
(C) $3 R$
(D) $5 R$
99. A spherical planet far out in space has a mass M_{0} and diameter D_{0}. A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity which is equal to
(A) $G M_{0} / D_{0}^{2}$
(B) $4 m G M_{0} / D_{0}^{2}$
(C) $4 G M_{0} / D_{0}^{2}$
(D) $G m M_{0} / D_{0}^{2}$
100. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth. Then
(A) the acceleration of S is always directed towards the centre of the earth
(B) the angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant
(C) the total mechanical energy of S varies periodically with time
(D) the linear momentum of S remains constant in magnitude
101. A man of mass m starts falling towards a planet of mass M and radius R. As he reaches near to the surface, he realizes that he will pass through a small hole in the planet. As he enters the hole, he sees that the planet is really made of two pieces a spherical shell of negligible thickness of mass $\frac{2 M}{3}$ and a point mass $\frac{M}{3}$ at the centre. Change in the force of gravity experienced by the man is
(A) $\frac{2}{3} \frac{G M m}{R^{2}}$
(B) 0
(C) $\frac{1}{3} \frac{G M m}{R^{2}}$
(D) $\frac{4}{3} \frac{G M m}{R^{2}}$
102. The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is R, the radius of the planet would be
(A) $2 R$
(B) $4 R$
(C) $\frac{1}{4} R$
(D) $\frac{1}{2} R$
103. The escape velocity of a sphere of mass m from earth having mass M and radius R is given by
(A) $\sqrt{\frac{2 G M}{R}}$
(B) $2 \sqrt{\frac{G M}{R}}$
(C) $\sqrt{\frac{2 G M m}{R}}$
(D) $\sqrt{\frac{G M}{R}}$
104. A research satellite of mass 200 kg circles the earth in an orbit of average radius $3 R / 2$ where R is the radius of the earth. Assuming the gravitational pull on a mass of 1 kg on the earth's surface to be 10 N , the pull on the satellite will be N.
(A) 880
(B) 889
(C) 890
(D) 892
105. At $k m$ height from the surface of earth the gravitation potential and the value of g are $-5.4 \times 10^{7} \mathrm{Jkg}^{-1}$ and $6.0 \mathrm{~ms}^{-2}$ respectively. Take the radius of earth as 6400 km .
(A) 1600
(B) 1400
(C) 2000
(D) 2600
106. The mass of the earth is 81 times that of the moon and the radius of the earth is 3.5 times that of the moon. The ratio of the escape velocity on the surface of earth to that on the surface of moon will be
(A) 0.2
(B) 2.57
(C) 4.81
(D) 0.39
107. The condition for a uniform spherical mass m of radius r to be a black hole is [$G=$ gravitational constant and $g=$ acceleration due to gravity]
(A) $(2 G m / r)^{1 / 2} \leq c$
(B) $(2 G m / r)^{1 / 2}=c$
(C) $(2 G m / r)^{1 / 2} \geq c$
(D) $(g m / r)^{1 / 2} \geq c$
108. The escape velocity of an object on a planet whose g value is 9 times on earth and whose radius is 4 times that of earth in km / s is
(A) 67.2
(B) 33.6
(C) 16.8
(D) 25.2
109. A weight is suspended from the ceiling of a lift by a spring balance. When the lift is stationary the spring balance reads W. If the lift suddenly falls freely under gravity, the reading on the spring balance will be
(A) W
(B) $2 W$
(C) $W / 2$
(D) 0
110. A satellite of the earth is revolving in circular orbit with a uniform velocity V. If the gravitational force suddenly disappears, the satellite will
(A) continue to move with the same velocity in the same orbit.
(B) move tangentially to the original orbit with velocity V.
(C) fall down with increasing velocity.
(D) come to a stop somewhere in its original orbit.
111. Which of the following is the evidence to show that there must be a force acting on earth and directed towards the
sun
(A) Deviation of the falling bodies towards east
(B) Revolution of the earth round the sun
(C) Phenomenon of day and night
(D) Apparent motion of sun round the earth
112. The maximum possible velocity of a satellite orbiting round the earth in a stable orbit is
(A) $\sqrt{2 R_{e} g}$
(B) $\sqrt{R_{e} g}$
(C) $\sqrt{\frac{R_{e} g}{2}}$
(D) Infinite
113. A planet is revolving around the sun as shown in elliptical path
The correct option is

(A) The time taken in travelling $D A B$ is less than that for $B C D$
(B) The time taken in travelling $D A B$ is greater than that for $B C D$
(C) The time taken in travelling $C D A$ is less than that for $A B C$
(D) The time taken in travelling $C D A$ is greater than that for $A B C$
114. The acceleration due to gravity on a planet is same as that on earth and its radius is four times that of earth. What will be the value of escape velocity on that planet if it is v_{e} on earth
(A) v_{e}
(B) $2 v_{e}$
(C) $4 v_{e}$
(D) $\frac{v_{e}}{2}$
115. The gravitational field in a region is given by
$\vec{E}=(5 N / k g) \hat{i}+(12 N / k g) \hat{j}$
If the potential at the origin is taken to be zero, then the ratio of the potential at the points $(12 m, 0)$ and $(0,5 m)$ is
(A) Zero
(B) 1
(C) $\frac{144}{25}$
(D) $\frac{25}{144}$
116. What is the intensity of gravitational field of the centre of a spherical shell
(A) $G m / r^{2}$
(B) g
(C) Zero
(D) None of these
117. If the gravitational force between two objects were proportional to $\frac{1}{R}$ (and not as $1 / R^{2}$) where R is separation between them, then a particle in circular orbit under such a force would have its orbital speed v proportional to
(A) $\frac{1}{R^{2}}$
(B) R^{0}
(C) R^{1}
(D) $\frac{1}{R}$
118. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?
(A) Raindrops will fall faster.
(B) Walking on the ground would become more difficult.
(C) ' g ' on the Earth will not change.
(D) Time period of a simple pendulum on the Earth would decrease.
119. If the distance between two masses is doubled, the gravitational attraction between them
(A) Is doubled
(B) Becomes four times
(C) Is reduced to half
(D) Is reduced to a quarter
120. Assume that the acceleration due to gravity on the surface of the moon is 0.2 times the acceleration due to gravity on the surface of the earth. If R_{e} is the maximum range of a projectile on the earth's surface, what is the maximum range on the surface of the moon for the same velocity of projection
(A) $0.2 R_{e}$
(B) $2 R_{e}$
(C) $0.5 R_{e}$
(D) $5 R_{e}$
121. If the radius and acceleration due to gravity both are doubled, escape velocity of earth will become \qquad km / s
(A) 11.2
(B) 22.4
(C) 5.6
(D) 44.8
122. The magnitudes of the gravitational force at distances r_{1} and r_{2} from the centre of a uniform sphere of radius R and mass M are F_{1} and F_{2} respectively. Then
(A) $\frac{F_{1}}{F_{2}}=\frac{r_{1}}{r_{2}}$ if $r_{1}<R$ and
(B) $\begin{aligned} \frac{F_{1}}{F_{2}} & =\frac{r_{1}^{2}}{r_{2}^{2}} \text { if } r_{1}>R \text { and } \\ r_{2} & >R\end{aligned}$
(C) $\frac{F_{1}}{F_{2}}=\frac{r_{1}}{r_{2}}$ if $r_{1}>R$ and

$$
r_{2}>R
$$

(D) Both (a) and (b)
123. At a given place where acceleration due to gravity is ' g ' $\mathrm{m} / \mathrm{sec}^{2}$, a sphere of lead of density ' $\mathrm{d}^{\prime} \mathrm{kg} / \mathrm{m}^{3}$ is gently released in a column of liquid of density ' $\rho^{\prime} \mathrm{kg} / \mathrm{m}^{3}$. If $d>\rho$, the sphere will
(A) Fall vertically with an acceleration ${ }^{\prime} g^{\prime} \mathrm{m} / \mathrm{sec}^{2}$
(B) Fall vertically with no acceleration
(C) Fall vertically with an ac-
(D) Fall vertically with an celeration $g\left(\frac{d-\rho}{d}\right)$ acceleration $g\left(\frac{\rho}{d}\right)$
124. Two satellite A and B, ratio of masses $3: 1$ are in circular orbits of radii r and $4 r$. Then ratio of total mechanical energy of A to B is
(A) $1: 3$
(B) $3: 1$
(C) $3: 4$
(D) $12: 1$
125. A very long (length L) cylindrical galaxy is made of uniformly distributed mass and has radius $R(R \ll L)$. A star outside the galaxy is orbiting the galaxy in a plane perpendicular to the galaxy and passing through its centre. If the time period of star is T and its distance from the galaxy's axis is r, then
(A) $T \propto r$
(B) $T \propto \sqrt{r}$
(C) $T \propto r^{2}$
(D) $T^{2} \propto r^{3}$
126. A satellite whose mass is M, is revolving in circular orbit of radius r around the earth. Time of revolution of satellite is
(A) $T \propto \frac{r^{5}}{G M}$
(B) $T \propto \sqrt{\frac{r^{3}}{G M}}$
(C) $T \propto \sqrt{\frac{r}{G M^{2} / 3}}$
(D) $T \propto \sqrt{\frac{r^{3}}{G M^{1} / 4}}$
127. For a satellite moving in an orbit around the earth, the ratio of kinetic energy to potential energy is
(A) 2
(B) $\frac{1}{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\sqrt{2}$
128. Four identical particles of mass M are located at the corners of a square of side ' a^{\prime}. What should be their speed if each of them revolves under the influence of other's gravitational field in a circular orbit circumscribing the square?

(A) $1.35 \sqrt{\frac{G M}{a}}$
(B) $1.16 \sqrt{\frac{G M}{a}}$
(C) $1.41 \sqrt{\frac{G M}{a}}$
(D) $1.21 \sqrt{\frac{G M}{a}}$
129. The acceleration of a body due to the attraction of the earth (radius R) at a distance $2 R$ from the surface of the earth is ($g=$ acceleration due to gravity at the surface of the earth)
(A) $\frac{g}{9}$
(B) $\frac{g}{3}$
(C) $\frac{g}{4}$
(D) g
130. If a satellite orbits as close to the earth's surface as possible,
(A) its speed is maximum
(B) time period of its rotation is minimum
(C) the total energy of the 'earth plus satellite' system is minimum
(D) all of the above
131. The radii of two planets are respectively R_{1} and R_{2} and their densities are respectively ρ_{1} and ρ_{2}. The ratio of the accelerations due to gravity at their surfaces is
(A) $g_{1}: g_{2}=\frac{\rho_{1}}{R_{1}^{2}}: \frac{\rho_{2}}{R_{2}^{2}}$
(B) $g_{1}: g_{2}=R_{1} R_{2}: \rho_{1} \rho_{2}$
(C) $g_{1}: g_{2}=R_{1} \rho_{2}: R_{2} \rho_{1}$
(D) $g_{1}: g_{2}=R_{1} \rho_{1}: R_{2} \rho_{2}$
132. In a gravitational field, at a point where the gravitational potential is zero
(A) The gravitational field is necessarily zero
(C) Nothing can be said def-
(B) The gravitational field is not necessarily zero tational field initely about the gravi-
(D) None of these
133. The radius and mass of earth are increased by 0.5%. Which of the following statements are true at the surface of the earth
(A) Potential energy will re-
(B) g will decrease main unchanged
(C) Escape velocity will re-
(D) All of the above
134. A body of mass m is taken to the bottom of a deep mine. Then
(A) Its mass increases
(B) Its mass decreases
(C) Its weight increases
(D) Its weight decreases
135. When a satellite in a circular orbit around the earth enters the atmospheric region, it encounters small air resistance to its motion. Then
(A) its kinetic energy increases
(B) its kinetic energy decreases
(C) its angular momentum about the earth decreases
(D) (A) and (C) both
136. In order to find time, the astronaut orbiting in an earth satellite should use
(A) A pendulum clock
(B) A watch having main spring to keep it going
(C) Either a pendulum clock
(D) Neither a pendulum clock nor a watch
137. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth
(A) the acceleration of S is always directed towards the centre of the earth
(B) the angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant
(C) the total mechanical energy of S varies periodically with time
(D) the linear momentum of S remains constant in magnitude
138. Gravitational potential at the centre of curvature of a hemispherical bowl of radius R and mass M is V.
(A) gravitational potential at the centre of curvature of a thin uniform wire of mass M, bent into a semicircle of radius R, is also equal to V.
(B) In part (A) if the same wire is bent into a quarter of a circle then also the gravitational potential at the centre of curvature will be V.
(C) In part (A) if the same wire mass is nonuniformly distributed along its length and it is bent into a semicircle of radius R, gravitational potential at the centre is V.
(D) (A) and (C) both
139. Radius of orbit of satellite of earth is R. Its kinetic energy is proportional to
(A) $\frac{1}{R}$
(B) $\frac{1}{\sqrt{R}}$
(C) R
(D) $\frac{1}{R^{3 / 2}}$
140. A particle starts from rest at a distance R from the centre and along the axis of a fixed ring of radius $R \&$ mass M. Its velocity at the centre of the ring is :

(A) $\sqrt{\frac{\sqrt{2} G M}{R}}$
(B) $\sqrt{\frac{2 G M}{R}}$
(C) $\sqrt{\left(1-\frac{1}{\sqrt{2}}\right) \frac{G M}{R}}$
(D) $\sqrt{(2-\sqrt{2}) \frac{G M}{R}}$
141. In order to make the effective acceleration due to gravity equal to zero at the equator, the angular velocity of rotation of the earth about its axis should be ($g=10 \mathrm{~ms}^{-2}$ and radius of earth is 6400 kms)
(A) $0 \mathrm{rad} \mathrm{sec}^{-1}$
(B) $\frac{1}{800} \mathrm{rad} \mathrm{sec}{ }^{-1}$
(C) $\frac{1}{80} \mathrm{rad} \mathrm{sec}^{-1}$
(D) $\frac{1}{8} \mathrm{rad} \mathrm{sec}^{-1}$
142. The escape velocity for a body projected vertically upwards from the surface of earth is $11 \mathrm{~km} / \mathrm{s}$. If the body is projected at an angle of 45° with the vertical, the escape velocity will be \qquad km / s
(A) 22
(B) 11
(C) $\frac{11}{\sqrt{2}}$
(D) $11 \sqrt{2}$
143. In the solar system, which is conserved
(A) Total Energy
(B) K.E.
(C) Angular Velocity
(D) Linear Momentum
144. By which curve will the variation of gravitational potential of a hollow sphere of radius R with distance be depicted
(A)

(C)

(D)

145. The correct graph representing the variation of total energy $\left(E_{t}\right)$ kinetic energy $\left(E_{k}\right)$ and potential energy (U) of a satellite with its distance from the centre of earth is
(A)

(B)

(C)

(D)

146. The value of escape velocity on a certain planet is $2 \mathrm{~km} / \mathrm{s}$. Then the value of orbital speed for a satellite orbiting close to its surface is
(A) $12 \mathrm{~km} / \mathrm{s}$
(B) $1 \mathrm{~km} / \mathrm{s}$
(C) $\sqrt{2} \mathrm{~km} / \mathrm{s}$
(D) $2 \sqrt{2} \mathrm{~km} / \mathrm{s}$
147. The acceleration due to gravity at pole and equator can be related as
(A) $g_{p}<g_{e}$
(B) $g_{p}=g_{e}=g$
(C) $g_{p}=g_{e}<g$
(D) $g_{p}>g_{e}$
148. The escape velocity for the earth is $11.2 \mathrm{~km} / \mathrm{sec}$. The mass of another planet is 100 times that of the earth and its radius is 4 times that of the earth. The escape velocity for this planet will be \qquad $\mathrm{km} / \mathrm{sec}$
(A) 112.0
(B) 5.6
(C) 280.0
(D) 56.0
149. Taking the gravitational potential at a point infinte distance away as zero, the gravitational potential at a point A is -5 unit. If the gravitational potential at point infinite distance away is taken as +10 units, the potential at point A is unit
(A) -5
(B) +5
(C) +10
(D) +15
150. A communications Earth satellite
(A) goes round the earth from west to east
(B) can be in the equatorial plane only
(C) can be vertically above any place on the earth
(D) (A) and (B) both
151. Orbital velocity of earth's satellite near the surface is $7 \mathrm{~km} / \mathrm{s}$. When the radius of the orbit is 4 times than that of earth's radius, then orbital velocity in that orbit is . \qquad $\mathrm{km} / \mathrm{sec}$
(A) 3.5
(B) 7
(C) 72
(D) 14
152. Kepler's second law (law of areas) is nothing but a statement of
(A) Work energy theorem
(B) Conservation of linear momentum
(C) Conservation of angular
(D) Conservation of energy momentum
153. The distance of neptune and saturn from the sun is nearly 10^{13} and 10^{12} meter respectively. Assuming that they move in circular orbits, their periodic times will be in the ratio
(A) 10
(B) 100
(C) $10 \sqrt{10}$
(D) 1000
154. The distance between centre of the earth and moon is 384000 km . If the mass of the earth is $6 \times 10^{24} \mathrm{~kg}$ and $G=6.66 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$. The speed of the moon is nearly......... $\mathrm{km} / \mathrm{sec}$
(A) 1
(B) 4
(C) 8
(D) 11.2
155. The height at which the weight of a body becomes $\frac{1^{t h}}{16}$, its weight on the surface of earth (radius R), is
(A) $5 R$
(B) $15 R$
(C) $3 R$
(D) $4 R$
156. This question contains Statement -1 and Statement -2 . Of the four choices given after the statements, choose the one that best describes the two statements.
Statement-1: For a mass M kept at the centre ofa cube of side ' a ', the flux of gravitational field passing through its sides $4 \pi G M$.
Statement-2: If the direction of a field due to a point source is radial and its dependence on the distance ' r ' from the source is given as $\frac{1}{r^{2}}$, its flux through a closed surface depends only on the strength of the source enclosed by the surface and not on the size or shape of the surface.
(A) Statement -1 is false, Statement -2 is true
(B) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement-1
(C) Statement -1 is true, Statement -2 is true; Statement -2 is not a correct explanation for Statement -1
(D) Statement -1 is true, Statement -2 is false
157. The orbital speed of Jupiter is
(A) Greater than the orbital
speed of earth
(B) Less than the orbital speed of earth
(C) Equal to the orbital
(D) Zero speed of earth
158. A body weight 500 N on the surface of the earth. How much would it weigh half way below the surface of the earth \qquad N
(A) 125
(B) 250
(C) 500
(D) 1000
159. Mass M is divided into two parts $x M$ and $(1-x) M$. For a given separation, the value of x for which the gravitational attraction between the two pieces becomes maximum is
(A) 0.5
(B) $\frac{3}{5}$
(C) 1
(D) 2
160. A body has a weight 90 kg on the earth's surface, the mass of the moon is $1 / 9$ that of the earth's mass and its radius is $1 / 2$ that of the earth's radius. On the moon the weight of the body is \qquad kg
(A) 45
(B) 202.5
(C) 90
(D) 40
161. A body weighs 700 gm wt on the surface of the earth. How much will it weigh on the surface of a planet whose mass is $\frac{1}{7}$ and radius is half that of the earth \qquad $g m w t$
(A) 200
(B) 400
(C) 50
(D) 300
162. The orbital velocity of an artificial satellite in a circular orbit just above the earth's surface is v. For a satellite orbiting at an altitude of half of the earth's radius, the orbital
velocity is
(A) $\frac{3}{2} v$
(B) $\sqrt{\frac{3}{2}} v$
(C) $\sqrt{\frac{2}{3}} v$
(D) $\frac{2}{3} v$
163. An earth satellite of mass m revolves in a circular orbit at a height h from the surface of the earth. R is the radius of the earth and g is acceleration due to gravity at the surface of the earth. The velocity of the satellite in the orbit is given by
(A) $\frac{g R^{2}}{R+{ }^{h}}$
(B) $g R$
(C) $\frac{g R}{R+h}$
(D) $\sqrt{\frac{g R^{2}}{R+h}}$
164. The escape velocity of a body on the surface of the earth is $11.2 \mathrm{~km} / \mathrm{s}$. If the earth's mass increases to twice its present value and the radius of the earth becomes half, the escape velocity would become \qquad km / s
(A) 5.6
(B) 11.2
(C) 22.4
(D) 44.8
165. A satellite moves around the earth in a circular orbit of radius r with speed v. If the mass of the satellite is M, its
total energy is
(A) $-\frac{1}{2} M v^{2}$
(B) $\frac{1}{2} M v^{2}$
(C) $\frac{3}{2} M v^{2}$
(D) $M v^{2}$
166. A particle is moving with a uniform speed in a circular orbit of radius R in a central force inversely proportional to the $n^{\text {th }}$ power of R. If the period ofrotation of the particle is T, then
(A) $T \propto R^{\frac{n}{2}+1}$
(B) $T \propto R_{3}^{\frac{(n+1)}{2}}$
(C) $T \propto R^{\frac{n}{2}}$
(D) $T \propto R \overline{2}$ For any n
167. If radius of earth is R then the height ' h^{\prime} at which value of ' g ' becomes one-fourth is
(A) $\frac{R}{4}$
(B) $\frac{3 R}{\frac{4}{R}}$
(C) R
(D) $\frac{R^{4}}{8}$
168. The ratio of the weights of a body on the Earth's surface to that on the surface of a planet is $9: 4$. The mass of the planet is $\frac{1^{t h}}{9}$ of that of the Earth. If ' R ' is the radius of the Earth, what is the radius of the planet ? (Take the planets to have the same mass density)
(A) $\frac{R}{3}$
(B) $\frac{R}{4}$
169. Consider a satellite going round the earth in an orbit. Which of the following statements is wrong
(A) It is a freely falling body
(B) It suffers no acceleration
(C) It is moving with a con-
(D) Its angular momentum stant speed remains constant
170. Two sphere of mass m and M are situated in air and the gravitational force between them is F. The space around the masses is now filled with a liquid of specific gravity 3. The gravitational force will now be
(A) F
(B) $\frac{F}{3}$
(C) $\frac{F}{9}$
(D) $3 F$
171. When a satellite going round the earth in a circular orbit of radius r and speed v loses some of its energy, then r and v change as
(A) r and v both with in-
(B) r and v both will decrease crease
(C) r will decrease and v will increase
(D) r will increase and v will decrease
172. A particle of mass M is situated at the centre of a spherical shell of same mass and radius a. The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre, will be
(A) $-\frac{3 G M}{a}$
(B) $-\frac{2 G M}{a}$
(C) $-\frac{G \stackrel{a}{a}}{a}$
(D) $-\frac{4{ }_{G}^{a} M}{a}$
173. Consider two solid spheres of radii $\mathrm{R}_{1}=1 \mathrm{~m} \mathrm{R}_{2}=2 \mathrm{~m}$ and masses M_{1} and M_{2}, respectively. The gravitational field due to sphere (1) and (2) are shown. The value of $\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}$ is

