

Duration: 1hr15min

Test Name: Differentiation **Subjects:** Mathematics and Statistics

Marks: 25 **Standard:** XII Science English Maharashtra State Board

SECTION A

1. Select and write the correct answer for the following multiple choice type of questions: 4

- i. **If** $y = x \log(x^2 3)$, then $\frac{dy}{dx} = 0$
	- (A) $\frac{2x^2}{x^2-3} + \log(x^2-3)$ (B) $\frac{x^2}{x^2-3} + \log(x^2-3)$
	- (C) $\frac{2x}{x^2-3} + \log(x^2-3)$ (D) $\frac{x}{x^2-3} + \log(x^2-3)$

Ans: Differentiating w.r.t. *x*, we get

$$
\frac{dy}{dx} = \log (x^2 - 3) + \frac{x}{x^2 - 3} \frac{d}{dx} (x^2 - 3)
$$

$$
\frac{dy}{dx} = \log (x^2 - 3) + \frac{2x^2}{x^2 - 3}
$$

- ii. **If f(***x***) =** *x* **tan⁻¹** *x***, then f '(1) =**
	- (A) $\frac{1}{2} + \frac{\pi}{4}$

	(C) $-\frac{1}{2} \frac{\pi}{4}$

	(B) $-\frac{1}{2} + \frac{\pi}{4}$

	(D) $\frac{1}{2} \frac{\pi}{4}$ $(C) - \frac{1}{2} - \frac{\pi}{4}$

Ans: Differentiating w.r.t. *x*, we get

f '(x) = tan⁻¹ x +
$$
\frac{x}{1+x^2}
$$

∴ f '(1) = tan⁻¹ (1) + $\frac{(1)}{1+(1)^2}$
= $\frac{\pi}{4} + \frac{1}{2}$

2. Answer the following questions: 3

i. **Differentiate the following w.r.t.** *x***.** *y* **= sin(log***x***)**

Let $u = \log x$ then $y = \sin u$, where *y* is a differentiable function of *u* and *u* is a differentiable function of *x* then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$...(1) $\dots(1)$ Now, $y = \sin u$ Differentiate w.r.t. u and $u = \log x$ Differentiate w.r.t. *x* Now, equation (I) becomes, **Alternate Method:** We have $y = \sin(\log x)$ Differentiate w.r.t. *x* $\frac{dy}{dx} = \frac{d}{dx} [\sin(\log x)]$
[Treat log *x* as u in mind and use the formula of derivative of sin u] $\frac{dy}{dx} = \cos(\log x) \times \frac{d}{dx}(\log x)$

$$
\frac{\frac{dy}{dx}}{\frac{dy}{dx}} = \frac{\cos(\log x)}{\cos(\log x)} \cdot \frac{1}{x}
$$

 $e^{i\theta}$. If $x = t^2$ and $y = t^3$, find $\frac{dy}{dx}$.

 $x = t^2$ Differentiating w. r. t. t, we get $rac{dx}{dt} = \frac{d}{dt}(t^2) = 2t$
 $y = t^3$ Differentiating w. r. t. t, we get
 $\frac{dy}{dt} = \frac{d}{dt} \left(t^3\right) = 3t^2$

$$
\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{2t}{3t^2} = \frac{2}{3t}
$$

iii. Suppose that the functions f and g and their derivatives with respect to x have the following values at $x =$ 0 **and** $x = 1$.

The derivative of $g[f(x)]$ w. r. t. *x* at $x = 0$ is

$$
\frac{d}{dx}g(f(x))\Big|_{x=0} = g'(f(x)) \cdot f'(x)\Big|_{x=0}
$$

= g'(f(0)) \cdot f'(0) = g'(1) f'(0)
= -\frac{8}{3} \times 5 = -\frac{40}{3}

SECTION B

Attempt any FOUR of the following questions: 8

3. Find the second order derivative of
$$
2x^5 - 4x^3 - \frac{2}{x^2} - 9
$$
.

Let
$$
y = 2x^5 - 4x^3 - \frac{2}{x^2} - 9
$$

\nDifferentiating w. r. t. x, we get
\n
$$
\frac{dy}{dx} = \frac{d}{dx} (2x^5 - 4x^3 - \frac{2}{x^2} - 9)
$$
\n
$$
= 2(5x^4) - 4(3x^2) - 2(-2x^{-3})
$$
\n
$$
\therefore \frac{dy}{dx} = 10x^4 - 12x^2 + \frac{4}{x^3}
$$
\nAgain, differentiating w. r. t. x, we get
\n
$$
\frac{d^2y}{dx^2} = \frac{d}{dx} (10x^4 - 12x^2 + \frac{4}{x^3})
$$
\n
$$
= 10(4x^3) - 12(2x) + 4(-3x^{-4})
$$
\n
$$
\therefore \frac{d^2y}{dx^2} = 40x^3 - 24x - \frac{12}{x^4}
$$

