TOPIC TEST

ANSWERS

1. Gravitation

Q.1. (A)

i. (B) [1 Mark]

ii. (A) [1 Mark]

Q.1. (B)

i. Centre of Earth

All others have non-zero acceleration due to gravity, whereas acceleration due to gravity at the centre of Earth is zero. [1 Mark]

ii. Mass: kg:: Weight: Newton (N) [1 Mark]

iii. Mass [1 Mark]

Q.2. (A)

a. The weight of the body is defined as the force with which Earth attracts the object.

b. It is given by the formula, W = mg

- c. From the formula it is clear that weight of an object is directly proportional to the mass of the object and gravitational acceleration (g).
- d. Therefore if the g value doubles, the weight of the object also doubles and thus it will be difficult to pull the object along the floor. [2 Marks]
- ii. a. The weight of an object is defined as the force with which the earth attracts the object. It is given as,

W = F = mg

- b. The weight of an object depends on the mass of the object and the value of acceleration due to gravity.
- c. On the surface of the earth, the value of g is highest at the poles and decreases slowly with decreasing latitude becoming lowest at the equator.

Hence, a 1 kg of gold would weigh more at the poles and less at equator.

[2 Marks]

[Note: Students are expected to attempt any one out of two questions]

Q.2. (B)

i.

	Universal gravitational constant (G)		Gravitational acceleration of Earth (g)
a.	The gravitational force acting between	a.	The acceleration produced in a body
	unit masses kept at a unit distance away		under the influence of the force of
	from each other equals gravitational		gravity alone is called acceleration due
	constant (G).		to gravity (g).
b.	The value of G is constant.	b.	Value of 'g' changes from place to
			place.
c.	Its unit is Nm ² /kg ² or dyne cm ² /g ²	c.	Unit of g is m/s ² .
d.	It is a scalar quantity.	d.	It is a vector quantity.

[2 Marks]

ii. a. According to Kepler's third law, the square of orbital period of revolution T of a planet around a star is directly proportional to the cube of the mean distance R of the planet from the star.

$$T^{2} \propto R^{3}$$

$$T^{2} = kR^{3}$$
(1)

Where, k is constant of proportionality.

b. When the planet is at a distance of 2R from the star, then its period of revolution T will be, $T^2 \propto (2R)^3$

 $T^2 = 8R^3$ (2)

d.

When the planet is at a distance of 8R from the star, then its period of revolution T' will be, c.

$$T'^2 \propto (8R)^3$$

$$T'^2 = 512R^3$$

...(3)Dividing equation (2) by equation (3), we get,

$$\frac{T^2}{T'^2} = \frac{8R^3}{512R^3}$$

$$\frac{T^2}{T'^2} = \frac{1}{64}$$

$$T' = 8T$$

Thus, for a planet at a distance of 2R from the star, its period of revolution will be 8T.

[2 Marks]

[Note: Students are expected to attempt any one out of two questions]

Q.3.

- The acceleration produced in a body under the influence of the force of gravity alone is called i. a. acceleration due to gravity. [1 Mark]
 - Mass of the earth M' = 2M, radius of the earth R' = $\frac{R}{2}$ b. Given:

To find: gravitational acceleration (g')

 $g = \frac{GM}{R^2}$ Formula:

Calculation: From formula,

$$g' = \frac{G \times M'}{(R')^2} = \frac{G \times 2M}{\left(\frac{R}{2}\right)^2}$$
$$g' = \frac{G \times 2M \times 4}{R^2}$$

$$g' = \frac{G \times 2M \times 4}{R^2}$$

$$g'=8g=8\times 9.8$$

Ans: The value of g would be 78.4 m/s² on the surface of the earth if its mass was twice as large and its radius half of the present value. [2 Marks]

Consider an object of mass m moving with initial velocity equal to escape velocity vesc. on the ii. a. surface of the earth.

The kinetic energy of the object is given as, $K.E = \frac{1}{2} mv_{esc}^2$

The potential energy of the object is given as

Potential energy = $-\frac{GMm}{R}$

$$\therefore \quad \text{Total energy} = E_1 = K.E + P.E = \frac{1}{2} m v_{\text{esc}}^2 - \frac{GMm}{R} \qquad \dots (1)$$

b. The object escapes the gravitational force of the earth and comes to rest at infinite distance from the earth.

The kinetic energy of the object is given as, K.E = 0

The potential energy of the object is given as,

Potential energy =
$$-\frac{GMm}{\infty} = 0$$

$$\therefore \quad \text{Total energy} = E_2 = \text{K.E} + \text{P.E} = 0 \qquad \qquad \dots (2)$$

From the principle of conservation of energy, $E_1 = E_2$

$$\frac{1}{2}mv_{esc}^2 - \frac{GMm}{R} = 0$$

$$\therefore \qquad v_{\rm esc}^2 = \frac{2GM}{R}$$

$$\therefore \qquad v_{\rm esc} = \sqrt{\frac{2GM}{R}} \qquad \qquad \dots (3)$$

d. Also, we know, acceleration due to gravity is given as,

$$g = \frac{GM}{R^2}$$

 \therefore GM = gR²

....(4)

e. Substituting equation (4) in (3), we get,

$$v_{esc} = \sqrt{\frac{2gR^2}{R}}$$

$$= \sqrt{2gR}$$
....(5)

Equations (3) and (5) represent the equations for escape velocity from the surface of the earth.