(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(A) $\overline{2}$
(C) $\frac{1}{3}$
174. An artificial satellite is placed into a circular orbit around earth at such a height that it always remains above a definite place on the surface of earth. Its height from the surface of earth is \qquad km
(A) 6400
(B) 4800
(C) 32000
(D) 36000
175. A geostationary satellite is revolving around the earth. To make it escape from gravitational field of earth, is velocity must be increased \qquad \%
(A) 100
(B) 41.4
(C) 50
(D) 59.6
176. The weight of a body at the centre of the earth is
(A) Zero
(B) Infinite
(C) Same as on the surface of earth
(D) None of the above
177. If satellite is shifted towards the earth. Then time period of satellite will be
(A) Increase
(B) Decrease
(C) Unchanged
(D) Nothing can be said
178. The gravitational potential energy of a body of mass ' m ' at the earth's surface $-m g R_{e}$. Its gravitational potential energy at a height R_{e} from the earth's surface will be (Here R_{e} is the radius of the earth)
(A) $-2 m g R_{e}$
(B) $2 m g R_{e}$
(C) $\frac{1}{2} m g R_{e}$
(D) $-\frac{1}{2} m g R_{e}$
179. Planetary system in the solar system describes
(A) Conservation of energy
(B) Conservation of linear momentum
(C) Conservation of angular
(D) None of these momentum
180. A shell of mass M and radius R has a point mass m placed at a distance r from its centre. The gravitational potential energy $U(r)$ vs r will be
(A)

(B)

(C)

181. Reason of weightlessness in a satellite is
(A) Zero gravity
(B) Centre of mass
(C) Zero reaction force by
satellite surface
(D) None
182. The orbital angular momentum of a satellite revolving at a distance r from the centre is L. If the distance is increased to $16 r$, then the new angular momentum will be
(A) $16 L$
(B) 64 L
(C) $\frac{L}{4}$
(D) $4 L$
183. Assuming the earth to be a sphere of uniform density the acceleration due to gravity
(A) at a point outside the earth is inversely proportional to the square of its distance from the centre
(B) at a point outside the earth is inversely proportional to its distance from the centre
(C) at a point inside is proportional to its distance from the centre.
(D) (A) and (C) both
184. If it is assumed that the spinning motion of earth increases, then the weight of a body on equator
(A) Decreases
(B) Remains constant
(C) Increases
(D) Becomes more at poles
185. Figure shows elliptical path abcd of a planet around the sun S such that the area of triangle $c s a$ is $\frac{1}{4}$ the area of the ellipse. (See figure) With $d b$ as the semimajor axis, and $c a$ as the semiminor axis. If t_{1} is the time taken for planet to go over path $a b c$ and t_{2} for path taken over $c d a$ then

(A) $t_{1}=4 t_{2}$
(B) $t_{1}=2 t_{2}$
(C) $t_{1}=3 t_{2}$
(D) $t_{1}=t_{2}$
186. The escape velocity for a rocket from earth is $11.2 \mathrm{~km} / \mathrm{sec}$. Its value on a planet where acceleration due to gravity is double that on the earth and diameter of the planet is twice that of earth will be in \qquad $\mathrm{km} / \mathrm{sec}$
(A) 11.2
(B) 5.6
(C) 22.4
(D) 53.6
187. If M the mass of the earth and R its radius, the ratio of the gravitational acceleration and the gravitational constant is
(A) $\frac{R^{2}}{M}$
(B) $\frac{M}{R^{2}}$
(C) $M R^{2}$
(D) $\frac{M}{R}$
188. A clock S is based on oscillation of a spring and a clock P is based on pendulum motion. Both clocks run at the same rate on earth. On a planet having the same density as earth but twice the radius
(A) S will run faster than P
(B) P will run faster than S
(C) They will both run at the earth same rate as on the
(D) None of these
189. The time period of a simple pendulum on a freely moving artificial satellite is
(A) Zero
(B) 2 sec
(C) 3 sec
(D) Infinite
190. The distance of a geo-stationary satellite from the centre of the earth (Radius $R=6400 \mathrm{~km}$) is nearest to
(A) $5 R$
(B) $7 R$
(C) $10 R$
(D) $18 R$
191. Two planets revolve round the sun with frequencies N_{1} and N_{2} revolutions per year. If their average orbital radii be R_{1} and R_{2} respectively, then R_{1} / R_{2} is equal to
(A) $\left(N_{1} / N_{2}\right)^{3 / 2}$
(B) $\left(N_{2} / N_{1}\right)^{3 / 2}$
(C) $\left(N_{1} / N_{2}\right)^{2 / 3}$
(D) $\left(N_{2} / N_{1}\right)^{2 / 3}$
192. The mass and diameter of a planet have twice the value of the corresponding parameters of earth. Acceleration due to gravity on the surface of the planet is \qquad $m / \sec ^{2}$.
(A) 9.8
(B) 4.9
(C) 980
(D) 19.6
193. From a sphere of mass M and radius R, a smaller sphere of radius $\frac{R}{2}$ is carved out such that the cavity made in the original sphere is between its centre and the periphery (See figure). For the configuration in the figure where the distance between the centre of the original sphere and the removed sphere is $3 R$, the gravitational force between the two sphere is

(A) $\frac{41 G M^{2}}{3600 R^{2}}$
(B) $\frac{41 G M^{2}}{450 R^{2}}$
(C) $\frac{59 G M^{2}}{450 R^{2}}$
(D) $\frac{G M^{2}}{225 R^{2}}$
194. The time period of a satellite of earth is 5 hours. If the separation between the earth and the satellite is increased to four times the previous value, the new time period will become \qquad hours
(A) 20
(B) 10
(C) 80
(D) 40
195. Two point masses of mass $4 m$ and m respectively separated by d distance are revolving under mutual force of attraction. Ratio of their kinetic energies will be :
(A) $1: 4$
(B) $1: 5$
(C) $1: 1$
(D) $1: 2$
196. A satellite of the earth is revolving in a circular orbit with a uniform speed v. If the gravitational force suddenly disappears, the satellite will
(A) Continue to move with velocity v along the original orbit
(B) Move with a velocity v, tangentially to the original orbit
(C) Fall down with increasing velocity
(D) Ultimately come to rest somewhere on the original orbit
197. The ratio of the radius of a planet ' A ' to that of planet ${ }^{\prime} B$ ' is ' r '. The ratio of acceleration due to gravity on the planets is ' x '. The ratio of the escape velocities from the two planets is
(A) $x r$
(B) $\sqrt{\frac{r}{x}}$
(C) $\sqrt{r x}$
(D) $\sqrt{\frac{x}{r}}$
198. At what altitude will the acceleration due to gravity be 25% of that at the earth's surface (given radius of earth is R) ?
(A) $R / 4$
(B) R
(C) $3 R / 8$
(D) $R / 2$
199. A geostationary satellite orbits around the earth in a circular orbit of radius 36000 km . Then, the time period of a satellite orbiting a few hundred kilometres above the earth's surface $\left(R_{\text {Earth }}=6400 \mathrm{~km}\right)$ will approximately be hours
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4
200. An iron ball and a wooden ball of the same radius are released from a height ' h ' in vacuum. The time taken by both of them to reach the ground is equal is based on
(A) Acceleration due to gravity in vacuum is same irrespective of size and mass of the body
(B) Acceleration due to gravity in vacuum depends on the mass of the body
(C) There is no acceleration due to gravity in vacuum
(D) In vacuum there is resistance offered to the motion of the body and this resistance depends on the mass of the body

ANSWER KEY

PHYSICS

$1-\mathrm{B}$	$2-\mathrm{D}$	$3-\mathrm{C}$	$4-\mathrm{A}$	$5-\mathrm{B}$	$6-\mathrm{A}$	$7-\mathrm{A}$	$8-\mathrm{C}$	$9-\mathrm{A}$	$10-\mathrm{A}$
$11-\mathrm{B}$	$12-\mathrm{B}$	$13-\mathrm{D}$	$14-\mathrm{D}$	$15-\mathrm{B}$	$16-\mathrm{A}$	$17-\mathrm{A}$	$18-\mathrm{B}$	$19-\mathrm{D}$	$20-\mathrm{C}$
$21-\mathrm{A}$	$22-\mathrm{A}$	$23-\mathrm{D}$	$24-\mathrm{B}$	$25-\mathrm{A}$	$26-\mathrm{B}$	$27-\mathrm{B}$	$28-\mathrm{C}$	$29-\mathrm{A}$	$30-\mathrm{D}$
$31-\mathrm{C}$	$32-\mathrm{C}$	$33-\mathrm{C}$	$34-\mathrm{A}$	$35-\mathrm{A}$	$36-\mathrm{A}$	$37-\mathrm{B}$	$38-\mathrm{A}$	$39-\mathrm{D}$	$40-\mathrm{B}$
$41-\mathrm{C}$	$42-\mathrm{D}$	$43-\mathrm{D}$	$44-\mathrm{A}$	$45-\mathrm{C}$	$46-\mathrm{B}$	$47-\mathrm{A}$	$48-\mathrm{D}$	$49-\mathrm{C}$	$50-\mathrm{A}$
$51-\mathrm{D}$	$52-\mathrm{A}$	$53-\mathrm{C}$	$54-\mathrm{C}$	$55-\mathrm{D}$	$56-\mathrm{A}$	$57-\mathrm{C}$	$58-\mathrm{A}$	$59-\mathrm{C}$	$60-\mathrm{A}$
$61-\mathrm{C}$	$62-\mathrm{D}$	$63-\mathrm{C}$	$64-\mathrm{B}$	$65-\mathrm{A}$	$66-\mathrm{B}$	$67-\mathrm{D}$	$68-\mathrm{B}$	$69-\mathrm{B}$	$70-\mathrm{A}$
$71-\mathrm{C}$	$72-\mathrm{A}$	$73-\mathrm{A}$	$74-\mathrm{A}$	$75-\mathrm{A}$	$76-\mathrm{C}$	$77-\mathrm{B}$	$78-\mathrm{B}$	$79-\mathrm{D}$	$80-\mathrm{C}$
$81-\mathrm{B}$	$82-\mathrm{B}$	$83-\mathrm{C}$	$84-\mathrm{D}$	$85-\mathrm{A}$	$86-\mathrm{A}$	$87-\mathrm{B}$	$88-\mathrm{A}$	$89-\mathrm{B}$	$90-\mathrm{B}$
$91-\mathrm{D}$	$92-\mathrm{D}$	$93-\mathrm{D}$	$94-\mathrm{C}$	$95-\mathrm{B}$	$96-\mathrm{A}$	$97-\mathrm{B}$	$98-\mathrm{A}$	$99-\mathrm{C}$	$100-\mathrm{A}$
$101-\mathrm{A}$	$102-\mathrm{D}$	$103-\mathrm{A}$	$104-\mathrm{A}$	$105-\mathrm{D}$	$106-\mathrm{C}$	$107-\mathrm{C}$	$108-\mathrm{A}$	$109-\mathrm{D}$	$110-\mathrm{B}$
$111-\mathrm{B}$	$112-\mathrm{B}$	$113-\mathrm{A}$	$114-\mathrm{B}$	$115-\mathrm{B}$	$116-\mathrm{C}$	$117-\mathrm{B}$	$118-\mathrm{C}$	$119-\mathrm{D}$	$120-\mathrm{D}$
$121-\mathrm{B}$	$122-\mathrm{D}$	$123-\mathrm{C}$	$124-\mathrm{D}$	$125-\mathrm{A}$	$126-\mathrm{B}$	$127-\mathrm{B}$	$128-\mathrm{B}$	$129-\mathrm{A}$	$130-\mathrm{D}$
$131-\mathrm{D}$	$132-\mathrm{A}$	$133-\mathrm{D}$	$134-\mathrm{D}$	$135-\mathrm{D}$	$136-\mathrm{B}$	$137-\mathrm{A}$	$138-\mathrm{D}$	$139-\mathrm{A}$	$140-\mathrm{D}$
$141-\mathrm{B}$	$142-\mathrm{B}$	$143-\mathrm{A}$	$144-\mathrm{C}$	$145-\mathrm{C}$	$146-\mathrm{C}$	$147-\mathrm{D}$	$148-\mathrm{D}$	$149-\mathrm{B}$	$150-\mathrm{D}$
$151-\mathrm{A}$	$152-\mathrm{C}$	$153-\mathrm{C}$	$154-\mathrm{A}$	$155-\mathrm{C}$	$156-\mathrm{B}$	$157-\mathrm{B}$	$158-\mathrm{B}$	$159-\mathrm{A}$	$160-\mathrm{D}$
$161-\mathrm{B}$	$162-\mathrm{C}$	$163-\mathrm{D}$	$164-\mathrm{C}$	$165-\mathrm{A}$	$166-\mathrm{B}$	$167-\mathrm{C}$	$168-\mathrm{D}$	$169-\mathrm{B}$	$170-\mathrm{A}$
$171-\mathrm{C}$	$172-\mathrm{A}$	$173-\mathrm{D}$	$174-\mathrm{D}$	$175-\mathrm{B}$	$176-\mathrm{A}$	$177--\mathrm{B}$	$178-\mathrm{D}$	$179-\mathrm{C}$	$180-\mathrm{C}$
$181-\mathrm{C}$	$182-\mathrm{D}$	$183-\mathrm{D}$	$184-\mathrm{A}$	$185-\mathrm{C}$	$186-\mathrm{C}$	$187-\mathrm{B}$	$188-\mathrm{B}$	$189-\mathrm{D}$	$190-\mathrm{B}$
$191-\mathrm{D}$	$192-\mathrm{B}$	$193-\mathrm{A}$	$194-\mathrm{D}$	$195-\mathrm{A}$	$196-\mathrm{B}$	$197-\mathrm{C}$	$198-\mathrm{B}$	$199-\mathrm{C}$	$200-\mathrm{A}$

1. An iron ball and a wooden ball of the same radius are released from a height ' h ' in vacuum. The time taken by both of them to reach the ground is
(A) Unequal
(B) \checkmark Exactly equal
(C) Roughly equal
(D) Zero

Sol : (b) Time of decent $t=\sqrt{\frac{2 h}{g}}$. In vacuum no other force works except gravity so time period will be exactly equal.
2. The variation of acceleration due to gravity g with distance d from centre of the earth is best represented by $(R=$ Earth's radius):
(A)

(C)
(B)

(D) \checkmark

Sol : Variation of acceleration due to garvity, g with distance ' d ' from center of the earth
If $d<R, g=\frac{G m}{R^{2}} \cdot d$ i.e., $g \propto d$ (straight line)
If $\quad d=R, g_{s}=\frac{G m}{R^{2}}$
If $d>R, g=\frac{G m}{d^{2}} \quad$ i.e., $g \propto \frac{1}{d^{2}}$
3. If Gravitational constant is decreasing in time, what will remain unchanged in case of a satellite orbiting around earth
(A) Time period
(B) Orbiting radius
(C) \checkmark Tangential velocity
(D) Angular velocity

Sol : (c) $T^{2}=\frac{4 \pi^{2}}{G M} r^{3}$. If G is variable then time period, angular velocity and orbital radius also changes accordingly.
4. Two masses m_{1} and $m_{2}\left(m_{1}<m_{2}\right)$ are released from rest from a finite distance. They start under their mutual gravitational attraction
(A) \checkmark acceleration of m_{1} is more than that of m_{2}
(B) acceleration of m_{2} is more than that of m_{1}
(C) centre of mass of system will remain at rest in all the reference frame
(D) total energy of system does not remain constant

