
Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Debra Hughson
Mojave National Preserve, United States

REVIEWED BY

Cameron Barrows,
University of California, Riverside,
United States
Tasha La Doux,
University of California, Riverside,
United States

*CORRESPONDENCE

Todd C. Esque

tesque@usgs.gov

†These authors have contributed
equally to this work and share
first authorship

‡These authors have contributed equally to
this work

§These authors have contributed
equally to this work and share
last authorship

RECEIVED 25 July 2023

ACCEPTED 16 November 2023
PUBLISHED 14 December 2023

CITATION

Esque TC, Shryock DF, Berry GA, Chen FC,
DeFalco LA, Lewicki SM, Cunningham BL,
Gaylord EJ, Poage CS, Gantz GE, Van
Gaalen RA, Gottsacker BO, McDonald AM,
Yoder JB, Smith CI and Nussear KE (2023)
Unprecedented distribution data for
Joshua trees (Yucca brevifolia and Y.
jaegeriana) reveal contemporary climate
associations of a Mojave Desert icon.
Front. Ecol. Evol. 11:1266892.
doi: 10.3389/fevo.2023.1266892

COPYRIGHT

© 2023 Esque, Shryock, Berry, Chen,
DeFalco, Lewicki, Cunningham, Gaylord,
Poage, Gantz, Van Gaalen, Gottsacker,
McDonald, Yoder, Smith and Nussear. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 14 December 2023

DOI 10.3389/fevo.2023.1266892
Unprecedented distribution data
for Joshua trees (Yucca brevifolia
and Y. jaegeriana) reveal
contemporary climate
associations of a Mojave
Desert icon
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Felicia C. Chen1†, Lesley A. DeFalco1†, Sabrina M. Lewicki1‡,
Brent L. Cunningham1‡, Eddie J. Gaylord1‡, Caitlan S. Poage1‡,
Gretchen E. Gantz1‡, Ross A. Van Gaalen1‡, Ben O. Gottsacker1‡,
Amanda M. McDonald1‡, Jeremy B. Yoder2§,
Christopher I. Smith3§ and Kenneth E. Nussear4§

1U.S. Geological Survey, Western Ecological Research Center, Boulder, NV, United States,
2Department of Biology, California State University Northridge, Northridge, CA, United States,
3Department of Biology, Willamette University, Salem, OR, United States, 4Department of Geography,
University of Nevada – Reno, Reno, NV, United States
Introduction: Forecasting range shifts in response to climate change requires

accurate species distribution models (SDMs), particularly at the margins of

species' ranges. However, most studies producing SDMs rely on sparse species

occurrence datasets from herbarium records and public databases, along with

random pseudoabsences. While environmental covariates used to fit SDMS are

increasingly precise due to satellite data, the availability of species occurrence

records is still a large source of bias in model predictions. We developed

distribution models for hybridizing sister species of western and eastern

Joshua trees (Yucca brevifolia and Y. jaegeriana, respectively), iconic Mojave

Desert species that are threatened by climate change and habitat loss.

Methods: We conducted an intensive visual grid search of online satellite

imagery for 672,043 0.25 km2 grid cells to identify the two species' presences

and absences on the landscape with exceptional resolution, and field validated

29,050 cells in 15,001 km of driving. We used the resulting presence/absence

data to train SDMs for each Joshua tree species, revealing the contemporary

environmental gradients (during the past 40 years) with greatest influence on the

current distribution of adult trees.

Results:While the environments occupied by Y. brevifolia and Y. jaegerianawere

similar in total aridity, they differed with respect to seasonal precipitation and

temperature ranges, suggesting the two species may have differing responses to

climate change. Moreover, the species showed differing potential to occupy

each other's geographic ranges: modeled potential habitat for Y. jaegeriana
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extends throughout the range of Y. brevifolia, while potential habitat for Y.

brevifolia is not well represented within the range of Y. jaegeriana.