4. Differentiate the following w.r.t. *x*

$$
\cos^{-1}\left(2x\sqrt{1-x^2}\right)
$$
\nLet $y = \cos^{-1}\left(2x\sqrt{1-x^2}\right)$
\nPut $x = \sin \theta$
\n $\therefore \quad \theta = \sin^{-1} x$
\n $\therefore \quad y = \cos^{-1}\left(2\sin\theta\sqrt{1-\sin^2\theta}\right)$
\n $y = \cos^{-1}\left(2\sin\theta\sqrt{\cos^2\theta}\right)$
\n $y = \cos^{-1}(2\sin\theta\cos\theta) = \cos^{-1}(\sin 2\theta)$

$$
y = \cos^{-1}\left[\cos\left(\frac{\pi}{2} - 2\theta\right)\right] = \frac{\pi}{2} - 2\theta
$$

\n
$$
\therefore y = \frac{\pi}{2} - 2\sin^{-1}x
$$

\nDifferentiate w.r.t. x
\n
$$
\frac{dy}{dx} = \frac{d}{dx}\left(\frac{\pi}{2} - 2\sin^{-1}x\right)
$$

\n
$$
\frac{dy}{dx} = 0 - \frac{2 \times 1}{\sqrt{1 - x^2}}
$$

\n
$$
\therefore \frac{dy}{dx} = -\frac{2}{\sqrt{1 - x^2}}
$$

5. Differentiate the **following** w.r.t. *x*.

$$
y = (x^3 + 2x - 3)^4 (x + \cos x)^3
$$

\n
$$
y = (x^3 + 2x - 3)^4 (x + \cos x)^3
$$

\nDifferentiate w.r.t. x
\n
$$
\frac{dy}{dx} = \frac{d}{dx} \left[(x^3 + 2x - 3)^4 (x + \cos x)^3 \right]
$$

\n
$$
= (x^3 + 2x - 3)^4 \cdot \frac{d}{dx} (x + \cos x)^3 + (x + \cos x)^3 \cdot \frac{d}{dx} (x^3 + 2x - 3)^4
$$

\n
$$
= (x^3 + 2x - 3)^4 \cdot 3 (x + \cos x)^2 \cdot \frac{d}{dx} (x + \cos x) + (x + \cos x)^3 \cdot 4 (x^3 + 2x - 3)^3 \cdot \frac{d}{dx} (x^3 + 2x - 3)^4
$$

\n
$$
= (x^3 + 2x - 3)^4 \cdot 3 (x + \cos x)^2 (1 - \sin x) + (x + \cos x)^3 \cdot 4 (x^3 + 2x - 3)^3 (3x^2 + 2)
$$

\n
$$
\therefore \frac{dy}{dx} = 3 (x^3 + 2x - 3)^4 (x + \cos x)^2 (1 - \sin x) + 4 (3x^2 + 2) (x^3 + 2x - 3)^3 (x + \cos x)^3
$$

6. **Differentiate** $(\sin x)^{X}$ w. r. t. *x*.

Let $y = (\sin x)^X$ Taking log on both sides, we get log *y* = *x* log (sin *x*) Differentiating w. r. t. *x*, we get $(\log y) = x \cdot \frac{u}{dx} [\log (\sin x)] + \log (\sin x) \cdot \frac{u}{dx}(x)$ \therefore $\frac{1}{a} \cdot \frac{dy}{dx} = x \cdot \frac{1}{\sin x} \cdot \frac{d}{dx} (\sin x) + \log (\sin x)$. 1 ∴ $\frac{1}{x} \cdot \frac{dy}{dx} = \frac{x}{\sin x}$. cos *x* + log (sin *x*) ∴ $\frac{dy}{dx}$ = y [x cot x + log (sin x)] ∴ $\frac{dy}{dx}$ = (sin *x*)^{*x*} [*x* cot *x* + log (sin *x*)]

$$
\mathbf{7.}
$$

If
$$
y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + \dots \infty}}}
$$
, then show that $\frac{dy}{dx} = \frac{1}{x(2y-1)}$.
\n $y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + \dots \infty}}}$
\n $\therefore y^2 = \log x + \sqrt{\log x + \sqrt{\log x + \dots \infty}}$
\n $\therefore y^2 = \log x + y$
\nDifferentiating w.r.t. x, we get
\n $2y \cdot \frac{dy}{dx} = \frac{1}{x} + \frac{dy}{dx}$.