Sol : Same force acts on both masses
Hence $a \propto \frac{1}{m} \quad(F=m a)$
In absence of external force (remember mutual gravitational force total energy remains constant.
5. Figure shows the orbit of a planet P round the sun $S . A B$ and $C D$ are the minor and major axes of the ellipse.
If t_{1} is the time taken by the planet to travel along $A C B$ and t_{2} the time along $B D A$, then

(A) $t_{1}=t_{2}$
(B) $\checkmark t_{1}>t_{2}$
(C) $t_{1}<t_{2}$
(D) nothing can be concluded

Sol: Since serial velocity is constant so $t_{1}>t_{2}$
6. Potential energy of a satellite having mass ' m ' and rotating at a height of $6.4 \times 10^{6} \mathrm{~m}$ from the earth surface is
(A) $\checkmark-0.5 m g R_{e}$
(B) $-m g R_{e}$
(C) $-2 m g R_{e}$
(D) $4 m g R_{e}$

Sol : (a) Potential energy $=\frac{-G M m}{r}$
$=\frac{G M m}{R_{e}+h}$
$=\frac{-G M m}{2 R_{e}}$
$=-\frac{g R_{e}^{2} m}{2 R_{e}}$
$=-\frac{1}{2} m g R_{e}$
$=-0.5 m g R_{e}$
7. Suppose that the force of earth's gravity suddenly disappears, choose the correct answer out of the following statements
(A) \checkmark The weight of the body will become zero but mass remains the same
(B) The mass of the body will become zero but the weight remains the same
(C) Both the mass and weight will be the same
(D) Mass and weight will remain the same

Sol : (a) In the absence of gravity weight of the bodies will become zero but mass will not change.
8. Figure shows the orbit of a planet P round the sun S. $A B$ and $C D$ are the minor and major axes of the ellipse.
If U is the potential energy and K kinetic energy then $|U|>|K|$ at

(A) Only D
(B) Only C
(C) \checkmark both $D \& C$
(D) neither D nor C

Sol : At any point, P.E. $=\frac{-G M m}{a}$ and
$K . E .=\frac{G M m}{2 a}$

We can clearly observe that $|P . E .|=2| K . E .|\Rightarrow| U|>|K|$ at D and C.
9. At the surface of a certain planet, acceleration due to gravity is one-quarter of that on earth. If a brass ball is transported to this planet, then which one of the following statements is not correct
(A) \checkmark The mass of the brass ball on this planet is a quarter of its mass as measured on earth
(B) The weight of the brass ball on this planet is a quarter of the weight as measured on earth
(C) The brass ball has the same mass on the other planet as on earth
(D) The brass ball has the same volume on the other planet as on earth

Sol : (a)Mass of the ball always remain constant. It does not depend upon the acceleration due to gravity
10. Where can a geostationary satellite be installed
(A) \checkmark Over any city on the equator
(B) Over the north or south pole
(C) At height R above earth
(D) At the surface of earth

Sol: (a)
11. Asatellite is launched into a circular orbit of radius R around the earth. A second satellite is launched into an orbit of radius $1.02 R$. The period of second satellite is larger than the first one by approximately \qquad
(A) 1.5
(B) $\sqrt{ } 3$
(C) 1
(D) 2

Sol : When $r=R$
$V=\sqrt{g / R}$
$T_{1}=\frac{2 \pi R}{\sqrt{g / R}}$
$=\frac{2 \pi}{\sqrt{g}}(\sqrt{R})^{3}$
When $r=1.02 R$
$V=\sqrt{1.02 g / R}$
$T_{2}=\frac{2 \pi \sqrt{1.02 R}}{g / R}$
\%Change in time period
$=\frac{2 \pi}{g}(\sqrt{R})^{3} \times(\sqrt{1.02})^{3}-(1)^{3} \times 100$
$=\frac{2 \pi}{g}$
$=3 \%$
12. A body starts from rest from a point distance R_{0} from the centre of the earth. The velocity acquired by the body when it reaches the surface of the earth will be (R represents radius of the earth).
(A) $2 G M\left(\frac{1}{R}-\frac{1}{R_{0}}\right)$
(B) $\checkmark \sqrt{2 G M\left(\frac{1}{R_{0}}-\frac{1}{R}\right)}$
(C) $G M\left(\frac{1}{R}-\frac{1}{R_{0}}\right)$
(D) $2 G M \sqrt{\left(\frac{1}{R}-\frac{1}{R_{0}}\right)}$

Sol : P.E $=\int_{R_{0}}^{R} \frac{G M m}{r^{2}} d r=-G M m\left[\frac{1}{R}-\frac{1}{R_{0}}\right]$
The K.E. acuired by the body at the
surface $=\frac{1}{2} m v^{2}$
$\therefore \frac{1}{2} m v^{2}=-G M m\left[\frac{1}{R}-\frac{1}{R_{0}}\right]$
$v=\sqrt{2 G M\left(\frac{1}{R_{0}}-\frac{1}{R}\right)}$
13. Suppose the law of gravitational attraction suddenly changes and becomes an inverse cube law i.e. $F \propto \frac{1}{r^{3}}$, but still remaining a central force. Then
(A) Keplers law of areas still holds
(B) Keplers law of period still holds
(C) Keplers law of areas and period still hold
(D) \checkmark Neither the law of areas, nor the law of period still holds
Sol: (d)
14. A satellite of mass m is placed at a distance r from the centre of earth (mass M). The mechanical energy of the satellite is
(A) $-\frac{G M m}{r}$
(B) $\frac{G M m}{r}$
(C) $\frac{G M m}{2 r}$
(D) $\checkmark-\frac{G M m}{2 r}$

Sol : (d) Mechanical energy $=K . E+U$ (kinetic energy + potential energy)
$U=-\frac{G m M}{r}$
$K \cdot E=\frac{1}{2} m v^{2}$
$K . E=\frac{1}{2} \frac{G m M}{r}$
$M . E=K . E+U$
$=-\frac{G m M}{r}+\frac{1}{2} \frac{G m M}{r}$
$M . E=-\frac{G m M}{2 r}$
15. Two satellites of masses m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are revolving round the earth in circular orbits of radius r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ respectively. Which of the following statements is true regarding their speeds v_{1} and v_{2} ?
(A) $v_{1}=v_{2}$
(B) $\checkmark v_{1}<v_{2}$
(C) $v_{1}>v_{2}$
(D) $\frac{v_{1}}{r_{1}}=\frac{v_{2}}{r_{2}}$

Sol : (b) $v=\sqrt{\frac{G M}{r}}$ if $r_{1}>r_{2}$ then $v_{1}<v_{2}$
Orbital speed of satellite does not depends upon the mass of the satellite
16. Which of the following astronomer first proposed that sun is static and earth rounds sun
(A) \checkmark Copernicus
(B) Kepler
(C) Galileo
(D) None

Sol : (a)
17. Time period of revolution of a nearest satellite around a planet of radius R is T. Period of revolution around another planet, whose radius is $3 R$ but having same density is
(A) $\checkmark T$
(B) $3 T$
(C) 9 T
(D) $3 \sqrt{3} T$

Sol : (a) Time period of satellite which is very near to planet
$T=2 \pi \sqrt{\frac{R^{3}}{G M}}=2 \pi \sqrt{\frac{R^{3}}{G \frac{4}{3} \pi R^{3} \rho}} \therefore T \propto \sqrt{\frac{1}{\rho}}$
i.e. time period of nearest satellite does not depends upon the radius of planet, it only depends upon the density of the planet.
In the problem, density is same so time period will be same.
18. When a body is taken from the equator to the poles, its weight
(A) Remains constant
(B) \checkmark Increases
(C) Decreases
(D) Increases at N -pole and decreases at S-pole

Sol: (b)Because acceleration due to gravity increases
19. Height of geostationary satellite is \qquad km
(A) 16000
(B) 22000
(C) 28000
(D) $\checkmark 36000$

Sol : The height of geostationary satellites is
given by $h=\left(\frac{T^{2} R^{2} g}{4 \pi^{2}}\right)^{1 / 3}-R$
$T=24 \mathrm{hr}, R=6.4 \times 10^{6} \mathrm{~m}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
and comes out to be 35930 km .
20. The ratio of the radius of the earth to that of the moon is 10. The ratio of acceleration due to gravity on the earth and on the moon is 6 . The ratio of the escape velocity from the earth's surface to that from the moon is
(A) 10
(B) 6
(C) \checkmark Nearly 8
(D) 1.66

Sol : (c) $\frac{v_{\mathrm{e}}}{v_{m}}=\sqrt{\frac{g_{e}}{g_{m}} \frac{R_{e}}{R_{m}}}=\sqrt{6 \times 10}=\sqrt{60} \cong 8$ (nearly)
21. Acceleration due to gravity on moon is $1 / 6$ of the acceleration due to gravity on earth. If the ratio of densities of earth $\left(\rho_{e}\right)$ and moon $\left(\rho_{m}\right)$ is $\left(\frac{\rho_{e}}{\rho_{m}}\right)=\frac{5}{3}$ then radius of moon R_{m} in terms of R_{e} will be
(A) $\checkmark \frac{5}{18} R_{e}$
(B) $\frac{1}{6} R_{e}$
(C) $\frac{3^{18}}{18} R_{e}$
(D) $\frac{{ }^{6}}{2 \sqrt{3}} R_{e}$

Sol : (a) $g=\frac{4}{3} \pi G \rho R \Rightarrow g \propto \rho R \Rightarrow \frac{g_{e}}{g_{m}}=\frac{\rho_{e}}{\rho_{m}} \times \frac{R_{e}}{R_{m}}$
$\Rightarrow \frac{6}{1}=\frac{5}{3} \times \frac{R_{e}}{R_{m}} \Rightarrow R_{m}=\frac{5}{18} R_{e}$
22. A pendulum clock is set to give correct time at the sea level. This clock is moved to hill station at an altitude of 2500 m above the sea level. In order to keep correct time of the hill station, the length of the pendulum
(A) \checkmark Has to be reduced
(B) Has to be increased-
(C) Needs no adjustment but its mass has to be increased
Needs no adjustment
(D) Needs no adjustment but its mass has to be increased

Sol : (a) $T=2 \pi \sqrt{\frac{l}{g}}$. At the hill g will decrease so to keep the time period same the length of pendulum has to be reduced.
23. The escape velocity for a body projected vertically upwards from the surface of earth is $11 \mathrm{~km} / \mathrm{s}$. If the body is projected at an angle of 45° with the vertical, the escape velocity will be \qquad km / s
(A) $\frac{11}{\sqrt{2}}$
(B) $11 \sqrt{2}$
(C) 22
(D) $\checkmark 11$

Sol : (d)Escape velocity does not depends upon the angle of projection.
24. If the change in the value of ' g ' at a height h above the surface of the earth is the same as at a depth x below it, then (both x and h being much smaller than the radius of the earth)
(A) $x=h$
(B) $\checkmark x=2 h$
(C) $x=\frac{h}{2}$
(D) $x=h^{2}$

Sol : (b) The value of g at the height h from the surface of earth $g^{\prime}=g\left(1-\frac{2 h}{R}\right)$
The value of g at depth x below the surface of earth
$g^{\prime}=g\left(1-\frac{x}{R}\right)$
These two are given equal, hence $\left(1-\frac{2 h}{R}\right)=\left(1-\frac{x}{R}\right)$
On solving, we get $x=2 h$
25. The mass of a planet that has a moon whose time period and orbital radius are T and R respectively can be written as
(A) $\checkmark 4 \pi^{2} R^{3} G^{-1} T^{-2}$
(B) $8 \pi^{2} R^{3} G^{-1} T^{-2}$
(C) $12 \pi^{2} R^{3} G^{-1} T^{-2}$
(D) $16 \pi^{2} R^{3} G^{-1} T^{-2}$

Sol : (a) $m \omega^{2} R=\frac{G M m}{R^{2}} \Rightarrow\left(\frac{2 \pi}{T}\right)^{2} R=\frac{G M}{R^{2}} \Rightarrow M=\frac{4 \pi^{2} R^{3}}{G T^{2}}$
26. If the radius of a planet is R and its density is ρ, the escape velocity from its surface will be
(A) $v_{e} \propto \rho R$
(B) $\checkmark v_{e} \propto \sqrt{\rho} R$
(D) $v_{e} \propto \frac{1}{\sqrt{\rho} R}$
(C) $v_{e} \propto \frac{\sqrt{\rho}}{R}$

Sol : (b) $v_{e}=R \sqrt{\frac{8}{3} G \pi \rho}$
$v_{e} \propto R \sqrt{\rho}$
27. A man of 50 kg mass is standing in a gravity free space at a height of 10 m above the floor. He throws a stone of 0.5 kg mass downwards with a speed $2 \mathrm{~m} / \mathrm{s}$. When the stone reaches the floor, the distance of the man above the floor will be \qquad m
(A) 9.9
(B) $\checkmark 10.1$
(C) 10
(D) 20

Sol: Since the man is in gravity free space,
force on man + stone system is zero.
Therefore center of mass of the system remains at rest. Let tha man goes $x \mathrm{~m}$ above when the stone reches the floor, then

$$
\begin{aligned}
& M_{\operatorname{man}} \times x=M_{\text {stone }} \times 10 \\
& x=\frac{0.5}{50} \times 10
\end{aligned}
$$

$x=0.1 \mathrm{~m}$
Therefore final height of man above floor $=10+x=$ $10+0.1=10.1 \mathrm{~m}$

Man
 不

28. Distance of geostationary satellite from the surface of earth radius $\left(R_{e}=6400 \mathrm{~km}\right)$ in terms of R_{e} is \qquad
(A) 13.76
(B) 10.76
(C) $\sqrt{ } 6.56$
(D) 2.56

Sol : (c)
29. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of earth
(A) \checkmark The acceleration of S is always directed towards the centre of the earth
(B) The angular momentum of S about the centre of the earth changes in direction but its magnitude remains constant
(C) The total mechanical energy of S varies periodically with time
(D) The linear momentum of S remains constant in magnitude
Sol: (a) As gravitational force on satellite due to earth acts always towards the centre of earth, thus acceleration of S is always directed towards the centre of the earth. Also, as there is no external force so according to conservation of energy, total mechanical energy of S is constant always.

Also, as in the absence of external torque L is constant in magnitude and direction.
Thus, $m r v=$ constant $\Longrightarrow v$ varies as r changes
Hence, $p=m v$ is not constant
30. A satellite is revolving in a circular orbit at a height h from the earth surface, such that $h \ll R$ where R is the radius of the earth. Assuming that the effect of earth's atmosphere can be neglected the minimum increase in the speed required so that the satellite could escape from the gravitational field of earth is
(A) $\sqrt{2 g R}$
(B) $\sqrt{g R}$
(C) $\sqrt{\frac{g R}{2}}$
(D) $\checkmark \sqrt{g R}(\sqrt{2}-1)$

Sol: $\Delta V=V_{f}-V_{i}$
$=\sqrt{\frac{2 g M e}{R_{e}}}-\sqrt{\frac{g M e}{R_{e}}}$
$=(\sqrt{2}-1) \sqrt{g R_{e}}$
31. Which of the following graphs represents the motion of a planet moving about the sun
^
(A)

(C) \checkmark

(B)

(D)

Sol: (c)Kepler's law $T^{2} \propto R^{3}$
32. Assertion: The length of the day is slowly increasing. Reason: The dominant effect causing a slowdown in the rotation of the earth is the gravitational pull of other planets in the solar system.
(A) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
(B) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
(C) \checkmark If the Assertion is correct but Reason is incorrect.
(D) If both the Assertion and Reason are incorrect.

Sol : The length of the day is slowly increasing not due to gravitational pull of other planets in the solar system but due to viscous force between the earth and the atmosphere around it. So Assertion is correct but Reason is incorrect
33. A satellite is to revolve round the earth in a circle of radius 8000 km . The speed at which this satellite be projected into an orbit, will be. \qquad km / s
(A) 3
(B) 16
(C) $\checkmark 7.15$
(D) 8

Sol : (c) $v_{0}=\sqrt{\frac{G M}{r}}$
$=\sqrt{\frac{g R^{2}}{r}}$
$=\sqrt{\frac{10 \times\left(64 \times 10^{5}\right)^{2}}{8000 \times 10^{3}}}$
$=71.5 \times 10^{2} \mathrm{~m} / \mathrm{s}$
$=7.15 \mathrm{~km} / \mathrm{s}$
34. What will be the acceleration due to gravity at height h if $h \gg R$. Where R is radius of earth and g is acceleration due to gravity on the surface of earth
(A) $\checkmark \frac{g}{\left(1+\frac{h}{R}\right)^{2}}$
(B) $g\left(1-\frac{2 h}{R}\right)$
(C) $\frac{g}{\left(1-\frac{h}{R}\right)^{2}}$
(D) $g\left(1-\frac{h}{R}\right)$

Sol : (a) $g^{\prime}=g\left(\frac{R}{R+h}\right)^{2}=\frac{g}{\left(1+\frac{h}{R}\right)^{2}}$
35. Dependence of intensity of gravitational field (E) of earth with distance (r) from centre of earth is correctly represented by
(A) \checkmark

(B)

(C)

(D)

Sol : For a point inside the earth i.e.r $<R$
$E=-\frac{G M}{R^{3}} r$
Where M and R be mass and radius of the earth respectively.
At the center, $r=0$
$\therefore E=0$
For a point outside the earth i.e. $r>R$,
$E=-\frac{G M}{r^{2}}$
On the surface of the earth i.e. $r>R$,
$E=-\frac{G M}{R^{2}}$

The variation of E with distance r from the center is as shown in the figure.