Discussion: By reproducing the current range of the Joshua trees with high

fidelity, our dataset can serve as a baseline for future research, monitoring, and

management of this species, including an increased understanding of dynamics

at the trailing and leading margins of the species' ranges and potential for

climate refugia.
KEYWORDS

Joshua tree, Yucca brevifolia, Yucca jaegeriana, species distribution modeling, habitat
map, remote sensing, climate variability, Mojave Desert
1 Introduction

Accurate geographic distribution information for sensitive

species is fundamental to evaluating habitat changes in response

to disturbances and environmental variation (Pitelka and Plant

Migration Workshop Group, 1997), and for conservation science

and resource management planning (Guisan and Thuiller, 2005;

Neilson et al., 2005; Elith and Leathwick, 2009). Short of mapping

the location of every individual in a species, geographic

distributions are frequently studied using species distribution

modeling (SDM), a collection of statistical methods to correlate

species presence and absence records with spatially explicit

environmental factors, and to predict probabilities of species’

presences in locations where direct observation is not available

(Franklin, 1995; Guisan and Thuiller, 2005). Practitioners often use

SDMs to close the gap between incomplete records of a species’

presence on the landscape and its full geographic range. However,

SDMs are limited by the power of the modeling methods used, the

selection of relevant environmental variables used as predictors,

and, perhaps most critically, the quality of input observation data

(e.g., Phillips et al., 2009; Lobo and Tognelli, 2011; Bean et al., 2012).

Range-wide distribution modeling can be hindered by the lack

of robust presence and absence data across broad areas occupied by

the focal species (Brown and Griscom, 2022). Acquiring presence

and/or absence data may be challenging because of species crypsis,

difficulties accessing remote habitats, or the sheer size of many

widespread species’ distributions. Moreover, while presence data

may often be incomplete, true absence data for many species are

simply unobtainable (Lobo et al., 2010), because many animals

easily travel into areas that would seem unlikely as habitat. This is

especially true for volant species such as birds and bats, or large

mammals with increased capacity for movement across landscapes.

Many models are instead estimated using “pseudoabsence” data

drawn at random from locations within a known or estimated

dispersal range from presence locations (Lobo and Tognelli, 2011;

Barbet-Massin et al., 2012). Because most SDM methods hinge on

the contrast between environmental conditions at presence and

absence locations, the method of pseudoabsence selection

influences a model’s power to identify the environmental factors
02
that meaningfully contribute to habitat suitability (e.g.,

VanDerWall et al., 2009).

One recent alternative is afforded by remote-sensing datasets,

which are increasingly accessible and offer the potential to develop

high-resolution distribution data encompassing both presence and

true absence information. For a species that can be reliably

identified in satellite imagery or LiDAR (Light Detection And

Ranging) scans, it should be possible to collect presence and

absence records in regions that may be inaccessible to direct

survey, at a spatial resolution and geographic scope limited only

by the remote-sensing method (Esque et al., 2020a; Hu et al., 2021).

High quality remotely sensed satellite data are available near human

population centers, but quality declines in remote areas, and regions

where national security concerns preempt public availability of

high-resolution imagery (e.g., near Department of Energy and

Department of Defense installations; http://apps.nationalmap.gov/

lidar-explorer/).

Joshua trees (Yucca brevifolia Engelm. and Y. jaegeriana

McKelvey ex Lenz; Figure 1) offer a unique demonstration of the

possibilities created by high-resolution remote sensing. The two

species are sister taxa of large tree-like yuccas broadly inhabiting

four states and an area upwards of 25,000 km2 at low to middle

elevations across the Mojave Desert ecoregion (McKelvey, 1938;

Rowlands, 1978; Lenz, 2007). In most of the plant communities

where they occur, Joshua trees are the largest plants on the

landscape (reproductive individuals grow >2 m tall), which has

facilitated the collection of unusually comprehensive presence

records to inform species distribution models (Godsoe et al.,

2009; Cole et al., 2011; Smith et al., 2011). The trees’ association

with the Mojave Desert more broadly has made them a focal species

for the use of SDMs to predict plant community shifts in response

to projected climate change (Cole et al., 2011; Barrows andMurphy-

Mariscal, 2012; Sweet et al., 2019; Smith et al., 2023) as well as

historical distribution changes since the last glacial maximum

(Smith et al., 2011). However, even in the case of these well-

studied, conspicuous species, SDMs published to date have

significant limitations. The largest observation datasets for Joshua

trees contain only validated presence records and rely on

pseudoabsences for SDM estimation (Godsoe et al., 2009).
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Observation records in these datasets are also distributed unevenly

across the Mojave Desert, limited by the accessibility of remote

habitats in which the trees occur and substantial regions where

access is restricted for national security concerns.