[3 Marks]

iii. Given: Height (s) = 750 m, acceleration due to gravity (g) = 10 m/s^2

To find: i. Initial velocity (u), ii. time taken (t)

Formulae: i. $v^2 = u^2 + 2$ as ii. $s = ut + \frac{1}{2} at^2$

Calculation: For upward motion of the ball, (v) = 0.

$$a = -g = -10 \text{ m/s}^2$$

From formula (i),

$$0 = u^2 + 2 (-10) \times 750$$

$$u^2 = 50000$$

u = 122.47 m/s

For downward motion of the ball, (u) = 0.

$$a = g = 10 \text{ m/s}^2$$

From formula (ii),

$$750 = 0 + \frac{1}{2} \times 10 \ t^2$$

$$\therefore$$
 $t^2 = \frac{750}{5} = 150$

t = 12.25 s

Time for upward journey of the ball will be the same as time for downward journey i.e., 12.25s.

 \therefore Total time taken = $2 \times 12.25 = 24.5 \text{ s}$

Ans: i. The initial velocity of the object is 122.47 m/s.

ii. The total time taken by the object to reach the height and come down is 24.5 s. [3 Marks]

[Note: Students are expected to attempt any two out of three questions]

Q.4.

- i. a. From the given diagram, we understand Kepler's laws of planetary motion. [1 Mark]
 - b. **Kepler's second law:** The line joining the planet and the Sun sweeps equal areas in equal intervals of time. [1 Mark]
 - c. **Kepler's third law:** The square of orbital period of revolution of a planet around the Sun is directly proportional to the cube of the mean distance of the planet from the Sun. [1 Mark]
 - d. At point P, the velocity of the planet will be maximum. [1 Mark]
 - e. According to Kepler's second law, the line joining the planet and the Sun sweeps equal areas in equal intervals of time.

As area $CF_1D = 2 \times \text{area } AF_1B$, the time taken to go from C to D is equal to twice the time taken to go from A to B. [1 Mark]

- $\therefore t_1 = 2t_2$
- ii. a. 1. Consider a stone thrown vertically upwards with initial velocity 'u'. It reaches a height 'h' before coming down.
 - 2. The kinematical equations of motion are given as,

$$v = u + at$$
(i)

$$s = ut + \frac{1}{2}at^2 \qquad \dots (ii)$$

$$v^2 - u^2 = 2as$$
(iii)

3. For upward motion of the stone,

a - - g (negative sign indicates the direction of force is opposite to that of velocity.)

v = 0 (: at the highest point velocity becomes zero).

Substituting this in equation (i), the time t_1 taken by the stone to reach the maximum height is given as,

$$\therefore$$
 0 = u - gt₁

$$\therefore \qquad t_1 = \frac{u}{g} \qquad \qquad \dots (iv)$$

Similarly, substituting the values of a and v in equation (iii), the maximum height h which the stone reaches is given as,

$$0^2 - u^2 = -2gh$$

$$\therefore h = \frac{u^2}{2g} \qquad \dots (v)$$

4. For downward motion of the stone,

$$\mathbf{a} = \mathbf{g}$$

u = 0 (: at maximum height, initial velocity is zero.)

Substituting this in equation (ii), the time t₂ taken by the stone to reach the maximum height is given as,

$$h = 0 + \, \frac{1}{2} g t_2^2$$

$$\therefore \qquad t_2^2 = \frac{2h}{g}$$

$$\therefore \qquad t_2 = \sqrt{\frac{2h}{g}} \qquad \qquad \dots (vi)$$

5. Substituting equation (v) in (vi),

$$t_2 = \sqrt{\frac{2}{g} \times \frac{u^2}{2g}}$$

$$\therefore t_2 = \frac{u}{g} \qquad \dots (vii)$$

Thus, from equations (iv) and (vii), we can conclude that the time taken by the stone to go up is same as the time taken to come down.

[3 Marks]

b. Given: Time (t) = 5 s, height (s) = 5 m

To find: Gravitational acceleration (g)

Formula:
$$s = ut + \frac{1}{2} gt^2$$

Calculation: From formula,

$$5 = 0 \times t + \frac{1}{2} g(5)^2$$

$$\therefore 5 = \frac{1}{2} g \times 25$$

$$\therefore g = \frac{2}{5}$$

$$g = 0.4 \text{ m/s}^2$$

Ans: The gravitational acceleration of the planet is 0.4 m/s^2 .

[2 Marks]

[Note: Students are expected to attempt any one out of two questions]