36. An object weights $72 N$ on earth. Its weight at a height of $R / 2$ from earth is \qquad N
(A) $\checkmark 32$
(B) 56
(C) 72
(D) 0

Sol : (a) $g^{\prime}=g\left(\frac{R}{R+h}\right)^{2}=g\left(\frac{R}{R+\frac{R}{2}}\right)^{2}=\frac{4}{9} g$
$\therefore W^{\prime}=\frac{4}{9} \times W=\frac{4}{9} \times 72=32 \mathrm{~N}$
37. The velocity with which a projectile must be fired so that it escapes earth's gravitation does not depend on
(A) Mass of the earth
(B) \checkmark Mass of the projectile
(C) Radius of the projectile's orbit
(D) Gravitational constant

Sol : (b) At a certaing velocity projection, the body will go out of the gravitational field of the earth and will never return to the earth. Thic initial velocity is called escape velocity. The kinetic energy given to the body should be equal to potential energy for body to escape. i.e., potentiial energy $=$ kinetic energy
$+\frac{G M_{e} m}{R}=\frac{1}{2} m v_{e}^{2}$
Where m is mass of projectile, M_{e} is mass of earth, G is gravitational constant, R is radius.
$\therefore v_{e}=\sqrt{\frac{2 G M_{e}}{R_{e}}}$
The above formula shows that escape velocity is independent of the mass of the projectile.
38. From a solid sphere of mass M and radius R, a spherical portion of radius $R / 2$ is removed, as shown in the figure. Taking gravitational potential $V=0$ at $r=\infty$, the potential at the centre of the cavity thus formed is
($G=$ gravitational constant)

(A) $\checkmark \frac{-G M}{R}$
(B) $\frac{-2 G M}{3 R}$
(C) $\frac{-2 G M}{R}$
(D) $\frac{-G M}{2 R}$

Sol : Due to complete solid sphere, potential at point p
$V_{\text {sphere }}=\frac{-G M}{2 R^{3}}\left[3 R^{2}-\left(\frac{R}{2}\right)^{2}\right]$
$=\frac{-G M}{2 R^{3}}\left(\frac{11 R^{2}}{4}\right)=-11 \frac{G M}{8 R}$
Due to cavity part potential at point P
$V_{\text {cavity }}=-\frac{3}{2} \frac{\frac{G M}{8}}{\frac{R}{2}}=-\frac{3 G M}{8 R}$
So potential at the center of carvity
$=V_{\text {sphere }}-V_{\text {cavity }}=-\frac{11 G M}{8 R}-\left(-\frac{3}{8} \frac{G M}{R}\right)$
$=\frac{-G M}{R}$

Solid sphere

39. A satellite of mass m is orbiting the earth (of radius R) at a height h from its surface. The total energy of the satellite in terms of g_{0}, the value of acceleration due to gravity at the earth's surface, is
(A) $\frac{2 m g_{0} R^{2}}{R+h}$
(B) $-\frac{2 m g_{0} R^{2}}{R+h}$
(C) $\frac{m g_{0} R^{2}}{2(R+h)}$
(D) $\checkmark-\frac{m g_{0} R^{2}}{2(R+h)}$

Sol : Total energy of satellite at height h from the earth surface,
$E=P E+K E$
$=-\frac{G M m}{(R+h)}+\frac{1}{2} m v^{2}$
Also, $\frac{m v^{2}}{(R+h)}=\frac{G M m}{\left(R+h^{2}\right)}$
or, $v^{2}=\frac{G M}{R+h}$
From eqns, (i) and (ii),
$E=-\frac{G M m}{(R+h)}+\frac{1}{2} \frac{G M m}{(R+h)}=-\frac{1}{2} \frac{G M m}{(R+h)}$
$=-\frac{1}{2} \frac{G M}{R^{2}} \times \frac{m R^{2}}{(R+h)}$
$=-\frac{m g_{0} R^{2}}{2(R+h)} \quad\left(g_{0}=\frac{G M}{R^{2}}\right)$
40. If mass of earth is M, radius is R and gravitational constant is G, then work done to take 1 kg mass from earth surface to infinity will be
(A) $\sqrt{\frac{G M}{2 R}}$
(B) $\checkmark \frac{G M}{R}$
(C) $\sqrt{\frac{2 G M}{R}}$
(D) $\frac{G M}{2 R}$

Sol : (b) Potential energy of the 1 kg mass which is placed at the earth surface $=-\frac{G M}{R}$
its potential energy at infinite $=0$
Work done $=$ change in potential energy $=\frac{G M}{R}$
41. The diameters of two planets are in the ratio $4: 1$ and their mean densities in the ratio $1: 2$. The acceleration due to gravity on the planets will be in ratio
(A) $1: 2$
(B) $2: 3$
(C) $\checkmark 2: 1$
(D) $4: 1$

Sol: (c) $g=\frac{4}{3} G \pi R \rho \Rightarrow \frac{g_{1}}{g_{2}}=\frac{\rho_{1} R_{1}}{\rho_{2} R_{2}}=\frac{1}{2} \times \frac{4}{1}=\frac{2}{1}$
42. Escape velocity on the earth
(A) Is less than that on the moon
(C) Depends upon the direction of projection
(B) Depends upon the mass of the body
(D) \checkmark Depends upon the height from which it is projected

Sol: (d) $v_{e}=\sqrt{\frac{2 G M}{(R+h)}}$
43. The periodic time of a communication satellite is \qquad hours
(A) 6
(B) 12
(C) 18
(D) $\checkmark 24$

Sol : (d) A geostationary satellite (having time period of 24 hr) is used for communication
44. If the density of the earth is doubled keeping its radius constant then acceleration due to gravity will be. \qquad m / s^{2}. ($g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(A) $\checkmark 19.6$
(B) 9.8
(C) 4.9
(D) 2.45

Sol: (a) $g \propto \rho$
45. The kinetic energy needed to project a body of mass m from the earth surface (radius R) to infinity is
(A) $m g R / 2$
(B) $2 m g R$
(C) $\checkmark m g R$
(D) $m g R / 4$

Sol: (c) $\frac{1}{2} m v_{e}^{2}=\frac{1}{2} m 2 g R=m g R$
46. Two satellites, A and B, have masses m and $2 m$ respectively. A is in a circular orbit of radius R, and B is in a circular orbit of radius $2 R$ around the earth. The ratio of their
kinetic energies, K.E.A/K.E.B, is
(A) $\frac{1}{2}$
(B) $\checkmark 1$
(C) 2
(D) $\sqrt{\frac{1}{2}}$
Sol: $K E_{A}=\frac{1}{2} m\left(\frac{G M}{R}\right)$
$K E_{B}=\frac{1}{2}(2 m)\left(\frac{G M}{2 R}\right)$
$\Rightarrow \frac{K E_{A}}{K E_{B}}=1$
47. The acceleration due to gravity is g at a point distant r from the centre of earth of radius R. If $r<R$, then
(A) $\checkmark g \propto r$
(B) $g \propto r^{2}$
(C) $g \propto r^{-1}$
(D) $g \propto r^{-2}$

Sol : (a) Inside the earth $g^{\prime}=\frac{4}{3} \pi \rho G r$ $g^{\prime} \propto r$
48. The gravitational field due to a mass distribution is $E=$ K / x^{3} in the X-direction. (K is a constant). Taking the gravitational potential to be zero at infinity, its value at a distance X is
(A) K / x
(B) $K / 2 x$
(C) K / x^{2}
(D) $\checkmark K / 2 x^{2}$

Sol: (d) Gravitational potential $=\int I d x=\int_{x}^{\infty} \frac{K}{x^{3}} d x$
$=K\left(\frac{x^{-3+1}}{-3+1}\right)_{x}^{\infty}=\left|\frac{-K}{2 x^{2}}\right|_{x}^{\infty}=\frac{K}{2 x^{2}}$
49. An astronaut orbiting the earth in a circular orbit 120 km above the surface of earth, gently drops a spoon out of space-ship. The spoon will
(A) Fall vertically down to
(B) Move towards the moon the earth
(C) \checkmark Will move along with space-ship
(D) Will move in an irregular way then fall down to earth

Sol: (c)The velocity of the spoon will be equal to the orbital velocity when dropped out of the space-ship.
50. The escape velocity from the earth is about $11 \mathrm{~km} /$ second. The escape velocity from a planet having twice the radius and the same mean density as the earth, is \qquad $\mathrm{km} / \mathrm{sec}$
(A) $\checkmark 22$
(B) 11
(C) 5.5
(D) 15.5

Sol: (a) $v_{e}=\sqrt{\frac{2 G M}{R}}=R \sqrt{\frac{8}{3} \pi G \rho}$
$v_{e} \propto R$ if $\rho=$ constant
Since the planet having double radius in comparison to earth therefore the escape velocity becomes twice i.e. $22 \mathrm{~km} / \mathrm{s}$.
51. A particle of mass M is at a distance a from surface of a thin spherical shell of equal mass and having radius a.

(A) Gravitational field and potential both are zero at centre of the shell.
(B) Gravitational field is zero not only inside the shell but at a point outside the shell also.
(C) Inside the shell, gravitational field alone is zero.
(D) \checkmark Neither gravitational field nor gravitational potential is zero inside the shell.
Sol : The gravitational field inside the shell is zero due to the shell. But due to mass M, on the circumference of the shell, Neither gravitational field nor gravitational potential is zero inside the shell.
52. Assuming the earth to be a sphere of uniform density, the acceleration due to gravity inside the earth at a distance of r from the centre is proportional to
(A) $\checkmark r$
(B) r^{-1}
(C) r^{2}
(D) r^{-2}

Sol : Acceleration due to gravity at depth d from the surface of the earth or at a distance r
from the center ' O ' of the earth' $=\frac{4}{3} \pi \rho G r$
Hence $g^{\prime} \propto r$

53. A point particle is held on the axis of a ring of mass m and radius r at a distance r from its centre C. When released, it reaches C under the gravitational attraction of the ring. Its speed at C will be
(A) $\sqrt{\frac{2 G m}{r}(\sqrt{2}-1)}$
(B) $\sqrt{\frac{G m}{r}}$
(C) $\checkmark \sqrt{\frac{2 G m}{r}\left(1-\frac{1}{\sqrt{2}}\right)}$
(D) $\sqrt{\frac{2 G m}{r}}$

Sol : Let ' M ' be the mass of the particle
Now, $E_{\text {initial }}=E_{\text {final }}$
i.e., $\frac{G M m}{\sqrt{2} r}+0=\frac{G M m}{r}+\frac{1}{2} M V^{2}$
or, $\frac{1}{2} M V^{2}=\frac{G M m}{r}\left[1-\frac{1}{\sqrt{2}}\right]$
$\Rightarrow \frac{1}{2} V^{2}=\frac{G m}{r}\left[1-\frac{1}{\sqrt{2}}\right]$
or, $V=\sqrt{\frac{2 G m}{r}\left(1-\frac{1}{\sqrt{2}}\right)}$
54. The figure shows the motion of a planet around the sun in an elliptical orbit with sun at the focus. The shaded areas A and B are also shown in the figure which can be assumed to be equal. If t_{1} and t_{2} represent the time for the planet to move from a to b and d to c respectively, then

(A) $t_{1}<t_{2}$
(B) $t_{1}>t_{2}$
(C) $\checkmark t_{1}=t_{2}$
(D) $t_{1} \leq t_{2}$

Sol: (c) Areal velocity of the planet remains constant. If the areas A and B are equal then $t_{1}=t_{2}$.
55. A simple pendulum has a time period T_{1} when on the earth's surface and T_{2} when taken to a height R above the earth's surface, where R is the radius of the earth. The value of T_{2} / T_{1} is
(A) 1
(B) $\sqrt{2}$
(C) 4
(D) $\checkmark 2$

Sol : (d) If acceleration due to gravity is g at the surface of earth then at height R it value becomes
$g^{\prime}=g\left(\frac{R}{R+h}\right)^{2}=\frac{g}{4}$
$T_{1}=2 \pi \sqrt{\frac{l}{g}}$ and $T_{2}=2 \pi \sqrt{\frac{l}{g / 4}}$
$\frac{T_{2}}{T_{1}}=2$
56. Planet A has mass M and radius R . Planet B has half the mass and half the radius of Planet A. If the escape velocities from the Planets A and B are v_{A} and v_{B}, respectively, then $\frac{v_{\mathrm{A}}}{v_{\mathrm{B}}}=\frac{\mathrm{n}}{4}$ The value of n is
(A) $\checkmark 4$
(B) 1
(C) 2
(D) 3
Sol : $\mathrm{V}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$ (Escape velocity)
$V_{A}=\sqrt{\frac{2 G M}{R}}$
$V_{B}=\sqrt{\frac{2 G[M / 2]}{R / 2}}=\sqrt{\frac{2 G M}{R}}$
$\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{B}}}=1=\frac{\mathrm{n}}{4} \Rightarrow \mathrm{n}=4$
57. Suppose, the acceleration due to gravity at the Earth's surface is $10 \mathrm{~m} \mathrm{~s}^{-2}$ and at the surface of Mars it is $4.0 \mathrm{~m} \mathrm{~s}^{-2}$. A 60 kg pasenger goes from the Earth to the Mars in a spaceship moving with a constant velocity. Neglect all other objects in the sky. Which part of figure best represents the weight (net gravitational force) of the passenger as a function of time?

(A) A
(B) B
(C) $\sqrt{ } C$
(D) D

Sol : $g \propto \frac{1}{R^{2}}$ so we will not get a straight line.
Also $F=0$ at a point where Force due to Earth = Force due to Mars
58. The escape velocity from the surface of earth is V_{e}. The escape velocity from the surface of a planet whose mass and radius are 3 times those of the earth will be
(A) $\checkmark V_{e}$
(B) $3 V_{e}$
(C) $9 V_{e}$
(D) $27 V_{e}$

Sol: (a) $v_{e}=\sqrt{\frac{2 G M}{R}}$
$v_{e} \propto \sqrt{\frac{M}{R}}$
If mass and radius of the planet are three times than that of earth then escape velocity will be same.
59. A planet is revolving around the sun as shown in elliptical path the orbital velocity of the planet will be minimum at

(A) A
(B) B
(C) $\sqrt{ } C$
(D) D

Sol: (c) Because distance of point C is maximum from the sun.
60. Assuming earth to be a sphere of a uniform density, what is the value of gravitational acceleration in a mine 100 km below the earth's surface \qquad $\mathrm{m} / \mathrm{s}^{2}$. (Given $R=6400 \mathrm{~km}$)
(A) $\checkmark 9.66$
(B) 7.64
(C) 5.06
(D) 3.10

Sol : (a) $g^{\prime}=g\left(1-\frac{d}{R}\right)=9.8\left(1-\frac{100}{6400}\right)=9.66 \mathrm{~m} / \mathrm{s}^{2}$
61. An astronaut of mass m is working on a satellite or biting the earth at a distance h from the earth's surface. The radius of the earth is R, while its mass is M. The gravitational pull F_{G} on the astronaut is
(A) Zero since astronaut feels weightless
(B) $\frac{G M m}{(R+h)^{2}}<F_{G}<\frac{G M m}{R^{2}}$
(C) $\checkmark F_{G}=\frac{G M m}{(R+h)^{2}}$
(D) $0<F_{G}<\frac{G M m}{R^{2}}$

Sol : According to universal law of Gravitation,
Gravitational force $F=\frac{G M m}{(R+h)^{2}}$

62. Weightlessness experienced while orbiting the earth in space-ship, is the result of
(A) Inertia
(B) Acceleration
(C) Zero gravity
(D) \checkmark Free fall towards earth

Sol: (d)
63. The escape velocity of a projectile from the earth is approximately \qquad $\mathrm{km} / \mathrm{sec}$
(A) 0.112
(B) 112
(C) $\checkmark 11.2$
(D) 11200

Sol : (c) Escape velocity $=\sqrt{2 g R}$
$\Rightarrow \quad V_{e}=\sqrt{2 \times 10 \times 6400 \times 1000}$
$\Rightarrow \quad V_{e}=11.2 \mathrm{Km} / \mathrm{sec}$
64. v_{e} and v_{p} denotes the escape velocity from the earth and another planet having twice the radius and the same mean density as the earth. Then
(A) $v_{e}=v_{p}$
(B) $\checkmark v_{e}=v_{p} / 2$
(C) $v_{e}=2 v_{p}$
(D) $v_{e}=v_{p} / 4$

Sol : (b) $v_{e}=\sqrt{\frac{2 G M}{R}}=R \sqrt{\frac{8}{3} \pi G \rho}$
If mean density is constant then $v_{e} \propto R$
$\frac{v_{e}}{v_{p}}=\frac{R_{e}}{R_{p}}=\frac{1}{2} \Rightarrow v_{e}=\frac{v_{p}}{2}$
65. If a new planet is discovered rotating around Sun with the orbital radius double that of earth, then what will be its time period (in earth's days)
(A) $\checkmark 1032$
(B) 1023
(C) 1024
(D) 1043

Sol: (a) $T^{2} \propto R^{3}$
$\left(\frac{T_{P}}{T_{E}}\right)^{2}=\left(\frac{R_{P}}{R_{E}}\right)^{3}=\left(\frac{2 R_{E}}{R_{E}}\right)^{3}$
$\frac{T_{P}}{T_{E}}=(2)^{3 / 2}=2 \sqrt{2}$
$T_{P}=2 \sqrt{2} \times 365=1032.37=1032$ days
66. Assuming that the gravitational potential energy of an object at inflinity is zero, the change in potential energy (finalinitial) of an object of mass m, when to a height h from the surface of earth (of radius R), is given
(A) $-\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}$
(B) $\checkmark \frac{\mathrm{GMmh}}{\mathrm{R}(\mathrm{R}+\mathrm{h})}$
(C) $m g h$
(D) $\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}$
Sol : $\Delta \mathrm{U}=-\mathrm{GMm}\left[\frac{1}{\mathrm{r}_{\mathrm{f}}}-\frac{1}{\mathrm{r}_{\mathrm{i}}}\right]=-\mathrm{GMm}\left[\frac{1}{\mathrm{R}+\mathrm{h}}-\frac{1}{\mathrm{R}}\right]=$ GMmh
$\overline{\mathrm{R}(\mathrm{R}+\mathrm{h})}$
67. Consider earth to be a homogeneous sphere. Scientist A goes deep down in a mine and scientist B goes high up in a balloon. The value of g measured by
(A) A goes on decreasing and that by B goes on increasing
(B) B goes on decreasing
and that by A goes on
increasing
(C) Each decreases at the same rate
(D) \checkmark Each decreases at different rates

Sol : (d) For scientist A which goes down in a mine $g^{\prime}=$ $g\left(1-\frac{d}{R}\right)$
For scientist B, which goes up in a air $g^{\prime}=g\left(1-\frac{2 h}{R}\right)$
So it is clear that value of g measured by each will decreases at different rates.
68. The force of gravitation is
(A) repulsive
(B) \checkmark conservative
(C) electrostatic
(D) non-conservative

Sol : The work done by force of gravitation does not depend on path taken hence force of gravitation is conservative
69. A spaceship orbits around a planet at a height of 20 km from its surface. Assuming that only gravitational field of the plant acts on the spaceship. What will be the number of complete revolutions made by the spaceship in 24 hours around the plane? [Given: Mass of plane $=8 \times 10^{22} \mathrm{~kg}$, Radius of planet $=2 \times 10^{6} \mathrm{~m}$, Gravitational constant $\left.G=6.67 \times 10^{-11} \mathrm{Mn}^{2} / \mathrm{kg}^{2}\right]$
(A) 9
(B) $\checkmark 11$
(C) 13
(D) 17

Sol : $\frac{m V^{2}}{r}=\frac{G M m}{r^{2}}$
$V=\sqrt{\frac{G M}{r}}$
$n=\frac{V T}{2 \pi r}=\sqrt{\frac{G M}{r}} \frac{T}{2 \pi r}$
$=\left(\sqrt{\frac{G M}{r^{3}}}\right) \times \frac{T}{2 \pi}=\sqrt{\frac{6.67 \times 10^{-11} \times 8 \times 10^{22}}{\left(202 \times 10^{4}\right)^{3}}} \times \frac{T}{2 \pi}$
$=\frac{24 \times 3600}{2 \times 3.14} \sqrt{\frac{6.67 \times 8 \times 10^{11}}{(202)^{3} \times 10^{12}}}$
$=\frac{24 \times 3600}{2 \times 3.14 \times 1242.8}=\frac{24 \times 3600}{78.51} \simeq 11$
70. Who among the following gave first the experimental value of G
(A) \checkmark Cavendish
(B) Copernicus
(C) Brook Teylor
(D) None of these