The division of the two species presents a further complication:

the possibility that they are adapted to different climate regimes in

the eastern and western Mojave. The two species of Joshua tree were

formally recognized following the discovery that they are each

exclusively pollinated by separate, sister species of yucca moths

with obligate seed-feeding larvae (Pellmyr and Segraves, 2003; Lenz,

2007; Godsoe et al., 2008). Yucca jaegeriana and Y. brevifolia

hybridize in a narrow conterminous zone, where the moths’

(Tegeticula. antithetica, and T. synthetica; respectively) host

specificity is thought to be the primary barrier to gene flow

(Smith et al., 2008; Starr et al., 2013). Genome-wide patterns of

differentiation between the two Joshua tree species, however,

indicate that the moths are not solely responsible for maintaining

reproductive isolation, and other environmental factors, such as

climate differences between the eastern and western Mojave, may

also contribute (Starr et al., 2013; Royer et al., 2016; Royer et al.,

2020). The most comprehensive range-wide SDM studies of Joshua

trees have attempted to compare the range of climates in which the
Frontiers in Ecology and Evolution 03
two species grow and find that they occupy overlapping climate

regimes (Godsoe et al., 2009), but studies done at the highest spatial

resolution have only been conducted within the range of Y.

brevifolia, in Joshua Tree National Park and its vicinity (Barrows

et al., 2019).

Understanding Joshua trees’ climate requirements has become

more urgently necessary to plan for their conservation in the face of

a suite of interlocking threats to the natural communities of the

Mojave Desert (Smith et al., 2023). Recruitment of Joshua trees

requires that seedlings survive a gauntlet of life history challenges

(Reynolds et al., 2012). Furthermore, increasingly frequent wildfires

fueled by invasive introduced grasses (Loik et al., 2000; DeFalco

et al., 2010; Reynolds et al., 2012; St. Clair et al., 2022), land use

changes (Esque et al., 2020b; Esque et al., 2020c; Smith et al., 2023;

State of California, 2023) and climate change (Dole et al., 2003; Cole

et al., 2011; Barrows and Murphy-Mariscal, 2012; Sweet et al., 2019)

all complicate conservation and management. Slow growing and

long-lived plant species with wide distributions are frequently left

out of conservation planning (Kwit et al., 2004), but widespread

concern for Joshua tree populations has prompted petitions to the

California Fish and Game Commission and the US Fish and

Wildlife Service to protect them (WildEarth Guardians, 2015;
FIGURE 1

Study area, placenames, and area of obscured imagery. Photograph on left is an example of the western Joshua tree (Yucca brevifolia), which is
unbranched for the first 2 m of its stem; photograph on right is the eastern Joshua tree (Y. jaegeriana), which has many branches from as low as
1 m. Photo credit – Christopher I. Smith.
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California Fish and Game Commission, 2019; State of California,

2023). Listing under the Endangered Species Act was determined to

be not warranted (USFWS, 2023), and the Western Joshua Tree

Conservation Act (State of California, 2023) was passed. However,

high-resolution distribution mapping and demographic

information remain major unknowns in understanding the

population status of Y. jaegeriana and Y. brevifolia across

their ranges.

Identifying presence and absence of adult Joshua trees can be

easier than for many other species because of their conspicuous

height and unique branching patterns (reproductive plants >2 m

tall), occurring among sparse desert shrubs with shorter canopies.

Pre-reproductive Joshua trees (usually <2 m tall) are mostly

undetectable because they cast a small shadow and primarily exist

within the canopy of nurse plants (Esque et al., 2021). Adults can be

reliably identified using commercial satellite data (i.e., Google Maps,

satellite view) or Light Detection and Radar Data (LiDAR; Esque

et al., 2020a). Image-based empirical maps of the trees’ distribution

can be used with SDMs to enhance representative rangewide habitat

suitability maps and explore occupied and potential habitat with

great accuracy (Brown and Griscom, 2022).

Here, we paired remotely sensed satellite data with species

distribution modeling of Joshua trees across the Mojave and

portions of the Sonoran Deserts (132,441 km2), evaluated those

data using extensive field validation with other spatially explicit data

sources, and provide high-resolution distribution maps for Y.