$$
\therefore \quad \frac{(2y-1)\frac{dy}{dx} = \frac{1}{x}}{\frac{dy}{dx} = \frac{1}{x(2y-1)}}
$$

8. Find the nth derivative of log $(ax + b)$

Let $y = log(ax + b)$ Differentiating w. r. t. *x*, we get = $= \frac{1}{ax+b}$. $=$ \cdot Differentiating w. r. t. *x*, we get $\frac{d}{dx}\left(\frac{dy}{dx}\right) = a\frac{d}{dx}\left(\frac{1}{ax+b}\right)$

$$
\therefore \frac{d^2y}{dx^2} = a \left[-\frac{1}{(ax+b)^2} \right] \cdot \frac{d}{dx} (ax + b)
$$

\n
$$
\therefore \frac{d^2y}{dx^2} = -\frac{a^2}{(ax+b)^2}
$$

\nDifferentiating w. r. t. x, we get
\n
$$
\frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = -a^2 \frac{d}{dx} \left[\frac{1}{(ax+b)^2} \right]
$$

\n
$$
= -a^2 \left[\frac{-2}{(ax+b)^3} \right] \cdot \frac{d}{dx} (ax + b)
$$

\n
$$
= \frac{2a^3}{(ax+b)^3}
$$

\nIn general, nth order derivative will be
\n
$$
\frac{d^ny}{dx^n} = \frac{(-1)^{n-1} (n-1)! a^n}{(ax+b)^n}
$$

SECTION C

Attempt any TWO of the following questions: 6

9. Differentiate
$$
\sin^{-1}\left(\frac{4^{x+\frac{1}{2}}}{1+2^{4x}}\right)
$$
 W. r. t. x.
\nLet $y = \sin^{-1}\left(\frac{4^{x+\frac{1}{2}}}{1+2^{4x}}\right)$, $x < 0$
\n $= \sin^{-1}\left(\frac{2 \times 2^{2x}}{1+(2^{2x})^2}\right)$
\nPut $2^{2x} = \tan \theta$, then $\theta = \tan^{-1} 2^{2x}$
\n $\therefore y = \sin^{-1}\left(\frac{2 \tan}{1+\tan^2}\right)$
\n $= \sin^{-1}(\sin(2\theta))$
\n $= 2\theta$
\n $= 2 \tan^{-1} (2^{2x})$
\nDifferentiating w. r. t. x, we get
\n $\frac{dy}{dx} = \frac{d}{dx} [2 \tan^{-1} (2^{2x})]$
\n $= \frac{2}{1+(2^{2x})^2} \cdot \frac{d}{dx} (2^{2x})$

$$
= \frac{2(2^{2x} \log 4)}{1+4^{2x}}
$$

=
$$
\frac{2(4^x \log 4)}{1+4^{2x}}
$$
 or
$$
\frac{4^{x+\frac{1}{2}} \log 4}{1+4^{2x}}
$$

10. Differentiate the following w.r.t. *x*

$$
\left(\frac{(x^2+3)^2\sqrt[3]{(x^3+5)^2}}{\sqrt{(2x^2+1)^3}}\right)
$$
\nLet $y = \left(\frac{(x^2+3)^2\sqrt[3]{(x^3+5)^2}}{\sqrt{(2x^2+1)^3}}\right)$