Sol : (a)
71. If R is the radius of the earth and g the acceleration due to gravity on the earth's surface, the mean density of the earth is
(A) $4 \pi G / 3 g R$
(B) $3 \pi R / 4 g G$
(C) $\sqrt{ } 3 g / 4 \pi R G$
(D) $\pi R G / 12 G$

Sol : (c) $g=\frac{G M}{R^{2}}$ and $M=\frac{4}{3} \pi R^{3} \times D$
$\therefore g=\frac{4}{3} \frac{\pi R^{3} \times G D}{R^{2}} \Rightarrow D=\frac{3 g .}{4 \pi R G}$
72. Aplanet of mass m is in an elliptical orbit about the sun ($m \ll M_{\text {sun }}$) with an orbital period T. If A be the area of orbit, then its angular momentum would be :
(A) $\sqrt{ } \frac{2 m A}{T}$
(B) $m A T$
(C) $\frac{m A}{2 T}$
(D) $2 m A T$

Sol : $\frac{d A}{d t}=\frac{L}{2 m}$
$L=\frac{A 2 m}{T}$
73. The angular velocity of the earth with which it has to rotate so that acceleration due to gravity on 60° latitude becomes zero is (Radius of earth $=6400 \mathrm{~km}$. At the poles $g=10 \mathrm{~ms}^{-2}$)
(A) $\checkmark 2.5 \times 10^{-3} \mathrm{rad} / \mathrm{s}$
(B) $5.0 \times 10^{-1} \mathrm{rad} / \mathrm{s}$
(C) $10 \times 10^{1} \mathrm{rad} / \mathrm{s}$
(D) $7.8 \times 10^{-2} \mathrm{rad} / \mathrm{s}$

Sol: (a) $g^{\prime}=g-\omega^{2} R \cos ^{2} \lambda \Rightarrow 0=g-\omega^{2} R \cos ^{2} 60^{\circ}$
$0=g-\frac{\omega^{2} R}{4} \Rightarrow \omega=2 \sqrt{\frac{g}{R}}=\frac{1}{400} \frac{\mathrm{rad}}{\mathrm{sec}}$
74. At what height over the earth's pole, the free fall acceleration decreases by one percent \qquad km . (assume the radius of earth to be 6400 km)
(A) $\sqrt{ } 32$
(B) 80
(C) 1.253
(D) 64

Sol : (a) $g \propto \frac{G M}{r^{2}} \Rightarrow g \propto \frac{1}{r^{2}}$ or $r \propto \frac{1}{\sqrt{g}}$
If g decrease by one percent then r should be increase by $\frac{1}{2} \%$
i.e. $R=\frac{1}{2 \times 100} \times 6400=32 \mathrm{~km}$
75. The mass of the moon is about 1.2% of the mass of the earth. Compared to the gravitational force the earth exerts on the moon, the gravitational force the moon exerts on earth
(A) \checkmark Is the same
(B) Is smaller
(C) Is greater
(D) Varies with its phase

Sol : (a) Force between earth and moon $F=\frac{G m_{m} m_{e}}{r^{2}}$
This amount of force, both earth and moon will exert on each other i.e. they exert same force on each other.
76. A geostationary satellite is orbiting the earth at a height $5 R$ above the surface of the earth, R being the radius of the earth. The time period of another satellite in hours at a height of $2 R$ from the surface of the earth is
(A) 5 hr
(B) 10 hr
(C) $\sqrt{6} \sqrt{2} h r$
(D) $10 \sqrt{2} \mathrm{hr}$

Sol : According to Kepler's third law $T \propto r^{3 / 2}$
$\therefore \frac{T_{2}}{T_{1}}=\left(\frac{r_{2}}{r_{1}}\right)^{3 / 2}=\left(\frac{R+2 R}{R+5 R}\right)^{3 / 2}=\frac{1}{2^{3 / 2}}$
Since $T_{1}=24$ hours
So, $\frac{T_{2}}{24}=\frac{1}{2^{3 / 2}}$ or $T_{2}=\frac{24}{2^{3 / 2}}=\frac{24}{2 \sqrt{2}}=6 \sqrt{2}$ hours
77. A spring balance is graduated on sea level. If a body is weighed with this balance at consecutively increasing heights from earth's surface, the weight indicated by the balance
(A) Will go on increasing continuously
(C) Will remain same
(B) $\begin{aligned} & \text { Will go on decreasing } \\ & \text { continuously }\end{aligned}$ continuously
(D) Will first increase and then decrease

Sol : (b) Because value of g decreases with increasing height.
78. Radius of earth is around 6000 km . The weight of body at height of 6000 km from earth surface becomes
(A) Half
(B) \checkmark One-fourth
(C) One third
(D) No change

Sol: (b) $g^{\prime}=g\left(\frac{R}{R+h}\right)^{2}$
\Rightarrow when $h=R$ then $g^{\prime}=\frac{g}{4}$ So the weight of the body at this height will become one-fourth.
79. Out of the following, the only incorrect statement about satellites is
(A) A satellite cannot move in a stable orbit in a plane passing through the earth's centre
(B) Geostationary satellites are launched in the equatorial plane
(C) We can use just one geostationary satellite for global communication around the globe
(D) \checkmark The speed of a satellite increases with an increase in the radius of its orbit
Sol : (d) $v \propto \frac{1}{\sqrt{r}}$. The speed of satellite decreases with an increase in the radius of its orbit.
80. If a body describes a circular motion under inverse square field, the time taken to complete one revolution T is related to the radius of the circular orbit as
(A) $T \propto r$
(B) $T \propto r^{2}$
(C) $\checkmark T^{2} \propto r^{3}$
(D) $T \propto r^{4}$

Sol : (c) $E \propto \frac{1}{r^{2}}$
$F \propto \frac{1}{r^{2}}$
$F=\frac{k}{r^{2}}$
$\frac{K}{r^{2}}=\frac{m v^{2}}{r} \quad T=\frac{2 \pi r}{v}$
$v^{2}=\frac{k}{m r}$
$v=\sqrt{\frac{k}{m r}}$
$T=\frac{2 \pi r}{\sqrt{\frac{R}{m r}}}$
$\Rightarrow T=\frac{2 \pi r^{3 / 2} m^{1 / 2}}{\sqrt{k}}$
$T^{2}=\frac{4 \pi^{2} r^{3} m}{k i}$
$T^{2} \propto r^{3}$
81. If radius of the earth contracts 2% and its mass remains the same, then weight of the body at the earth surface
(A) Will decrease
(B) \checkmark Will increase
(C) Will remain the same
(D) None of these

Sol : (b) $g \propto \frac{1}{R^{2}}$. If radius of earth decreases by 2% then g will increase by 4%
i.e. weight of the body at earth surface will increase by 4%
82. Hubble's law states that the velocity with which milky way is moving away from the earth is proportional to
(A) Square of the distance of the milky way from the earth
(B) \checkmark Distance of milky way from the earth
(C) Mass of the milky way
(D) Product of the mass of the milky way and its distance from the earth
Sol: (b)
83. When a satellite moves around the earth in a certain orbit, the quantity which remains constant is :
(A) angular velocity
(B) kinetic energy
(C) \checkmark aerial velocity
(D) potential energy

Sol : From Kepler's law aerial velocity remains instant
84. The least velocity required to throw a body away from the surface of a planet so that it may not return is (radius of the planet is $6.4 \times 10^{6} \mathrm{~m}, g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$)
(A) $9.8 \times 10^{-3} \mathrm{~m} / \mathrm{sec}$
(B) $12.8 \times 10^{3} \mathrm{~m} / \mathrm{sec}$
(C) $9.8 \times 10^{3} \mathrm{~m} / \mathrm{sec}$
(D) $\sqrt{ } 11.2 \times 10^{3} \mathrm{~m} / \mathrm{sec}$

Sol : (d) Escape velocity from surface of earth $v_{e}=\sqrt{2 g R}$
$=\sqrt{2 \times 9.8 \times 6.4 \times 10^{6}}=11.2 \times 10^{3} \mathrm{~m} / \mathrm{s}$
85. The escape velocity of a rocket launched from the surface of the earth
(A) \checkmark Does not depend on the mass of the rocket
(B) Does not depend on the mass of the earth
(C) Depends on the mass of the planet towards which it is moving
(D) Depends on the mass of the rocket

Sol : (a) $V=\sqrt{\frac{2 G M}{R}}$
86. 3 particles each of mass m are kept at vertices of an equilateral triangle of side L. The gravitational field at centre
due to these particles is
(A) \checkmark Zero
(B) $\frac{3 G M}{L^{2}}$
(C) $\frac{9 G M}{L^{2}}$
(D) $\frac{12}{\sqrt{3}} \frac{G M}{L^{2}}$

Sol: (a)Due to three particles net intensity at the centre $I=\vec{I}_{A}+\vec{I}_{B}+\vec{I}_{C}=0$
because out of these three intensities one equal in magnitude and the angle between each other is 120°.

87. Orbital velocity of an artificial satellite does not depend upon
(A) Mass of the earth
(B) \checkmark Mass of the satellite
(C) Radius of the earth
(D) Acceleration due to gravity

Sol : (b) $v=\sqrt{\frac{G M}{r}}$
88. A body is projected vertically upwards from the surface of a planet of radius R with a velocity equal to half the escape velocity for that planet. The maximum height attained by the body is
(A) $\checkmark R / 3$
(B) $R / 2$
(C) $R / 4$
(D) $R / 5$

Sol: (a) If body is projected with velocity $v\left(v<v_{e}\right)$ then height up to which it will rise,
$h=\frac{R}{\frac{v_{e}^{2}}{v^{2}}-1}$
$v=\frac{v_{e}}{2}$ (given)
$h=\frac{R}{\left(\frac{v_{e}}{v_{e} / 2}\right)^{2}-1}=\frac{R}{4-1}=\frac{R}{3}$
89. A body of mass $m \mathrm{~kg}$. starts falling from a point $2 R$ above the Earth's surface. Its kinetic energy when it has fallen to a point ' R ' above the Earth's surface [R-Radius of Earth, M-Mass of Earth, G-Gravitational Constant]
(A) $\frac{1}{2} \frac{G M m}{R}$
(B) $\sqrt{ } \frac{1}{6} \frac{G M m}{R}$
(C) $\frac{2}{3} \frac{G M m}{R}$
(D) $\frac{1}{3} \frac{6}{G} M \frac{R}{m}$

Sol : (b) Potential energy $U=\frac{-G M m}{r}=-\frac{G M m}{R+h}$
$U_{\text {initial }}=-\frac{G M m}{3 R}$ and $U_{\text {final }}=-\frac{-G M m}{2 R}$
Loss in $P E=$ gain in $K E=\frac{G M m}{2 R}-\frac{G M m}{3 R}=\frac{G M m}{6 R}$
90. A planet has orbital radius twise as the earth's orbital radius then the time period of planet is \qquad years
(A) 4.2
(B) $\checkmark 2.8$
(C) 5.6
(D) 8.4

Sol : (b) $T_{2}=T_{1}\left(\frac{R_{2}}{R_{1}}\right)^{3 / 2}$
$=1 \times(2)^{3 / 2}=2.8$ year
91. The additional kinetic energy to be provided to a satellite of mass m revolving around a planet of mass M, to transfer it from a circular orbit of radius R_{1} to another of radius $R_{2}\left(R_{2}>R_{1}\right)$ is
(A) $\operatorname{GMm}\left(\frac{1}{R_{1}{ }^{2}}-\frac{1}{R_{2}{ }^{2}}\right)$
(B) $\operatorname{GMm}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
(C) $2 \mathrm{GMm}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
(D) $\checkmark \frac{1}{2} \operatorname{GMm}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
Sol : $-\frac{G M m}{2 R_{1}}+K E=-\frac{G M m}{2 R_{2}}$
$K E=\frac{G M m}{2}\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$
92. Choose the correct statement from the following :Weightlessness of an astronaut moving in a satellite is a situation of
(A) Zero g
(B) No gravity
(C) Zero mass
(D) \checkmark Free fall

Sol: (d)
93. At what distance from the centre of the earth, the value of acceleration due to gravity g will be half that on the surface ($R=$ radius of earth)
(A) $2 R$
(B) R
(C) $1.414 R$
(D) $\checkmark 0.414 R$

Sol: (d) $g^{\prime}=g\left(\frac{R}{R+h}\right)^{2} \Rightarrow \frac{1}{\sqrt{2}}=\frac{R}{R+h}$
$\Rightarrow R+h=\sqrt{2} R \Rightarrow h=(\sqrt{2}-1) R=0.414 R$
94. Let g be the acceleration due to gravity at earth's surface and K be the rotational kinetic energy of the earth. Suppose the earth's radius decreases by 2% keeping all other quantities same, then
(A) g decreases by 2% and
(B) g decreases by 4% and K decreases by 4% K increases by 2%
(C) $\checkmark g$ increases by 4% and
(D) g decreases by 4% and K increases by 4% K increases by 4%
Sol : (c) $g=\frac{G M}{R^{2}}$ and $K=\frac{L^{2}}{2 I}$

If mass of the earth and its angular momentum remains constant then $g \propto \frac{1}{R^{2}}$ and $K \propto \frac{1}{R^{2}}$
i.e. if radius of earth decreases by 2% then g and K both increases by 4%.
95. Weight of a body is maximum at
(A) Moon
(B) \checkmark Poles of earth
(C) Equator of earth
(D) Centre of earth

Sol : (b) We know that the weight of the body is the product of mass and acceleration due to gravity and the acceleration due to gravity increases with the latitude
Now the latitude is minimum at the equator and maximum at the poles So, acceleration due to gravity and hence weight is maximum at the poles and minimum at the equator
Hence correct answer is option A
96. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth. Then,
(A) \checkmark the acceleration of S is always directed towards the centre of the earth.
(B) the angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant.
(C) the total mechanical energy of S varies periodically with time.
(D) the linear momentum of S remains constant in magnitude.
Sol : The gravitational force on the satellite S acts towards the centre of the earth, so the acceleration of the satellite S is always directed towards the centre of the earth.
97. The mass and diameter of a planet are twice those of earth. What will be the period of oscillation of a pendulum on this planet if it is a seconds pendulum on earth ?
(A) $\sqrt{2}$ second
(B) $\checkmark 2 \sqrt{2}$ seconds
(C) $\frac{1}{\sqrt{2}}$ second
(D) $\frac{1}{2 \sqrt{2}}$ second

Sol : $g=\frac{G M}{R^{2}}$ and $g^{\prime}=\frac{G \cdot 2 M}{4 R^{2}}$
$=\frac{1}{2} g$
$T \propto \frac{1}{\sqrt{g}} \Rightarrow \frac{T_{2}}{T_{1}}=\sqrt{\frac{g_{1}}{g_{2}}}$
$T=\sqrt{\frac{g}{g / 2}}=\sqrt{2}$
$\therefore T_{2}=\sqrt{2} T_{1}=2 \sqrt{2} \mathrm{~s}$
98. At what distance from the centre of the moon is the point at which the strength of the resultant field of earth's and moon's gravitational field is equal to zero. The earth's mass is 81 times that of moon and the distance between centres of these planets is $60 R$ where R is the radius of the earth
(A) $\sqrt{ } 6 R$
(B) $4 R$
(C) $3 R$
(D) $5 R$

Sol : Let m be the mass at a distance \times from the centre of the moon where gravitation force is zero.
$\therefore \frac{G M_{e} m}{(60 R-x)^{2}}=\frac{G M_{\text {moon }} m}{x^{2}}$
or $\frac{81}{(60 R-x)^{2}}=\frac{1}{x^{2}}$ or $\frac{9}{60 R-x}=\frac{1}{x}$
or $x=6 R$
99. A spherical planet far out in space has a mass M_{0} and diameter D_{0}. A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity which is equal to
(A) $G M_{0} / D_{0}^{2}$
(B) $4 m G M_{0} / D_{0}^{2}$
(C) $\checkmark 4 G M_{0} / D_{0}^{2}$
(D) $G m M_{0} / D_{0}^{2}$

Sol: (c) $g=\frac{G M}{R^{2}}=\frac{G M_{0}}{\left(D_{0} / 2\right)^{2}}=\frac{4 G M_{0}}{D_{0}^{2}}$
100. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth. Then
(A) \checkmark the acceleration of S is always directed towards the centre of the earth
(B) the angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant
(C) the total mechanical energy of S varies periodically with time
(D) the linear momentum of S remains constant in magnitude
Sol : Force on satellite is always directed towards earth, So, acceleration of satellite S is always directed towards centre of earth. Net torque of this gravitational force F about centre of earth is zero. Therefore, angular momentum (both in magnitude and direction) of S about centre of earth is constant throughout. Since, the force F is conservative in nature, therefore, mechanical energy of satellite remains constant. Speed of S is maximum when it is nearest to earth and minimum when it is farthest.