brevifolia and Y. jaegeriana. We found we could reliably identify

adult Joshua trees at a resolution of 0.25 km2 and validated the trees’

presence and absence across 672,043 grid cells to develop a nearly

comprehensive distribution dataset to inform SDM-based range

mapping for this iconic species. We use these data to understand the

underlying environmental variables related to Joshua tree

distributions and to compare habitat, modeled habitat, and

potential habitat between these two closely related species. We

distinguish habitat as currently occupied areas derived directly from

empirical presence/absence data, modeled habitat as the regions

identified by SDMs as having a high probability of species presence,

and potential habitat as modeled habitat that is outside of the

empirical habitat area (e.g., where occupancy was not detected in

imagery or field surveys). Our distribution maps represent the first

rangewide, survey-based models for both species and can inform

decision-makers and the public about the status of Joshua trees,

describe the environmental factors that shape their current

distributions, help establish an informed network for

demographic monitoring, and provide the foundation for high-

resolution predictions of future and paleoclimate distributions.
2 Methods

2.1 Study area

The study area encompasses 132,441 km2, including the Level

III Mojave Desert ecoregion and some adjacent ecoregions

(Omernik and Griffith, 2014) in Utah, Arizona, Nevada, and

California, USA (Figure 1). The study area perimeter was
Frontiers in Ecology and Evolution 04
determined using the probability threshold of 0.3 or higher from

a previous species distribution model for Joshua trees (Godsoe et al.,

2009) and based on field observation. Baseline survey elevations

were from 400 m to 2,200 m to encompass the range of Joshua trees

but exclude extraneous search areas because of the size of the study

area. The elevational range across the study region was −86 m in

Death Valley, California, to 3,632 m at the summit of Charleston

Peak, Clark County, Nevada.
2.2 Initial surveys using satellite imagery

Publicly available Google Earth satellite imagery was used to

identify presence or absence of adult Joshua trees of both species

(Esque et al., 2020a). We created a structured data set for both

species with a repeatable protocol (Isaac et al., 2020). Rather than a

stratified sampling design, we aimed to sample 100% of the study

area at 500 m resolution. Using the Fishnet toolbox in ArcMap 10.5

we created a grid of 811,900 500 m × 500 m cells in the USA

Contiguous Albers Equal Area Conic USGS coordinate system (SR-

ORG:7301). Observers inspected 672,043 of the survey cells during

our initial mapping phase, encompassing 82.7% of the gridded

study area. The remainder of the gridded study area, or 139,857

cells, occurred in south-central Nevada near US Department of

Energy and Defense facilities (i.e., National Nuclear Testing Facility

and Nellis Air Force Base) where we found obscured imagery

presumably due to national security concerns. Thus, presence/

absence determinations were precluded in this area (Figure 2). As

an alternative, we modeled Joshua tree habitat in this region using

SDM algorithms based on the true presence and absences for the

rest of both species’ ranges (see below).

Visual scans of adult Joshua tree presence and absence were

conducted at a standardized eye elevation of ~250 m (i.e., the

altitude above the land surface) with a target search time of roughly

45 s per cell. Observers either placed waypoints within each cell at

the location of a prominent Joshua tree or designated absence.

Surveys of satellite imagery were mostly limited to adult Joshua

trees (usually branched trees >2 m height) because initial field

surveys indicated that smaller trees are usually not distinguishable,

and those <1 m tall are undetectable (Esque et al., 2021).
2.3 Refinement of habitat map

The quality of Google Earth imagery was variable, but usable,

across the gridded study area except for the region of obscured

imagery described above (see Completing coverage for Joshua tree

distributions in obscured area using SDMs). The most recent

imagery (2021) was evaluated first, but if presence/absence was

not readily assigned because of image quality, the eye altitude or

time frame within the historical satellite imagery (2003 to 2021) was

varied to try and detect Joshua trees. Remaining questionable cells

were re-evaluated using secondary satellite surveys (see below).

We further refined the habitat map by correcting errors using

field validation, secondary satellite searches, empirical point data

from co-authors’ unpublished datasets, points provided by staff at
frontiersin.org
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Nellis Air Force Base, filtered research grade iNaturalist

observations (GBIF, 2023), and some SEInet observations (Esque

et al., 2020a; SEINet, 2023). Field validation included 15,001 km of

driving along both paved and dirt roads during twenty site visits

throughout the grid system (29,050 cells; Figure 2). Where site visits

were not possible, the most experienced observers re-evaluated cells

using secondary satellite searches (from any year available, with the

best imagery) in the following three scenarios: 1) cells determined to

be without Joshua trees but adjacent to cells having Joshua trees

present; 2) cells having Joshua trees present but surrounded by cells

without Joshua trees; and 3) cells in areas known to cause confusion

because of other issues (e.g., plants, rocky outcrops, fire scars, the

urban/wildland interface). Data from iNaturalist and SEInet that

were inconsistent with our database were also field validated.
2.4 Environmental variables