Taking log of both the sides we get,

$$
\log y = \log \left(\frac{(x^2+3)^2 \sqrt[3]{(x^3+5)^2}}{\sqrt{(2x^2+1)^3}} \right) = \log \left[\frac{(x^2+3)^2 (x^3+5)^{\frac{2}{3}}}{(2x^2+1)^{\frac{3}{2}}} \right]
$$
\n
$$
= \log \left[(x^2+3)^2 (x^3+5)^{\frac{2}{3}} \right] - \log (2x^2+1)^{\frac{3}{2}}
$$
\n
$$
= \left[\log (x^2+3)^2 + \log (x^3+5)^{\frac{2}{3}} \right] - \log (2x^2+1)^{\frac{3}{2}}
$$
\n
$$
\log y = 2 \log (x^2+3) + \frac{2}{3} \log (x^3+5) - \frac{3}{2} \log (2x^2+1)
$$
\nDifferentiate w.r.t. x\n
$$
\frac{d}{dx} (\log y) = \frac{d}{dx} \left[2 \log (x^2+3) + \frac{2}{3} \log (x^3+5) - \frac{3}{2} \log (2x^2+1) \right]
$$
\n
$$
\frac{1}{y} \frac{dy}{dx} = 2 \cdot \frac{d}{dx} \left[\log (x^2+3) \right] + \frac{2}{3} \cdot \frac{d}{dx} \left[\log (x^3+5) \right] - \frac{3}{2} \cdot \frac{d}{dx} \left[\log (2x^2+1) \right]
$$
\n
$$
= \frac{2}{x^2+3} \cdot \frac{d}{dx} (x^2+3) + \frac{2}{3(x^3+5)} \cdot \frac{d}{dx} (x^3+5) - \frac{3}{2(2x^2+1)} \cdot \frac{d}{dx} (2x^2+1)
$$
\n
$$
\frac{dy}{dx} = y \left[\frac{2}{x^2+3} (2x) + \frac{2}{3(x^3+5)} (3x^2) - \frac{3}{2(2x^2+1)} (4x) \right]
$$

$$
\therefore \quad \frac{dy}{dx} = \frac{(x^2+3)^2 \sqrt[3]{(x^3+5)^2}}{\sqrt{(2x^2+1)^3}} \left[\frac{4x}{x^2+1} + \frac{2x^2}{(x^3+5)} - \frac{6x}{2x^2+1} \right]
$$

11. Find $\frac{dy}{dx}$, if $x + \sqrt{xy} + y = 1$

$$
x + \sqrt{xy} + y = 1
$$

\nDifferentiating w.r.t. x, we get
\n
$$
1 + \frac{1}{2\sqrt{xy}} \frac{d}{dx} (xy) + \frac{dy}{dx} = 0
$$

\n
$$
\therefore 1 + \frac{1}{2\sqrt{xy}} \left(x \frac{dy}{dx} + y \frac{d}{dx} (x) \right) + \frac{dy}{dx} = 0
$$

\n
$$
\therefore 1 + \frac{1}{2} \sqrt{\frac{x}{y}} \frac{dy}{dx} + \frac{1}{2} \sqrt{\frac{y}{x}} + \frac{dy}{dx} = 0
$$

\n
$$
\therefore \left(\frac{1}{2} \sqrt{\frac{x}{y}} + 1 \right) \frac{dy}{dx} = -\frac{1}{2} \sqrt{\frac{y}{x}} - 1
$$

\n
$$
\therefore \left(\frac{\sqrt{x+2\sqrt{y}}}{2\sqrt{y}} \right) \frac{dy}{dx} = \frac{-\sqrt{y-2\sqrt{x}}}{2\sqrt{x}}
$$

\n
$$
\therefore \frac{dy}{dx} = -\frac{\sqrt{y}(\sqrt{y+2\sqrt{x}})}{\sqrt{x}(\sqrt{x+2\sqrt{y}})}
$$