101. A man of mass m starts falling towards a planet of mass M and radius R. As he reaches near to the surface, he realizes that he will pass through a small hole in the planet. As he enters the hole, he sees that the planet is really made of two pieces a spherical shell of negligible thickness of mass $\frac{2 M}{3}$ and a point mass $\frac{M}{3}$ at the centre. Change in the force of gravity experienced by the man is
(A) $\checkmark \frac{2}{3} \frac{G M m}{R^{2}}$
(B) 0
(C) $\frac{1}{3} \frac{G M m}{R^{2}}$
(D) $\frac{4}{3} \frac{G M m}{R^{2}}$

Sol : Gravitational field inside the shell is zero, but the force on the man due to the point mass at the centre is
$F_{\text {new }}=\frac{G M m}{3 R^{2}}, F_{\text {old }}=\frac{G M m}{R^{2}}$
Change in force $=\frac{2 G M m}{3 R^{2}}$ Itbr.
102. The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is R, the radius of the planet would be
(A) $2 R$
(B) $4 R$
(C) $\frac{1}{4} R$
(D) $\checkmark \frac{1}{2} R$

Sol : (d) $g=\frac{4}{3} \pi \rho G R \Rightarrow \frac{R_{p}}{R_{e}}=\left(\frac{g_{p}}{g_{e}}\right)\left(\frac{\rho_{e}}{\rho_{p}}\right)=(1) \times\left(\frac{1}{2}\right)$
$\Rightarrow R_{p}=\frac{R_{e}}{2}=\frac{R}{2}$
103. The escape velocity of a sphere of mass m from earth having mass M and radius R is given by
(A) $\checkmark \sqrt{\frac{2 G M}{R}}$
(B) $2 \sqrt{\frac{G M}{R}}$
(C) $\sqrt{\frac{2 G M m}{R}}$
(D) $\sqrt{\frac{G M}{R}}$

Sol: (a)Escape velocity does not depend on the mass of the projectile
104. A research satellite of mass 200 kg circles the earth in an orbit of average radius $3 R / 2$ where R is the radius of the earth. Assuming the gravitational pull on a mass of 1 kg on the earth's surface to be 10 N , the pull on the satellite will be \qquad N.
(A) $\checkmark 880$
(B) 889
(C) 890
(D) 892

Sol : (a) $g^{\prime}=g\left(\frac{R}{R+h}\right)^{2}=g\left(\frac{R}{3 R / 2}\right)^{2}=\frac{4}{9} g$
$W^{\prime}=\frac{4}{9} \times m g=\frac{4 \times 200 \times 9.8}{9}=880 \mathrm{~N}$
105. At $k m$ height from the surface of earth the gravitation potential and the value of g are $-5.4 \times 10^{7} \mathrm{Jkg}^{-1}$ and $6.0 \mathrm{~ms}^{-2}$ respectively. Take the radius of earth as 6400 km .
(A) 1600
(B) 1400
(C) 2000
(D) $\checkmark 2600$

Sol : Gravitation potential at a height h from the surface of earth, $V_{h}=-5.4 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}$
At the same point acceleration due to gravity,
$g_{h}=6 \mathrm{~ms}^{-2}$
$R=6400 \mathrm{~km}=6.4 \times 10^{6} \mathrm{~m}$
We know, $V_{h}=-\frac{G M}{(R+h)}$
$g_{h}=\frac{G M}{(R+h)^{2}}=-\frac{V_{h}}{R+h} \Rightarrow R+h=-\frac{V_{h}}{g_{h}}$
$\therefore h=-\frac{V_{h}}{g_{h}}-R=\frac{\left(-5.4 \times 10^{7}\right)}{6}-6.4 \times 10^{6}$
$=9 \times 10^{6}-6.4 \times 10^{6}=2600 \mathrm{Km}$
106. The mass of the earth is 81 times that of the moon and the radius of the earth is 3.5 times that of the moon. The ratio of the escape velocity on the surface of earth to that on the surface of moon will be
(A) 0.2
(B) 2.57
(C) $\checkmark 4.81$
(D) 0.39

Sol : (c) Escape velocity $v_{e}=\sqrt{\frac{2 G M}{R}}$
$\frac{v_{e}}{v_{m}}=\sqrt{\frac{M_{e} R_{m}}{M_{m} R_{e}}}=\sqrt{\frac{81}{3.5}}=4.81$
107. The condition for a uniform spherical mass m of radius r to be a black hole is [$G=$ gravitational constant and $g=$ acceleration due to gravity]
(A) $(2 G m / r)^{1 / 2} \leq c$
(B) $(2 G m / r)^{1 / 2}=c$
(C) $\checkmark(2 G m / r)^{1 / 2} \geq c$
(D) $(g m / r)^{1 / 2} \geq c$

Sol : (c)Escape velocity for that body $v_{e}=\sqrt{\frac{2 G m}{r}}$
v_{e} should be more than or equal to speed of light
i.e. $\sqrt{\frac{2 G m}{r}} \geq c$
108. The escape velocity of an object on a planet whose g value is 9 times on earth and whose radius is 4 times that of earth in km / s is
(A) $\checkmark 67.2$
(B) 33.6
(C) 16.8
(D) 25.2

Sol : (a) $\frac{v_{p}}{v_{e}}=\sqrt{\frac{g_{p}}{g_{e}} \times \frac{R_{p}}{R_{e}}}=\sqrt{9 \times 4}=6$
$v_{p}=6 \times v_{e}=67.2 \mathrm{~km} / \mathrm{s}$
109. A weight is suspended from the ceiling of a lift by a spring balance. When the lift is stationary the spring balance reads W. If the lift suddenly falls freely under gravity, the reading on the spring balance will be
(A) W
(B) 2 W
(C) $W / 2$
(D) $\checkmark 0$

Sol : (d) Reading of spring balance $R=m(g-a)$
If the lift falls freely then $a=g \therefore R=0$
110. A satellite of the earth is revolving in circular orbit with a uniform velocity V. If the gravitational force suddenly disappears, the satellite will
(A) continue to move with the same velocity in the same orbit.
(B) \checkmark move tangentially to the original orbit with velocity V.
(C) fall down with increasing velocity.
(D) come to a stop somewhere in its original orbit.
Sol : The satellite is revolving around earth because the centripetal force is balanced by earth's gravitational pull.f. the gravitational pull disappears, the satellite free of centripetal force. So, it will travel with its instantaneous velocity i.e. in the direction tangential to the circular path.
111. Which of the following is the evidence to show that there must be a force acting on earth and directed towards the sun
(A) Deviation of the falling bodies towards east
(B) \checkmark Revolution of the earth round the sun
(C) Phenomenon of day and night
(D) Apparent motion of sun round the earth

Sol : (b) The earth revolves around the sun due to gravitation pull of the sun. Due to this gravitational attraction between this celestial body, centripetal force is generated which binds the solar system together. Hence revolution of earth round the sun is the evidence to show that there ust be force acting on earth nd directed towards the sun.
112. The maximum possible velocity of a satellite orbiting round the earth in a stable orbit is
(A) $\sqrt{2 R_{e} g}$
(B) $\checkmark \sqrt{R_{e} g}$
(C) $\sqrt{\frac{R_{e} g}{2}}$
(D) Infinite

Sol : (b) Otherwise centrifugal force exceeds the force of attraction or we can say that gravitational force won't be able to keep the satellite in circular motion.
113. A planet is revolving around the sun as shown in elliptical path
The correct option is

(A) \checkmark The time taken in travelling $D A B$ is less than that for $B C D$
(B) The time taken in travelling $D A B$ is greater than that for $B C D$
(C) The time taken in travelling $C D A$ is less than that for $A B C$
(D) The time taken in travelling $C D A$ is greater than that for $A B C$
Sol: (a) During path $D A B$ planet is nearer to sun as comparison with path $B C D$. So time taken in travelling $D A B$ is less than that for $B C D$ because velocity of planet will be more in region $D A B$.
114. The acceleration due to gravity on a planet is same as that on earth and its radius is four times that of earth. What will be the value of escape velocity on that planet if it is v_{e} on earth
(A) v_{e}
(B) $\checkmark 2 v_{e}$
(C) $4 v_{e}$
(D) $\frac{v_{e}}{2}$

Sol : (b) $v=\sqrt{2 g R}$
$\Rightarrow \frac{v_{p}}{v_{e}}=\sqrt{\frac{g_{p}}{g_{e}} \times \frac{R_{p}}{R_{e}}}=\sqrt{1 \times 4}=2$
$v_{p}=2 v_{e}$
115. The gravitational field in a region is given by
$\vec{E}=(5 N / k g) \hat{i}+(12 N / k g) \hat{j}$
If the potential at the origin is taken to be zero, then the ratio of the potential at the points $(12 m, 0)$ and $(0,5 m)$ is
(A) Zero
(B) $\checkmark 1$
(C) $\frac{144}{25}$
(D) $\frac{25}{144}$

Sol : From question,
$E_{x}=5 \mathrm{~N} / \mathrm{kg}$ and $E_{y}=12 \mathrm{~N} / \mathrm{kg}$
Gravitational potential

$$
=\text { Gravitational field } \times \text { distance }
$$

$\therefore V_{(12 m, 0)}=E_{x} \times 12 \mathrm{~J} / \mathrm{kg}$
and $V_{(0.5 m)}=E_{y} \times 5 \mathrm{~J} / \mathrm{kg}$
(Give : potential at the origin is zero)
$\therefore \frac{V_{(12 m, 0)}}{V_{(0,5 m)}}=\frac{E_{x} \times 12}{E_{y} \times 5}=\frac{5 \times 12}{12 \times 5}=1$
116. What is the intensity of gravitational field of the centre of a spherical shell
(A) $G m / r^{2}$
(B) g
(C) \checkmark Zero
(D) None of these

Sol : (c) It is zero.
It's because the pull from every direction is exactly the same. This is obvious from the center, but as you move to one side, you're closer to that side, which increases its pull, but this is exactly offset by the fact that there's now MORE mass on the other side.
117. If the gravitational force between two objects were proportional to $\frac{1}{R}$ (and not as $1 / R^{2}$) where R is separation between them, then a particle in circular orbit under such a force would have its orbital speed v proportional to
(A) $\frac{1}{R^{2}}$
(B) $\checkmark R^{0}$
(C) R^{1}
(D) $\frac{1}{R}$

Sol : (b)Gravitational force provides the required centripetal force for orbiting the satellite $\frac{m v^{2}}{R}=\frac{K}{R}$ because $\left(F \propto \frac{1}{R}\right)$
$v \propto R^{\circ}$
118. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?
(A) Raindrops will fall faster.
(B) Walking on the ground would become more difficult.
(C) $\checkmark^{\prime} g^{\prime}$ on the Earth will not change.
(D) Time period of a simple pendulum on the Earth would decrease.
Sol : If universal Gravitational constant becomes ten times, then $G^{\prime}=10 G$.
So, acceleration due to gravity increases.
119. If the distance between two masses is doubled, the gravitational attraction between them
(A) Is doubled
(B) Becomes four times
(C) Is reduced to half
(D) \checkmark Is reduced to a quarter

Sol : (d) $F \propto \frac{1}{r^{2}}$. If r becomes double then F reduces to $\frac{F}{4}$
120. Assume that the acceleration due to gravity on the surface of the moon is 0.2 times the acceleration due to gravity on the surface of the earth. If R_{e} is the maximum range of a projectile on the earth's surface, what is the maximum range on the surface of the moon for the same velocity of projection
(A) $0.2 R_{e}$
(B) $2 R_{e}$
(C) $0.5 R_{e}$
(D) $\checkmark 5 R_{e}$

Sol : (d) Range of projectile $R=\frac{u^{2} \sin 2 \theta}{g}$
if u and θ are constant then $R \propto \frac{1}{g}$
$\frac{R_{m}}{R_{e}}=\frac{g_{e}}{g_{m}} \Rightarrow \frac{R_{m}}{R_{e}}=\frac{1}{0.2} \Rightarrow R_{m}=\frac{R_{e}}{0.2} \Rightarrow R_{m}=5 R_{e}$
121. If the radius and acceleration due to gravity both are doubled, escape velocity of earth will become \qquad km / s
(A) 11.2
(B) $\checkmark 22.4$
(C) 5.6
(D) 44.8

Sol: (b) $v=\sqrt{2 g R}$. If g and R both are doubled then v will becomes two times i.e. $2 \times 11.2=22.4 \mathrm{~km} / \mathrm{s}$
122. The magnitudes of the gravitational force at distances r_{1} and r_{2} from the centre of a uniform sphere of radius R and mass M are F_{1} and F_{2} respectively. Then
(A) $\begin{aligned} \frac{F_{1}}{F_{2}} & =\frac{r_{1}}{r_{2}} \text { if } r_{1}<R \text { and } \\ r_{2} & <R\end{aligned}$
(B) $\frac{F_{1}}{F_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}$ if $r_{1}>R$ and
(C) $\frac{F_{1}}{F_{2}}=\frac{r_{1}}{r_{2}}$ if $r_{1}>R$ and
$r_{2}>R$

Sol: (d) $g=\frac{4}{3} \pi \rho G r$
$g \propto r$ if $r<R$
$g=\frac{G M}{r^{2}}$
$g \propto \frac{1}{r^{2}}$ if $r>R$
If $r_{1}<R$ and $r_{2}<R$ then $\frac{F_{1}}{F_{2}}=\frac{g_{1}}{g_{2}}=\frac{r_{1}}{r_{2}}$
If $r_{1}>R$ and $r_{2}>R$ then $\frac{F_{1}}{F_{2}}=\frac{g_{1}}{g_{2}}=\left(\frac{r_{2}}{r_{1}}\right)^{2}$
123. At a given place where acceleration due to gravity is ' g ' $\mathrm{m} / \mathrm{sec}^{2}$, a sphere of lead of density ' $\mathrm{d}^{\prime} \mathrm{kg} / \mathrm{m}^{3}$ is gently released in a column of liquid of density ' $\rho^{\prime} \mathrm{kg} / \mathrm{m}^{3}$. If $d>\rho$, the sphere will
(A) Fall vertically with an acceleration ${ }^{\prime} g^{\prime} \mathrm{m} / \mathrm{sec}^{2}$
(B) Fall vertically with no acceleration
(C) \checkmark Fall vertically with an
(D) Fall vertically with an acceleration $g\left(\frac{d-\rho}{d}\right)$ acceleration $g\left(\frac{\rho}{d}\right)$

Sol : (c) Apparent weight = actual weight - upthrust force
$V d g^{\prime}=V d g-V \rho g$
$==>g^{\prime}=\left(\frac{d-\rho}{d}\right) g$
124. Two satellite A and B, ratio of masses $3: 1$ are in circular orbits of radii r and $4 r$. Then ratio of total mechanical energy of A to B is
(A) $1: 3$
(B) $3: 1$
(C) $3: 4$
(D) $\checkmark 12: 1$

Sol : (d) Total mechanical energy of satellite $E=\frac{-G M m}{2 r}$
$\frac{E_{A}}{E_{B}}=\frac{m_{A}}{m_{B}} \times \frac{r_{B}}{r_{A}}$
$=\frac{3}{1} \times \frac{4 r}{r}$
$=\frac{12}{1}$
125. A very long (length L) cylindrical galaxy is made of uniformly distributed mass and has radius $R(R \ll L)$. A star outside the galaxy is orbiting the galaxy in a plane perpendicular to the galaxy and passing through its centre. If the time period of star is T and its distance from the galaxy's axis is r, then
(A) $\checkmark T \propto r$
(B) $T \propto \sqrt{r}$
(C) $T \propto r^{2}$
(D) $T^{2} \propto r^{3}$

Sol : $F=\frac{2 G M}{L r} m$ or, $\frac{m v^{2}}{r}=\frac{2 G M}{L r} m$
$m r\left(\frac{2 \pi}{T}\right)^{2}=\frac{2 G M m}{L r}\left[v=r \omega \operatorname{and} \omega=\frac{2 \pi}{T}\right]$
$\Rightarrow T \propto r$
126. A satellite whose mass is M, is revolving in circular orbit of radius r around the earth. Time of revolution of satellite is
(A) $T \propto \frac{r^{5}}{G M}$
(B) $\checkmark T \propto \sqrt{\frac{r^{3}}{G M}}$
(C) $T \propto \sqrt{\frac{r}{G M^{2} / 3}}$
(D) $T \propto \sqrt{\frac{r^{3}}{G M^{1} / 4}}$
127. For a satellite moving in an orbit around the earth, the ratio of kinetic energy to potential energy is
(A) 2
(B) $\checkmark \frac{1}{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\sqrt{2}$

Sol : (b) For a moving satellite kinetic energy $=\frac{G M m}{2 r}$
Potential energy $=\frac{-G M m}{r}$
$\frac{\text { Kinetic energy }}{\text { Potential energy }}=\frac{1}{2}$
128. Four identical particles of mass M are located at the corners of a square of side ' a^{\prime}. What should be their speed if each of them revolves under the influence of other's gravitational field in a circular orbit circumscribing the square?

(A) $1.35 \sqrt{\frac{G M}{a}}$
(B) $\checkmark 1.16 \sqrt{\frac{G M}{a}}$
(C) $1.41 \sqrt{\frac{G M}{a}}$
(D) $1.21 \sqrt{\frac{G M}{a}}$

Sol : Net force on particle towards center of circle is
$F_{c}=\frac{G M^{2}}{2 a^{2}}+\frac{G M^{2}}{a^{2}} \sqrt{2}$
$=\frac{G M^{2}}{a^{2}}\left(\frac{1}{2}+\sqrt{2}\right)$
This force will act as centripetal force.
Diatance of particle from center of circle is $\frac{a}{\sqrt{2}}$.
$r=\frac{a}{\sqrt{2}}, F_{c}=\frac{m v^{2}}{r}$
$\frac{m v^{2}}{\frac{a}{\sqrt{2}}}=\frac{G M^{2}}{a^{2}}\left(\frac{1}{2}+\sqrt{2}\right)$
$v^{2}=\frac{G M}{a}\left(\frac{1}{2 \sqrt{2}}+1\right)$
$v^{2}=\frac{G M}{a}(1.35) ; v=1.16 \sqrt{\frac{G M}{a}}$

129. The acceleration of a body due to the attraction of the earth (radius R) at a distance $2 R$ from the surface of the earth is ($g=$ acceleration due to gravity at the surface of the earth)
(A) $\checkmark \frac{g}{9}$
(B) $\frac{g}{3}$
(C) $\frac{g}{4}$
(D) g

Sol : (a) $g^{\prime}=g\left(\frac{R}{R+h}\right)^{2}=g\left(\frac{R}{R+2 R}\right)^{2}=\frac{g}{9}$
130. If a satellite orbits as close to the earth's surface as possible,
(A) its speed is maximum
(B) time period of its rotation is minimum
(C) the total energy of the 'earth plus satellite' system is minimum
(D) \checkmark all of the above

Sol : Speed of satellite $\alpha \frac{1}{\sqrt{r}}$ Speed will be maximum Time period
$\alpha r \overline{2}$ it will be minimum
Total Energy $=-\frac{G M m}{2 r}$
Total energy is minimum.
131. The radii of two planets are respectively R_{1} and R_{2} and their densities are respectively ρ_{1} and ρ_{2}. The ratio of the accelerations due to gravity at their surfaces is
(A) $g_{1}: g_{2}=\frac{\rho_{1}}{R_{1}^{2}}: \frac{\rho_{2}}{R_{2}^{2}}$
(B) $g_{1}: g_{2}=R_{1} R_{2}: \rho_{1} \rho_{2}$
(C) $g_{1}: g_{2}=R_{1} \rho_{2}: R_{2} \rho_{1}$
(D) $\checkmark g_{1}: g_{2}=R_{1} \rho_{1}: R_{2} \rho_{2}$

Sol : (d) $g=\frac{4}{3} \pi \rho G R$
$\therefore \frac{g_{1}}{g_{2}}=\frac{R_{1} \rho_{1}}{R_{2} \rho_{2}}$
132. In a gravitational field, at a point where the gravitational potential is zero
(A) \checkmark The gravitational field is necessarily zero
(C) Nothing can be said definitely about the gravi-
(B) The gravitational field is not necessarily zero
tational field
Sol : (a) $I=\frac{-d V}{d x}$
If $V=0$ then gravitational field is necessarily zero.
133. The radius and mass of earth are increased by 0.5%. Which of the following statements are true at the surface of the earth
(A) Potential energy will re-
(B) g will decrease main unchanged
(C) Escape velocity will re-
(D) \checkmark All of the above main unchanged

Sol : (d) $g=\frac{G M}{R^{2}}, v_{e}=\sqrt{\frac{2 G M}{R}}$ and $U=\frac{-G M m}{R}$
$g \propto \frac{M}{R^{2}}, v_{e} \propto \sqrt{\frac{M}{R}}$ and $U \propto \frac{M}{R}$
If both mass and radius are increased by 0.5% then v_{e} and U remains unchanged where as g decrease by 0.5%.
134. A body of mass m is taken to the bottom of a deep mine. Then
(A) Its mass increases
(B) Its mass decreases
(C) Its weight increases
(D) \checkmark Its weight decreases

Sol: (d)Because acceleration due to gravity decreases
135. When a satellite in a circular orbit around the earth enters the atmospheric region, it encounters small air resistance to its motion. Then
(A) its kinetic energy in-
(B) its kinetic energy decreases
(C) its angular momentum creases about the earth de-
(D) $\sqrt{ }(A)$ and (C) both