We derived 18 environmental variables to serve as covariates in

the species distribution models (SDMs), which together characterize

climate, topography, vegetation (e.g., NDVI variables), and soil
Frontiers in Ecology and Evolution 05
surface properties for the study region (Table 1). Precipitation and

temperature layers were created using ClimateNA v. 7.3 (Wang et al.,

2016), which downscales PRISM data (Daly et al., 2008) and corrects

for elevational variation. Our contemporary climate analyses

included data from the 30-year period between 1980–2010. Satellite

metrics incorporating plant canopy and soil surface data from the

moderate-resolution imaging spectroradiometer (MODIS) satellite

were averaged across 17 y (2003–2020) to represent a norm for the

study region (NDVI amplitude and maximum – USGS eMODIS

Remote Sensing Phenology, https://doi.org//10.5066/F7PC30G1). A

layer representing soil surface texture was downloaded and

mosaicked from the SoilGrids 2.0 web portal (Poggio et al., 2021).

All topographic metrics were calculated by aggregating a 30 m digital

elevation model to the 500 m × 500 m resolution used for modeling

(National Elevation Dataset, http://ned.usgs.gov/).

Climatographs were generated for Y. brevifolia and Y.

jaegeriana from the final corrected presence grid cells using

gaussian kernel density estimates from cell values for each

environmental variable. The climatographs were used to compare

the climate between adult Joshua tree species’ occupied habitat and

can be compared with partial response curves resulting from SDMs.
FIGURE 2

Geographical distribution for Y. brevifolia and Y. jaegeriana illustrating true presences and absences and the areas of obscured imagery where field
and satellite surveys were missing. Inset is an example of field validation and secondary satellite surveys across the distributions for both species.
frontiersin.org

https://doi.org//10.5066/F7PC30G1
http://ned.usgs.gov/
https://doi.org/10.3389/fevo.2023.1266892
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Esque et al. 10.3389/fevo.2023.1266892

Frontiers in Ecology and Evolution 06
2.5 Species distribution modeling

We used an ensemble modeling approach to create SDMs for Y.

brevifolia, Y. jaegeriana, and a rangewide model with both species’

datasets (hereafter, rangewide model). Presence and absence points

were assigned to each species’ range based on Rowlands (1978); Lenz

(2007), and author’s unpublished genetic data (CIS). The species are

non-overlapping except in the hybrid zone which was obscured by

poor imagery; in that area the data for both species were used in

combination for modeling (i.e., species specific points were not

designated). Next, we fit SDMs to the individual species

occurrences separately, along with a rangewide SDM featuring all

points (i.e., from both species). We used a custom script in R version

4.1.3 (R Core Team, 2022) to implement model cross-validation,

model averaging, parallel processing, and partial response curves for

model terms. Our ensemble modeling approach included two

algorithms: generalized additive models (GAM; R package “mgcv”

version 1.8-22; Wood, 2017) and random forests (RF; R package

“ranger” version 0.12.1; Wright and Ziegler, 2017). Both algorithms

have been consistently strong performers among SDM algorithms

(Franklin, 2010). However, due to consistently better cross-validation

performance, we only fit RF models for the rangewide dataset,

whereas both GAM and RF were compared for the individual

species models. All GAM models were fit with restricted maximum

likelihood (REML) and an extra penalty allowing smooth terms to be

penalized to zero (“gam” option select=TRUE in “mgcv” package) to

aid model selection. Random forest models were fit with 1,500

random trees and “ranger” package defaults for the regression

model (Wright and Ziegler, 2017).

For each algorithm and dataset, we considered eight candidate

models that included 10 uncorrelated terms and another 8 terms

used such that we avoided multicollinearity as environmental

predictors (Table S1). All models included the same 10

uncorrelated terms (NDVI amplitude – AMPn, NDVI maximum

– MAXn, HCL, precipitation seasonality – PCV, precipitation ratio

– Pratio, Sand, Slope, topographic position – TPI, temperature

seasonality – TSD, and temperature range – Trange; Table 1), but

varied with respect to eight additional terms to avoid

multicollinearity (Climate moisture deficit – CMD, Annual heat/

moisture index – AHM, mean annual precipitation – MAP, mean

annual temperature – MAT, summer precipitation – SP, summer

maximum temperature – STMX, winter precipitation – WP, and
TABLE 1 Environmental covariates (climate, satellite, and topography)
used to fit species distribution models (SDMs) for eastern and western
Joshua tree species.