SECTION D

Attempt any ONE of the following questions: 4

12. If
$$
y = \cos(\arccos 1 x)
$$
 then show that $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + m^2y = 0$.
\nGiven that $y = \cos(m \cos^{-1} x)$
\n $\therefore \cos^{-1} y = \arccos^{-1} x$
\nDifferentiate (1) w.r.t. x
\n $\frac{d}{dx}(\cos^{-1} y) = m \frac{dy}{dx} (\cos^{-1} x)$
\n $-\frac{dy}{\sqrt{1-y^2}} \cdot \frac{dy}{dx} = -\frac{m}{\sqrt{1-x^2}}$
\n $\sqrt{1-x^2} \cdot \frac{dy}{dx} = m\sqrt{1-y^2}$
\nSquaring both sides
\n $(1-x^2) \cdot \left(\frac{dy}{dx}\right)^2 = m^2(1-y^2)$
\nDifferentiate w.r.t. x
\n $(1-x^2) \cdot 2\left(\frac{dy}{dx}\right)^2 + \left(\frac{dy}{dx}\right)^2 \frac{d}{dx}(1-x^2) = m^2 \frac{d}{dx}(1-y^2)$
\n $(1-x^2) \cdot 2\left(\frac{dy}{dx}\right) \cdot \frac{d}{dx} \cdot \left(\frac{dy}{dx}\right) + \left(\frac{dy}{dx}\right)^2(-2x) = m^2(-2y) \frac{dy}{dx}$
\n $2(1-x^2) \cdot \frac{dy}{dx} \cdot \frac{d^2y}{dx^2} - 2x\left(\frac{dy}{dx}\right)^2 = -2m^2y \frac{dy}{dx}$
\nDividing throughout by $2 \frac{dy}{dx}$ we get,
\n $(1-x^2) \cdot \frac{d^2y}{dx^2} - x \frac{dy}{dx} = -m^2y$
\n $\therefore (1-x^2) \cdot \frac{d^2y}{dx^2} - x \frac{dy}{dx} + m^2y = 0$
\n13. If $y = f(x)$ is a differentiable function of x such that $\frac{dy}{dx} \neq 0$ and $x = f^{-1}(y)$ exist
\ndifferentiable function of y and $\frac{d}{dy}[f^{-1}(y)] = \frac{1}{f'(x)}$ i.e. $\frac{dx}{dy} = \frac{1}{dy}$.

 s ists, then $x = f^{-1}(y)$ is a '*y*' is a differentiable function of '*x*'. Let there be a small change δ*x* in the value of '*x*'.

Correspondingly, there should be a small change δ*y* in the value of '*y*'. As δ*x* → 0, δ*y* → 0

As
$$
\overrightarrow{\alpha} \rightarrow 0
$$
, $\overrightarrow{\alpha} \rightarrow 0$
\nConsider, $\frac{\delta x}{\delta y} \times \frac{\delta y}{\delta x} = 1$
\n $\therefore \frac{\delta x}{\delta y} = \frac{1}{\frac{\delta y}{\delta x}}, \frac{\delta y}{\delta x} \neq 0$
\nTaking $\lim_{\delta x \to 0} \text{ both sides, we get}$
\n
$$
\lim_{\delta x \to 0} \left(\frac{\delta x}{\delta y}\right) = \frac{1}{\lim_{\delta x \to 0} \left(\frac{\delta y}{\delta x}\right)}
$$

Since '*y*' is a differentiable function of '*x*',

$$
\lim_{\delta x \to 0} \left(\frac{\delta y}{\delta x} \right) = \frac{dy}{dx}
$$
\n
$$
\text{As } \delta x \to 0, \ \delta y \to 0
$$
\n
$$
\lim_{\delta y \to 0} \left(\frac{\delta x}{\delta y} \right) = \frac{1}{\lim_{\delta x \to 0} \left(\frac{\delta y}{\delta x} \right)} \qquad \dots (i)
$$

∴ limit on R.H.S. of (i) exists and is finite.

Hence, limit on L.H.S. of (i) also should exist and be finite.

 \therefore $\lim_{x \to \infty} \left(\frac{\partial x}{\partial y} \right) = \frac{dx}{dy}$ exists and is finite. \therefore $\frac{dx}{du} = \frac{1}{(dx)}$, $\frac{dy}{dx} \neq 0$

Alternate Proof:

We know that $f^{-1}[f(x)] = x$...[Identity function] Taking derivative on both the sides, we get

$$
\frac{d}{dx} \left[f^{-1} \left[f(x) \right] \right] = \frac{d}{dx} (x)
$$

$$
\therefore \quad \left(f^{-1} \right)' \left[f(x) \right] \frac{d}{dx} \left[f(x) \right] = 1
$$

∴ $(f^{-1})'$ $[f(x)]$ $f'(x) = 1$

$$
\therefore (f^{-1})' [f(x)] = \frac{1}{f'(x)} \dots (i)
$$

So, if $y = f(x)$ is a differentiable function of x and $x = f^{-1}(y)$ exists and is differentiable then

 \mathcal{L}^C

 $(f^{-1})'$ $[f(x)] = (f^{-1})' (y) = \frac{dx}{dy}$ and $f'(x) = \frac{dy}{dx}$

∴ Equation (i) becomes

$$
\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}
$$
 where $\frac{dy}{dx} \neq 0$