Sol : $K E=\frac{G M m}{2 r} \uparrow$
Due to air resistance angular mometum will decreases
$T=2 \pi \sqrt{\frac{r^{3}}{G M}}$, so option (A) and (C) are correct.
136. In order to find time, the astronaut orbiting in an earth satellite should use
(A) A pendulum clock
(B) \checkmark A watch having main spring to keep it going
(C) Either a pendulum clock or a watch
(D) Neither a pendulum clock nor a watch

Sol: (b) In pendulum clock the time period depends on the value of g, while in spring watch, the time period is independent of the value of g.
137. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth
(A) \checkmark the acceleration of S is always directed towards the centre of the earth
(B) the angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant
(C) the total mechanical energy of S varies periodically with time
(D) the linear momentum of S remains constant in magnitude
Sol: As we know that, the force on satellite is an only gravitational force which will always be towards the centre of the earth. Thus, the acceleration is S is always directed towards the centre of the earth
138. Gravitational potential at the centre of curvature of a hemispherical bowl of radius R and mass M is V.
(A) gravitational potential at the centre of curvature of a thin uniform wire of mass M, bent into a semicircle of radius R, is also equal to V.
(B) In part (A) if the same wire is bent into a quarter of a circle then also the gravitational potential at the centre of curvature will be V.
(C) In part (A) if the same wire mass is nonuniformly distributed along its length and it is bent into a semicircle of radius R, gravitational potential at the centre is V.
(D) $\checkmark(A)$ and (C) both
139. Radius of orbit of satellite of earth is R. Its kinetic energy
is proportional to
(A) $\checkmark \frac{1}{R}$
(B) $\frac{1}{\sqrt{R}}$
(C) R
(D) $\frac{1}{R^{3 / 2}}$

Sol : (a) K.E. $=\frac{G M m}{2 R}$
140. A particle starts from rest at a distance R from the centre and along the axis of a fixed ring of radius $R \&$ mass M. Its velocity at the centre of the ring is :

(A) $\sqrt{\frac{\sqrt{2} G M}{R}}$
(B) $\sqrt{\frac{2 G M}{R}}$
(C) $\sqrt{\left(1-\frac{1}{\sqrt{2}}\right) \frac{G M}{R}}$
(D) $\sqrt{ }(2-\sqrt{2}) \frac{G M}{R}$

Sol : Applying conservation of energy
$v=\frac{-G \times M}{\sqrt{x^{2}+R^{2}}}$
Potential energy $=v \times m=\frac{-G m M}{\sqrt{x^{2}+R^{2}}}$
Initial kinetic energyr ${ }_{i}=0$
Potential energy at center $=\frac{-G M m}{R}\{x=0\}$
$\frac{-G M m}{\sqrt{x^{2}+R^{2}}}+0=\frac{G M m}{R}+\frac{1}{2} m v^{2}$
$\frac{1}{2} m v^{2}=\frac{G M m}{R}-\frac{G M m}{\sqrt{x^{2}+R^{2}}}=G M m\left\{\frac{1}{R}-\frac{1}{\sqrt{x^{2}+R^{2}}}\right\}$
$v^{2}=\frac{2 G M m}{m}\left\{\frac{1}{R}-\frac{1}{\sqrt{x^{2}+R^{2}}}\right\}$
$v^{2}=\sqrt{\left(2-\frac{2}{\sqrt{2}}\right)\left(\frac{G M}{R}\right)}=\sqrt{(2 \sqrt{2}) \frac{G M}{R}}$
141. In order to make the effective acceleration due to gravity equal to zero at the equator, the angular velocity of rotation of the earth about its axis should be $\left(g=10 \mathrm{~ms}^{-2}\right.$ and
radius of earth is 6400 kms)
(A) $0 \mathrm{rad} \mathrm{sec}^{-1}$
(B) $\sqrt{ } \frac{1}{800} \mathrm{rad} \mathrm{sec}-1$
(C) $\frac{1}{80} \mathrm{radsec}^{-1}$
(D) $\frac{1}{8} \mathrm{rad} \mathrm{sec}^{-1}$
Sol :(b) $g^{\prime}=g-\omega^{2} R \cos ^{2} \lambda$

For weightlessness at equator $\lambda=0$ and $g^{\prime}=0$
$0=g-\omega^{2} R$
$\omega=\sqrt{\frac{g}{R}}=\frac{1}{800} \frac{\mathrm{rad}}{\mathrm{s}}$
142. The escape velocity for a body projected vertically upwards from the surface of earth is $11 \mathrm{~km} / \mathrm{s}$. If the body is projected at an angle of 45° with the vertical, the escape velocity will be \qquad km / s
(A) 22
(B) $\checkmark 11$
(C) $\frac{11}{\sqrt{2}}$
(D) $11 \sqrt{2}$

Sol : Since escape velocity $\left(v_{e}=\sqrt{2 g R_{e}}\right)$ independent of angle of projection, so it will not change
143. In the solar system, which is conserved
(A) \checkmark Total Energy
(B) K.E.
(C) Angular Velocity
(D) Linear Momentum

Sol : (a)
144. By which curve will the variation of gravitational potential of a hollow sphere of radius R with distance be depicted
(A)

(C) \checkmark

Sol : (c) For hollow sphere
$V_{\text {in }}=\frac{-G M}{R}, V_{\text {surface }}=\frac{-G M}{R}, V_{\text {out }}=\frac{-G M}{r}$
i.e. potential remain constant inside the sphere and it is equal to potential at the surface and increase when the point moves away from the surface of sphere.
145. The correct graph representing the variation of total energy $\left(E_{t}\right)$ kinetic energy $\left(E_{k}\right)$ and potential energy (U) of a satellite with its distance from the centre of earth is
(A)

(B)

(C) \checkmark

(D)

Sol: (c) $U=\frac{-G M m}{r}, K=\frac{G M m}{2 r}$ and $E=\frac{-G M m}{2 r}$
For a satellite U, K and E varies with r and also U and E remains negative whereas K remain always positive.
146. The value of escape velocity on a certain planet is $2 \mathrm{~km} / \mathrm{s}$. Then the value of orbital speed for a satellite orbiting close to its surface is
(A) $12 \mathrm{~km} / \mathrm{s}$
(B) $1 \mathrm{~km} / \mathrm{s}$
(C) $\checkmark \sqrt{2} \mathrm{~km} / \mathrm{s}$
(D) $2 \sqrt{2} \mathrm{~km} / \mathrm{s}$

Sol : (c) $v_{0}=\frac{v_{e}}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2} \mathrm{~km} / \mathrm{s}$
147. The acceleration due to gravity at pole and equator can be related as
(A) $g_{p}<g_{e}$
(B) $g_{p}=g_{e}=g$
(C) $g_{p}=g_{e}<g$
(D) $\checkmark g_{p}>g_{e}$

Sol: (d)
148. The escape velocity for the earth is $11.2 \mathrm{~km} / \mathrm{sec}$. The mass of another planet is 100 times that of the earth and its radius is 4 times that of the earth. The escape velocity for this planet will be \qquad km/sec
(A) 112.0
(B) 5.6
(C) 280.0
(D) $\sqrt{ } 56.0$

Sol : $v=\sqrt{\frac{2 G M}{R}} \Rightarrow \frac{v_{p}}{v_{e}}=\sqrt{\frac{M_{p}}{M_{e}} \times \frac{R_{e}}{R_{p}}}$
$\Rightarrow v_{p}=5 v_{e}=5 \times 11.2=56 \mathrm{~km} / \mathrm{s}$
149. Taking the gravitational potential at a point infinte distance away as zero, the gravitational potential at a point A is -5 unit. If the gravitational potential at point infinite distance away is taken as +10 units, the potential at point A is unit
(A) -5
(B) $\checkmark+5$
(C) +10
(D) +15

Sol: The gravitational potential V at a point distance ${ }^{\prime} r r^{\prime}$ from a body of mass m is equal to the amount of work done in moving a unit mass from infinity to that point.
$V_{r}-v_{\propto}=-\int_{\propto}^{r} \vec{E} \cdot d \vec{r}=-G M(1 / r-1 / \propto)$
$=\frac{-G M}{r}\left(A s \vec{E}=\frac{-d v}{d r}\right)$
(i) In the first case
when $v_{\propto}=0, V_{r}=\frac{-G M}{r}=-5$ unit
(ii) In the second case $v^{\propto}=+10$ unit

$$
V_{r}-10=-5
$$

or $\quad V_{r}=+5$ unit
150. A communications Earth satellite
(A) goes round the earth
from west to east
(B) can be in the equatorial from west to east plane only
(C) can be vertically above any place on the earth (D) $\checkmark(A)$ and (B) both
151. Orbital velocity of earth's satellite near the surface is $7 \mathrm{~km} / \mathrm{s}$. When the radius of the orbit is 4 times than that of earth's radius, then orbital velocity in that orbit is \qquad km/sec
(A) $\sqrt{ } .5$
(B) 7
(C) 72
(D) 14

Sol : (a) $v \propto \frac{1}{\sqrt{r}}$.
If orbital radius becomes 4 times then orbital velocity will become half.
i.e. $\frac{7}{2}=3.5 \mathrm{~km} / \mathrm{s}$
152. Kepler's second law (law of areas) is nothing but a statement of
(A) Work energy theorem
(B) Conservation of linear momentum
(C) \checkmark Conservation of angu-
lar momentum
(D) Conservation of energy

Sol: (c)
153. The distance of neptune and saturn from the sun is nearly 10^{13} and 10^{12} meter respectively. Assuming that they move in circular orbits, their periodic times will be in the ratio
(A) 10
(B) 100
(C) $\checkmark 10 \sqrt{10}$
(D) 1000

Sol: $T^{2} \propto R^{3}$ (According to kepler's law)
$T_{1}^{2} \propto\left(10^{13}\right)^{3}$ and $T_{2}^{2} \propto\left(10^{12}\right)^{3}$
$\therefore \frac{T_{1}^{2}}{T_{2}^{2}}=(10)^{3}$ or $\frac{T_{1}}{T_{2}}=10 \sqrt{10}$
154. The distance between centre of the earth and moon is 384000 km . If the mass of the earth is $6 \times 10^{24} \mathrm{~kg}$ and $G=6.66 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$. The speed of the moon is nearly. \qquad $\mathrm{km} / \mathrm{sec}$
(A) $\checkmark 1$
(B) 4
(C) 8
(D) 11.2

Sol : (a) $v=\sqrt{\frac{G M}{r}}$
$=\sqrt{\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{384000 \times 10^{3}}}$
$=1 \mathrm{~km} / \mathrm{s}$
155. The height at which the weight of a body becomes $\frac{1}{16}^{\text {th }}$, its weight on the surface of earth (radius R), is
(A) $5 R$
(B) $15 R$
(C) $\sqrt{ } 3 R$
(D) $4 R$

Sol: Accleration due to gravity at a height h from the suface of earth is
$g^{\prime}=\frac{g}{\left(1+\frac{h}{R}\right)^{2}}$
Where g is the acceleration due to gravity at the surface of earth and R is the radius of earth.
Multiplying by m (mass of the body) on both sides in (i), we get
$m g^{\prime}=\frac{m g}{\left(1+\frac{h}{R}\right)^{2}}$
\therefore Weight of body at height $h, w^{\prime}=m g^{\prime}$
Weight of body at surface of earth, $W=m g$
According to question, $W^{\prime}=\frac{1}{16} W$
$\therefore \frac{1}{16}=\frac{1}{\left(1+\frac{h}{R}\right)^{2}}$
$\left(1+\frac{h}{R}\right)^{2}=16$ or $1+\frac{h}{R}=4$
or $\frac{h}{R}=3$ or $h=3 R$.
156. This question contains Statement-1 and Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.
Statement-1: For a mass M kept at the centre ofa cube of side ' a ', the flux of gravitational field passing through its sides $4 \pi G M$.
Statement -2 : If the direction of a field due to a point source is radial and its dependence on the distance ' r ' from the source is given as $\frac{1}{r^{2}}$, its flux through a closed surface depends only on the strength of the source enclosed by the surface and not on the size or shape of the surface.
(A) Statement -1 is false, Statement -2 is true
(B) \checkmark Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement-1
(C) Statement -1 is true, Statement -2 is true; Statement -2 is not a correct explanation for Statement -1
(D) Statement -1 is true, Statement -2 is false

Sol: Gravitational flux through a closed surface is given by
$\int \overrightarrow{E_{g}} \vec{d} S=-4 \pi G M$
where, $M=$ mass enclosed in the closed surface
This relationship is valid When $\left|E_{g}\right| \propto \frac{1}{r^{2}}$.
157. The orbital speed of Jupiter is
(A) Greater than the orbital speed of earth
(B) \checkmark Less than the orbital speed of earth
(C) Equal to the orbital
(D) Zero speed of earth

Sol : (b) Orbital radius of Jupiter >Orbital radius of Earth
$\frac{v_{J}}{v_{e}}=\frac{r_{e}}{r_{J}} \quad$ As $r_{J}>r_{e}$ therefore $v_{J}<v_{e}$
158. A body weight 500 N on the surface of the earth. How much would it weigh half way below the surface of the earth \qquad N
(A) 125
(B) $\checkmark 250$
(C) 500
(D) 1000

Sol: (b) Weight on surface of earth, $m g=500 \mathrm{~N}$ and weight below the surface of earth at $d=\frac{R}{2}$
$m g^{\prime}=m g\left(1-\frac{d}{R}\right)=m g\left(1-\frac{1}{2}\right)=\frac{m g}{2}=250 \mathrm{~N}$
159. Mass M is divided into two parts $x M$ and $(1-x) M$. For a given separation, the value of x for which the gravitational attraction between the two pieces becomes maximum is
(A) $\checkmark 0.5$
(B) $\frac{3}{5}$
(C) 1
(D) 2

Sol: (a) $F \propto x m \times(1-x) m=x m^{2}(1-x)$
For maximum force $\frac{d F}{d x}=0$
$\Rightarrow \frac{d F}{d x}=m^{2}-2 x m^{2}=0 \Rightarrow x=1 / 2$
160. A body has a weight 90 kg on the earth's surface, the mass of the moon is $1 / 9$ that of the earth's mass and its radius is $1 / 2$ that of the earth's radius. On the moon the weight of the body is \qquad kg
(A) 45
(B) 202.5
(C) 90
(D) $\checkmark 40$

Sol : (d) $\frac{g_{m}}{g_{e}}=\frac{M_{m}}{M_{e}} \times\left(\frac{R_{e}}{R_{m}}\right)^{2}=\left(\frac{1}{9}\right)\left(\frac{2}{1}\right)^{2}=\frac{4}{9} \Rightarrow g_{m}=\frac{4}{9} g_{e}$
$W_{\mathrm{m}}=\frac{4}{9} \times W_{e}=\frac{4}{9} \times 90=40 \mathrm{~kg}$
161. A body weighs 700 gm wt on the surface of the earth. How much will it weigh on the surface of a planet whose mass is $\frac{1}{7}$ and radius is half that of the earth \qquad $g m w t$
(A) 200
(B) $\checkmark 400$
(C) 50
(D) 300

Sol : (b) We know that $g=\frac{G M}{R^{2}}$
On the planet $g_{p}=\frac{G M / 7}{R^{2} / 4}=\frac{4 g}{7}=\frac{4}{7} g$
Hence weight on the planet $=700 \times \frac{4}{7}=400 \mathrm{gmwt}$
162. The orbital velocity of an artificial satellite in a circular orbit just above the earth's surface is v. For a satellite orbiting at an altitude of half of the earth's radius, the orbital velocity is
(A) $\frac{3}{2} v$
(B) $\sqrt{\frac{3}{2}} v$
(C) $\checkmark \sqrt{\frac{2}{3}} v$
(D) $\frac{2}{3} v$
Sol : (c) $v=\sqrt{\frac{G M}{R+h}}$

For first satellite $h=0, v_{1}=\sqrt{\frac{G M}{R}}$
For second satellite $h=\frac{R}{2}, v_{2}=\sqrt{\frac{2 G M}{3 R}}$
$v_{2}=\sqrt{\frac{2}{3}} v_{1}=\sqrt{\frac{2}{3}} v$
163. An earth satellite of mass m revolves in a circular orbit at a height h from the surface of the earth. R is the radius of the earth and g is acceleration due to gravity at the surface of the earth. The velocity of the satellite in the orbit is given by
(A) $\frac{g R^{2}}{R+h}$
(B) $g R$
(C) $\frac{g R}{R+h}$
(D) $\checkmark \sqrt{\frac{g R^{2}}{R+h}}$

Sol : (d) $v_{0}=\sqrt{\frac{G M}{r}}=\sqrt{\frac{g R^{2}}{R+h}}$
164. The escape velocity of a body on the surface of the earth is $11.2 \mathrm{~km} / \mathrm{s}$. If the earth's mass increases to twice its present value and the radius of the earth becomes half, the escape velocity would become \qquad km / s
(A) 5.6
(B) 11.2
(C) $\checkmark 22.4$
(D) 44.8

Sol: (c) $v_{e}=\sqrt{\frac{2 G M}{R}}$
$v_{e} \propto \sqrt{\frac{M}{R}}$
If M becomes double and R becomes half then escape velocity becomes two times.
165. A satellite moves around the earth in a circular orbit of radius r with speed v. If the mass of the satellite is M, its total energy is
(A) $\checkmark-\frac{1}{2} M v^{2}$
(B) $\frac{1}{2} M v^{2}$
(C) $\frac{3}{2} M v^{2}$
(D) $M v^{2}$

Sol : (a) Total energy $=-($ kinetic energy $)=-\frac{1}{2} M v^{2}$
166. A particle is moving with a uniform speed in a circular orbit of radius R in a central force inversely proportional to the $n^{t h}$ power of R. If the period ofrotation of the particle is T, then
(A) $T \propto R^{\frac{n}{2}+1}$
(B) $\checkmark T \propto R^{\frac{(n+1)}{2}}$
(C) $T \propto R^{\overline{2}}$
(D) $T \propto R^{\overline{2}}$ For any n
Sol : $m \omega^{2} R=$ Force $\propto \frac{1}{R^{n}} \quad\left(\right.$ Force $\left.=\frac{m v^{2}}{R}\right)$
$\Rightarrow \omega^{2} \propto \frac{1}{R^{n+1}} \Rightarrow \omega \propto \frac{1}{R^{\frac{n+1}{2}}}$

Time period $T=\frac{2 \pi}{\omega}$
Time period, $T \propto R^{\frac{n+1}{2}}$
167. If radius of earth is R then the height ' h ' at which value of ' g ' becomes one-fourth is
(A) $\frac{R}{4}$
(B) $\frac{3 R}{4}$
(C) $\checkmark R$
(D) $\frac{\frac{4}{8}}{8}$

Sol: (c) $g^{\prime}=g\left(\frac{R}{R+h}\right)^{2}=\frac{g}{4}$.
By solving $h=R$
168. The ratio of the weights of a body on the Earth's surface to that on the surface of a planet is $9: 4$. The mass of the planet is $\frac{1^{t h}}{9}$ of that of the Earth. If ' R ' is the radius of the Earth, what is the radius of the planet? (Take the planets to have the same mass density)
(A) $\frac{R}{3}$
(B) $\frac{R}{4}$
(C) $\frac{R}{9}$
(D) $\checkmark \frac{R}{2}$

Sol : Since mass of the object remains same
\therefore Weight of object will be proporational to ' g '
(acceleration due to gravity) Given ;
$\frac{W_{\text {earth }}}{W_{\text {planet }}}=\frac{9}{4}=\frac{g_{\text {earth }}}{g_{\text {planet }}}$
Also, $g_{\text {surface }}=\frac{G M}{R^{2}}(M$ is mass planet, G is unversal gravitational c
$\therefore \frac{9}{4}=\frac{G M_{\text {earth }} R_{\text {planet }}^{2}}{G M_{\text {planet }} R_{\text {earth }}^{2}}=\frac{M_{\text {earth }}}{M_{\text {planet }}} \times \frac{R_{\text {planet }}^{2}}{R_{\text {earth }}^{2}}$
$=9 \frac{R_{\text {planet }}^{2}}{R_{\text {earth }}^{2}}$
$\therefore R_{\text {planet }}=\frac{R_{\text {earth }}}{2}=\frac{R}{2}$
169. Consider a satellite going round the earth in an orbit.