Covariate Code Description

Climate

Annual heat/
moisture
index

AHM
Mean annual temperature in Celsius divided by
mean annual precipitation in mm (MAT+10)/
(MAP/1,000).

Mean
annual
precipitation

MAP Average annual precipitation during the climatic
normal period 1980–2010.

Mean
annual
temperature

MAT Average of the monthly temperature averages for
the climatic normal period 1980–2010.

Precipitation
ratio

Pratio
Ratio of summer to winter precipitation.

Precipitation
seasonality

PCV
Coefficient of variation in monthly precipitation
totals for the normal period 1980–2010.

Summer
maximum
temperature

STMX Average maximum temperature from Jun–Aug,
based on the climatic normal period 1980–2010.

Summer
Precipitation

SP
Average total precipitation received from May–
Oct, based on the climatic normal period
1980–2010.

Temperature
range

Trange
Difference between winter minimum temperature
and summer maximum temperature.

Temperature
seasonality

TSD
Standard deviation of the monthly
mean temperatures.

Winter
minimum
temperature

WTMN Average minimum temperature from Dec–Feb,
based on the climatic normal period 1980–2010.

Winter
precipitation

WP
Average total precipitation received from Nov–
April, based on the climatic normal period
1980–2010.

Satellite

Climatic
moisture
deficit

CMD

A modified Thornthwaite-Mather climatic water-
balance model was used to calculate annual
estimates of Annual Evapotranspiration (AET) and
deficit between 1916 and 2005 at the 30 arc second
resolution (Dobrowski et al., 2013).

NDVI
amplitude

AMPn
Maximum increase in canopy photosynthetic
activity above the baseline. Derived from MODIS
satellite bands.

NDVI
maximum

MAXn
NDVI at the maximum level of photosynthetic
activity in the canopy. Derived from MODIS
satellite bands.

Sandy soils Sand
Fraction of soil surface texture of sand particle size
(0–5 cm).

Topography

Heat
load index

HLI

Aspect/slope transformation index from McCune
and Keon (2002), representing the range in heat
load from coolest (northeast slope) to warmest
(southwest slope).

(Continued)
TABLE 1 Continued

Covariate Code Description

Slope Slope
Derived from a 30 m DEM (USGS National
Elevation Dataset) and upscaled to
500 m resolution.

Topographic
position

TPI

Steady state wetness index expressed as a function
of slope and upstream contributing area (Moore
et al., 1993). Derived from a 30 m DEM (USGS
National Elevation Dataset) and upscaled to
500 m resolution.
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winter temperature minimum – WTMN). This set of models

allowed us to contrast seasonal and annual climate variables

which, though correlated, may relate to different critical life stages

or phenological processes for the different Joshua tree species.

To account for potential bias due to spatial aggregation (Veloz,

2009), and for computational efficiency, we rasterized presence and

absence points to the modeling resolution (500 m × 500 m) and

applied a spatial thinning procedure in which a maximum of 50

points could be randomly sampled from any 5 km2 area (Fourcade

et al., 2014). This procedure reduced data density without changing

the spatial arrangement of points. Following this procedure, the

models included 128,438 points for Y. brevifolia (including

presences and absences), 114,705 points for Y. jaegeriana, and

198,305 points for the rangewide model (note: rangewide points

are not additive because of potential species overlap in a large area).

This procedure was repeated five times for each species and for the

rangewide dataset. Next, for each set of thinned points, we applied a

5-fold cross-validation procedure to split the data into training folds

(used for model fitting) and testing folds (used for model

evaluation). Overall, this process resulted in 25 total cross-

validation runs used to evaluate models (5 sets of randomly

thinned points × 5-fold cross-validation). It has been shown that

conventional random cross-validation may underestimate model

error and/or transferability, particularly when applied to spatially

structured data (Bahn and McGill, 2012; Wenger and Olden, 2012).

For this reason, we used a spatial cross-validation approach

developed by Valavi et al. (2019) and implemented in the R

package “blockCV” v2.1.4. Using the packages’ “spatial blocking

feature”, we split data into random training and testing blocks that

were both geographically separated and optimized to contain

relatively equal numbers of presences and absences. With this

procedure, we intended to reduce overfitting to the training data

while identifying models that were generalizable and performed

well across the study extent.

To measure model performance of the cross-validated models,

we considered several metrics of model prediction accuracy

including AUC (i.e., the area under the receiver operating

characteristic; Fielding and Bell, 1997), the Boyce Index (Hirzel

et al., 2006), and the True Skill Statistic (TSS; Allouche et al., 2006).

For GAM, we also calculated each model’s average AIC (with each

model being fit to the same subsets of data during cross validation)

to help identify well-performing, parsimonious models. These

metrics were averaged across cross-validation runs for each model

to obtain an overall estimate of performance. Moreover, for each

cross-validation run, we also generated model predictions as raster

grids for the study extent constituting the predicted habitat

suitability probabilities. We then created a final prediction raster

for each model as the weighted average of the 25 individual cross-

validation predictions based on the TSS scores (such that better

performing model predictions from the cross-validation runs

featured more heavily in the final raster prediction surface for

each model). Similarly, we created overall algorithm ensemble

predictions as the weighted average of raster predictions from

individual models, again based on TSS scores. For each ensemble
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model, we also calculated model calibration curves by binning the

predicted habitat probalities into 5 probability classes of width 0.2

(e.g., 0–0.2, 0.2–0.4, etc.) and comparing the midpoints of each bin

with the observed frequency of presences within that subset of data.

Calibration curves are useful in illustrating how well habitat

probabi l i t i es correspond to the actua l f requency of

presence observations.

To aid model interpretation, we derived relative importance

values for each predictor present in the candidate models for each

algorithm. Relative importance for predictors in random forest

models were based on the mean decrease in accuracy from

permutations leaving out each term, while for GAM, relative

performance was based on the parameter’s chi-square statistics.

We also derived partial variable response curves for each of the top

nine predictors present in the candidate models for each species, as

well as the rangewide dataset. These curves indicate the shape and

direction of relationships between predictors and habitat

probability values. For GAM, response curve functions for

predictors were also averaged across all the models in which each

predictor occurred to create a model-averaged response curve for

each predictor, which we overlay on the individual curves from

candidate models. For random forest models, we calculated partial

dependence curves using the R package “pdp” (Greenwell, 2017).
2.6 Modeled and potential habitat

We define the modeled habitat for Joshua trees as areas where

SDM-predicted habitat probability values were above the threshold

that maximized the sum of model sensitivities (true positive rate)

and specificities (true negative rate; Liu et al., 2005). SDM ensemble

habitat layers were thresholded separately for each species and for

the combined dataset. Potential habitat for Joshua trees includes

locations with modeled habitat where empirical Joshua tree

presences were not detected (e.g., where there were no presence

points from surveys). We quantified the area of habitat resulting

from empirical distribution data versus the modeled and potential

habitat generated by SDMs.
2.7 Comparison of habitat overlap

To compare the modeled habitats of Y. brevifolia and Y.

jaegeriana, we calculated Schoener’s D statistic and the I statistic

defined in Warren et al. (2009), both measures of environmental

overlap which range from 0 (no overlap in covariates) to 1

(complete overlap). As a second measure, we calculated AUC

values for two scenarios: (1) Y. brevifolia’s habitat probabilities

(from surveyed presences) within the SDM predicted for Y.

jaegeriana and projected across the full range of both species; and

(2) Y. jaegeriana’s habitat probabilities (from surveyed presences)

within the SDM predicted for Y. brevifolia and projected across the

full range. These calculations illustrate how well each species’

individual SDMs predict occupied habitat for the other species, as
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well as whether any such relationships are spatially symmetric.

Finally, to contrast the environmental tolerances of each species, we

overlaid the response curves for environmental predictors that were

among the top nine predictors in the individual SDMs for either

species (overlaid separately for GAM and random forest). These

response curve overlays contrast the relationships between each

species’ modeled habitat by each environmental covariate.
3 Results

3.1 Refinement of habitat map

Field validation of 29,050 grid cells resulted in status changes for

3,703 of them (12.8%) (i.e., changes from absence to presence, or

vice versa; Table S2). Experienced observers re-evaluated 76,578

cells using secondary satellite searches, changed the status of 36,857

cells (48.1% of re-surveyed cells, or 5.5% of all cells surveyed). The

majority of these cells were changed from absence to presence

(72.4% of changed cells; Table S2).
3.2 Joshua tree habitat

Based on the gridded image surveys and final corrections, Yucca

jaegeriana currently occupies more than 16,683 km2 of habitat

(excluding the area of obscured imagery) in the eastern Mojave

Basin and Range ecoregion, and conterminous ecotones of Sonoran

Basin and Range, Arizona/New Mexico Mountains, and Southern
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Basin and Range ecoregions (Figure 2; Omernik and Griffith, 2014).