Which of the following statements is wrong
(A) It is a freely falling body
(B) \checkmark It suffers no acceleration
(C) It is moving with a con-
(D) Its angular momentum remains constant

Sol: (b)Centripetal acceleration works on it.
170. Two sphere of mass m and M are situated in air and the gravitational force between them is F. The space around the masses is now filled with a liquid of specific gravity 3.
The gravitational force will now be
(A) $\checkmark F$
(B) $\frac{F}{3}$
(C) $\frac{F}{9}$
(D) $3 F$

Sol : (a)Gravitational force does not depend on the medium.
171. When a satellite going round the earth in a circular orbit of radius r and speed v loses some of its energy, then r and v change as
(A) r and v both with increase
(B) r and v both will decrease
(C) $\checkmark r$ will decrease and v will increase
(D) r will increase and v will decrease

Sol : (c) B.E. $=-\frac{G M m}{r}$.
If $B . E_{1}$. decreases then r also decreases and v increases as $v \propto \frac{1}{\sqrt{r}}$
172. A particle of mass M is situated at the centre of a spherical shell of same mass and radius a. The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre, will
be
(A) $\checkmark-\frac{3 G M}{a}$
(B) $-\frac{2 G M}{q}$
(C) $-\frac{G M^{a}}{a}$
(D) $-4 G^{q} M$

Sol : Pot ${ }^{a}$ tential at the given point $=$ Potential at the point due to the shell + Potential due to the particle
$=-\frac{G M}{a}-\frac{2 G M}{a}=-\frac{3 G M}{a}$
173. Consider two solid spheres of radii $R_{1}=1 \mathrm{~m} \mathrm{R} R_{2}=2 \mathrm{~m}$ and masses M_{1} and M_{2}, respectively. The gravitational field due to sphere (1) and (2) are shown. The value of $\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}$ is

(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(C) $\frac{1}{3}$
(D) $\checkmark \frac{1}{6}$

Sol ${ }^{3}$ Gravitational field on the surface of a solid sphere
$I_{g}=\frac{G M}{R^{2}}$
By the graph
$\frac{\mathrm{GM}_{1}}{(1)^{2}}=2$
and $\frac{\mathrm{GM}_{2}}{(2)^{2}}=3$
On solving
$\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}=\frac{1}{6}$
174. An artificial satellite is placed into a circular orbit around earth at such a height that it always remains above a definite place on the surface of earth. Its height from the surface of earth is \qquad km
(A) 6400
(B) 4800
(C) 32000
(D) $\checkmark 36000$

Sol : As the satellite always remains stationary w.r.t earth surface, thus its time period revolution is equal to time period of rotation of earth i.e 24 hrs
Time period of satellite $T=2 \pi \sqrt{\frac{r^{3}}{g R^{2}}}$ where $R=6400 \mathrm{~km}=$ $6.4 \times 10^{6} \mathrm{~m}$
$\therefore 24 \times 3600=2 \pi \sqrt{\frac{r^{3}}{9.8\left(6.4 \times 10^{6}\right)^{2}}}$
OR $\frac{r^{3}}{401.408 \times 10^{12}}=1.89 \times 10^{8} \quad \Longrightarrow r^{3}=76 \times 10^{21}$
$\Rightarrow r=42400 \mathrm{~km}$
Thus height of satellite above earth surface $\quad h=42400-$ $6400=36000 \mathrm{~km}$
175. A geostationary satellite is revolving around the earth. To make it escape from gravitational field of earth, is velocity must be increased \qquad \%
(A) 100
(B) $\checkmark 41.4$
(C) 50
(D) 59.6

Sol: (b) $v_{e}=\sqrt{2} v_{0}=1.414 v_{0}$
Fractional increase in orbital velocity $\left(\frac{\Delta v}{v}\right)$
$=\frac{v_{e}-v_{0}}{v_{0}}=0.414$
Percentage increase $=41.4 \%$
176. The weight of a body at the centre of the earth is
(A) \checkmark Zero
(B) Infinite
(C) Same as on the surface
of earth
(D) None of the above

Sol : (a) Inside the earth, gravitational force will vary as
$F=\frac{G M \frac{r^{3}}{R^{3}}}{r^{2}}=\frac{G M r}{R^{3}}$
Hence, at $r=0, F=0$
177. If satellite is shifted towards the earth. Then time period of satellite will be
(A) Increase
(B) \checkmark Decrease
(C) Unchanged
(D) Nothing can be said

Sol: (b) $T^{2} \propto r^{3}$
178. The gravitational potential energy of a body of mass ' m ' at the earth's surface $-m g R_{e}$. Its gravitational potential energy at a height R_{e} from the earth's surface will be (Here R_{e} is the radius of the earth)
(A) $-2 m g R_{e}$
(B) $2 m g R_{e}$
(C) $\frac{1}{2} m g R_{e}$
(D) $\checkmark-\frac{1}{2} m g R_{e}$
Sol : (d) $\Delta U=U_{2}-U_{1}=\frac{m g h}{1+\frac{h}{R_{e}}}=\frac{m g R_{e}}{1+\frac{R_{e}}{R_{e}}}=\frac{m g R_{e}}{2}$
$\Rightarrow U_{2}-\left(-m g R_{e}\right)=\frac{m g R_{e}}{2} \Rightarrow U_{2}=-\frac{1}{2} m g R_{e}$
179. Planetary system in the solar system describes
(A) Conservation of energy
(B) Conservation of linear momentum
(C) \checkmark Conservation of angu-
lar momentum
(D) None of these

Sol: (c)
180. A shell of mass M and radius R has a point mass m placed at a distance r from its centre. The gravitational potential energy $U(r)$ vs r will be

(A)
(B)

(C) \checkmark

Sol: (c) Gravitational P.E. $=m \times$ gravitational potential $U=m V$ So the graph of U will be same as that of V for a spherical shell.
181. Reason of weightlessness in a satellite is
(A) Zero gravity
(B) Centre of mass
(C) \checkmark Zero reaction force by
satellite surface
(D) None

Sol: (c)
182. The orbital angular momentum of a satellite revolving at a distance r from the centre is L. If the distance is increased to $16 r$, then the new angular momentum will be
(A) $16 L$
(B) 64 L
(C) $\frac{L}{4}$
(D) $\checkmark 4 L$

Sol : (d) $L=m v r=m \sqrt{\frac{G M}{r} r}=m \sqrt{G M r}$
$\therefore L \propto \sqrt{r}$
183. Assuming the earth to be a sphere of uniform density the acceleration due to gravity
(A) at a point outside the earth is inversely proportional to the square of its distance from the centre
(B) at a point outside the earth is inversely proportional to its distance from the centre
(C) at a point inside is proportional to its distance from the centre.
(D) $\checkmark(A)$ and (C) both
184. If it is assumed that the spinning motion of earth increases, then the weight of a body on equator
(A) \checkmark Decreases
(B) Remains constant
(C) Increases
(D) Becomes more at poles

Sol : (a) $g^{\prime}=g-\omega^{2} R$, when ω increases g^{\prime} decreases.
185. Figure shows elliptical path $a b c d$ of a planet around the sun S such that the area of triangle $c s a$ is $\frac{1}{4}$ the area of the ellipse. (See figure) With $d b$ as the semimajor axis, and $c a$ as the semiminor axis. If t_{1} is the time taken for planet to go over path $a b c$ and t_{2} for path taken over $c d a$ then

(A) $t_{1}=4 t_{2}$
(B) $t_{1}=2 t_{2}$
(C) $\checkmark t_{1}=3 t_{2}$
(D) $t_{1}=t_{2}$

Sol : Let area of ellipse abcd $=x$
Area of $S a b c S$
$=\frac{x}{2}+\frac{x}{4}($ i.e., ar of $a b c d+S a c S)$
(Area of half ellipse + Area of triangle)
$=\frac{3 x}{4}$
Area of $S a d c S=x-\frac{3 x}{4}=\frac{x}{4}$
$\frac{\text { Area of } S a b c S}{\text { Area of SabcS }}=\frac{3 x / 4}{x / 4}=\frac{t_{1}}{t_{2}}$
$\frac{t_{1}}{t_{2}}=3 \mathrm{or}, t_{1}=3 t_{2}$

186. The escape velocity for a rocket from earth is $11.2 \mathrm{~km} / \mathrm{sec}$. Its value on a planet where acceleration due to gravity is double that on the earth and diameter of the planet is twice that of earth will be in \qquad
(A) 11.2
(B) 5.6
(C) $\sqrt{ } 22.4$
(D) 53.6
Sol : (c) $\frac{v_{p}}{v_{e}}=\sqrt{\frac{g_{p}}{g_{e}} \times \frac{R_{p}}{R_{e}}}=\sqrt{2 \times 2}=2$
$\Rightarrow v_{p}=2 \times v_{e}=2 \times 11.2=22.4 \mathrm{~km} / \mathrm{s}$
187. If M the mass of the earth and R its radius, the ratio of the gravitational acceleration and the gravitational constant is
(A) $\frac{R^{2}}{M}$
(B) $\checkmark \frac{M}{R^{2}}$
(C) $M R^{2}$
(D) $\frac{M}{R}$

Sol : (b) Acceleration due to gravity $g=\frac{G M}{R^{2}}$
$\frac{g}{G}=\frac{M}{R^{2}}$
188. A clock S is based on oscillation of a spring and a clock P is based on pendulum motion. Both clocks run at the same rate on earth. On a planet having the same density as earth but twice the radius
(A) S will run faster than P
(B) \checkmark_{S}^{P} will run faster than S
(C) They will both run at the
earth same rate as on the
(D) None of these

Sol : (b) $g=\frac{4}{3} \pi \rho G R$. If density is same then $g \propto R$
According to problem $R_{p}=2 R_{e} \therefore g_{p}=2 g_{e}$
For clock P (based on pendulum motion) $T=2 \pi \sqrt{\frac{l}{g}}$
Time period decreases on planet so it will run faster because $g_{p}>g_{e}$
For clock S (based on oscillation of spring) $T=2 \pi \sqrt{\frac{m}{k}}$
So it does not change.
189. The time period of a simple pendulum on a freely moving artificial satellite is
(A) Zero
(B) 2 sec
(C) 3 sec
(D) \checkmark Infinite

Sol : (d) Time period of simple pendulum $T=2 \pi \sqrt{\frac{l}{g^{\prime}}}$
In artificial satellite $g^{\prime}=0 T=$ infinite.
190. The distance of a geo-stationary satellite from the centre of the earth (Radius $R=6400 \mathrm{~km}$) is nearest to
(A) $5 R$
(B) $\checkmark 7 R$
(C) $10 R$
(D) $18 R$

Sol: (b) $6 R$ from the surface of earth and $7 R$ from the centre.
191. Two planets revolve round the sun with frequencies N_{1} and N_{2} revolutions per year. If their average orbital radii be R_{1} and R_{2} respectively, then R_{1} / R_{2} is equal to
(A) $\left(N_{1} / N_{2}\right)^{3 / 2}$
(B) $\left(N_{2} / N_{1}\right)^{3 / 2}$
(C) $\left(N_{1} / N_{2}\right)^{2 / 3}$
(D) $\checkmark\left(N_{2} / N_{1}\right)^{2 / 3}$

Sol : (d) According to Kepler's law $T^{2} \propto R^{3}$
If N is the frequencs then $N^{2} \propto(R)^{-3}$
or $\frac{N_{2}}{N_{1}}=\left(\frac{R_{2}}{R_{1}}\right)^{-3 / 2}==>\frac{R_{1}}{R_{2}}=\left(\frac{N_{2}}{N_{1}}\right)^{2 / 3}$
192. The mass and diameter of a planet have twice the value of the corresponding parameters of earth. Acceleration due to gravity on the surface of the planet is \qquad m / sec^{2}.
(A) 9.8
(B) $\checkmark 4.9$
(C) 980
(D) 19.6

Sol : (b) $\frac{g^{\prime}}{g}=\frac{M^{\prime}}{M}\left(\frac{R}{R^{\prime}}\right)^{2}=\left(\frac{2 M}{M}\right) \quad\left(\frac{R}{2 R}\right)^{2}=\frac{1}{2}$
$\Rightarrow g^{\prime}=\frac{g}{2}=\frac{9.8}{2}=4.9 \mathrm{~m} / \mathrm{s}^{2}$
193. From a sphere of mass M and radius R, a smaller sphere of radius $\frac{R}{2}$ is carved out such that the cavity made in the original sphere is between its centre and the periphery (See figure). For the configuration in the figure where the distance between the centre of the original sphere and the removed sphere is $3 R$, the gravitational force between the two sphere is

(A) $\checkmark \frac{41 G M^{2}}{3600 R^{2}}$
(B) $\frac{41 G M^{2}}{450 R^{2}}$
(C) $\frac{59 G M^{2}}{450 R^{2}}$
(D) $\frac{G M^{2}}{225 R^{2}}$

Sol : Volume of removed sphere
$V_{\text {remo }}=\frac{4}{3} \pi\left(\frac{R}{2}\right)^{3}=\frac{4}{3} \pi R^{3}\left(\frac{1}{8}\right)$
Volume of the sphere (remaining)
$V_{\text {remain }}=\frac{4}{3} \pi R^{3}-\frac{4}{3} \pi R^{3}\left(\frac{1}{8}\right)$
$=\frac{4}{3} \pi R^{3}\left(\frac{7}{8}\right)$
Therefore mass of sphere carved and remaining sphere are at respectively $\frac{1}{8} M$ and $\frac{7}{8} M$.
Therefore, gravitational force between these two sphere
$F=\frac{G M m}{r^{2}}$
$=\frac{G \frac{7 M}{8} \times \frac{1}{8} M}{(3 R)^{2}}=\frac{7}{64 \times 9} \frac{G M^{2}}{R^{2}}$
$=\frac{41}{3600} \frac{G M^{2}}{R^{2}}$
194. The time period of a satellite of earth is 5 hours. If the separation between the earth and the satellite is increased to four times the previous value, the new time period will become \qquad hours
(A) 20
(B) 10
(C) 80
(D) $\checkmark 40$

Sol : (d) $T_{2}=T_{1}\left(\frac{R_{2}}{R_{1}}\right)^{3 / 2}=T_{1}(4)^{3 / 2}=8 T_{1}=40 \mathrm{hr}$
195. Two point masses of mass $4 m$ and m respectively separated by d distance are revolving under mutual force of attraction. Ratio of their kinetic energies will be :
(A) $\checkmark 1: 4$
(B) $1: 5$
(C) $1: 1$
(D) $1: 2$

Sol : They will revolue about this centre of mass
$0=4 m(-x)+m(d-x)$
$x=\frac{d}{5}$
They will same ω
$\frac{K_{4 m}}{K_{m}}=\frac{\frac{1}{2} I_{4 m} \omega^{2}}{\frac{1}{2} I_{m} \omega^{2}} \Rightarrow \frac{K_{4 m}}{K_{m}}=\frac{I_{4 m}}{I_{m}}$
$\frac{K_{4 m}}{K_{m}}=\frac{\frac{1}{2}(4 m)(d / 5)^{2}}{\frac{1}{2}(m)(4 d / 5)^{2}} \Rightarrow \frac{K_{4 m}}{K_{m}}=\frac{1}{4}$

196. A satellite of the earth is revolving in a circular orbit with a uniform speed v. If the gravitational force suddenly disappears, the satellite will
(A) Continue to move with velocity v along the original orbit
(B) \checkmark Move with a velocity v, tangentially to the original orbit
(C) Fall down with increasing velocity
(D) Ultimately come to rest somewhere on the original orbit

Sol: (b)Due to inertia of direction.
197. The ratio of the radius of a planet ' A ' to that of planet ${ }^{\prime} B^{\prime}$ is ' r '. The ratio of acceleration due to gravity on the planets is ' x '. The ratio of the escape velocities from the two
planets is
(A) $x r$
(B) $\sqrt{\frac{r}{x}}$
(C) $\checkmark \sqrt{r x}$
(D) $\sqrt{\frac{x}{r}}$

Sol: (c) $v_{e}=\sqrt{2 g R}==>\frac{v_{A}}{v_{B}}=\sqrt{\frac{g_{A}}{g_{B}} \times \frac{R_{A}}{R_{B}}}=\sqrt{x \times r}$?
$\frac{v_{A}}{v_{B}}=\sqrt{r x}$
198. At what altitude will the acceleration due to gravity be 25% of that at the earth's surface (given radius of earth is R) ?
(A) $R / 4$
(B) $\checkmark R$
(C) $3 R / 8$
(D) $R / 2$

Sol : $g=\frac{G M}{r^{2}} \Rightarrow g_{0}=\frac{G M}{R^{2}}$.
$g_{h}=\frac{G M}{(R+h)^{2}}$.
$\frac{g_{h}}{g_{0}}=\left(\frac{R}{R+h}\right)^{2} \Rightarrow \frac{1}{4}=\left(\frac{R}{R+h}\right)^{2}$
$\frac{R}{R+h}=\frac{1}{2}$
$R+h=2 R \Rightarrow h=R$
199. A geostationary satellite orbits around the earth in a circular orbit of radius 36000 km . Then, the time period of a satellite orbiting a few hundred kilometres above the earth's surface $\left(R_{\text {Earth }}=6400 \mathrm{~km}\right)$ will approximately be
(A) $\frac{1}{2}$
(B) 1
(C) $\sqrt{ } 2$
(D) 4

Sol: (c) $\frac{T_{2}}{T_{1}}=\left(\frac{r_{2}}{r_{1}}\right)^{3 / 2}$
$\Rightarrow T_{2}=24\left(\frac{6400}{36000}\right)^{3 / 2} \cong 2$ hour
200. An iron ball and a wooden ball of the same radius are released from a height ' h ' in vacuum. The time taken by both of them to reach the ground is equal is based on
(A) \checkmark Acceleration due to gravity in vacuum is same irrespective of size and mass of the body
(B) Acceleration due to gravity in vacuum depends on the mass of the body