Nevada has the greatest amount of occupied Y. jaegeriana habitat

(7,137 km2), followed by Arizona, California, and Utah (Table 2).

Yucca jaegeriana generally occurs in 11 large and homogeneous

populations, along with a few smaller peripheral populations.

Unoccupied cells within these populations are rare (Figure 2).

Occupied cells outside the well-defined populations are infrequent

and mostly within 0.4 to 2.0 km of population edges, with only two

individual cells isolated by >3 km. While uncommon, such isolates

occur throughout the range of Y. jaegeriana (77 out of 102,274,

0.25 km2 grid cells, Figure 2). The elevational limits of Y. jaegeriana

are 392 m near Alamo State Park, AZ and 2,319 m in the Sheep Range,

NV. The latitudinal limits are near Aguila, AZ in the south and Dry

Lake Valley, near Caliente, NV in the north. Longitudinal limits are

near Hawkins, AZ in the east, and the Avawats Mountains on Ft. Irwin

Military Base, CA in the west.

Yucca brevifolia occupies 15,955 km2 of habitat (excluding the area

of obscured imagery) in the western Mojave Basin and Range

ecoregion and adjacent Sierra Nevada and Southern California

Mountain ecoregions (Omernik and Griffith, 2014; Figure 2).

California has the most occupied habitat for Y. brevifolia followed by

Nevada. Native populations do not occur in Utah or Arizona (Table 2).

Yucca brevifolia has an extensive population on the southwestern edge

of its range with many narrow pinch points throughout. Besides

another large stand in the northwest periphery of its range that is

contiguous with the region of obscured imagery, there are several

smaller isolated populations of Y. brevifolia southward and eastward

throughout California (Figure 2). Occupied cells that are isolated

outside of large Joshua tree stands are infrequent with 170 cells

isolated by <3 km and only 2 occupied cells isolated by >3 km from

larger populations. In the southwestern range of Y. brevifolia,

unoccupied clusters of cells are more frequently interspersed within

occupied populations, creating a more diffuse pattern of occupancy in

comparison with Y. jaegeriana (Figure 2). The elevational limit of Y.

brevifolia is 600 m near Cantil, CA and the upper is 2,605 m on

Maturango Peak, CA on the Naval Air Weapons Station – China Lake.

The latitudinal limits are from near Indio, CA in the south and just

south of Tonopah, NV in the north, and longitudinal limits are near

Twentynine Palms in the east and the western limit is currently at the

junction of Orwin Way Road and the Quail Canyon Motocross Road

in Los Angeles, Co, CA.
3.3 Environmental variables within
species habitats

Climatographs were used to display the frequency distributions of

environmental variables within occupied Joshua tree habitat (Figure 3).

While annual heat/moisture index (AHM) and winter precipitation

(WP) had similar distributions between Y. brevifolia and Y. jaegeriana

habitats, other variables – particularly summer precipitation (SP),

precipitation ratio (Pratio), temperature standard deviation (TSD),

and precipitation coefficient of variation (PCV) – showed marked

discrepancies (Figure 3). Yucca jaegeriana experiences a greater range

of temperature variation (higher TSD) than Y. brevifolia throughout

the year, but a more even precipitation distribution (i.e., lower PCV).
TABLE 2 Area of geographic distribution (i.e., occupied habitat in square
km) for Yucca juaegeriana and Yucca brevifolia by Class III Ecoregions
and States.

Ecoregion III Y.
jaegeriana (km2)

Y.
brevifolia (km2)

Mojave Basin and Range 13,596 11,162

Central Basin and Range 932 3,276

Sonoran Basin and Range 1,957 0

Arizona–New
Mexico Plateau

126 0

Arizona–New
Mexico Mountains

72 0

Sierra Nevada 0 1,109

Southern
California Mountains

0 408

State Y.
jaegeriana (km2)

Y.
brevifolia (km2)

California 3,485 12,889

Nevada 7,138 3,066

Arizona 5,601 0

Utah 459 0

Total geographical
area (km2)

16,683 15,955
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Interestingly, due to differences in the precipitation regime, Y.

jaegeriana and Y. brevifolia share a similar profile of annual aridity

(AHM), despite Y. jaegeriana experiencing higher mean annual

temperatures (MAT). For Y. brevifolia, annual precipitation is largely

restricted to the winter months due to its western position in the

Mojave precipitation gradient. However, Y. jaegeriana receives more

bi-modal precipitation benefitting from tropical monsoonal storms in

its easterly position (Hereford et al., 2006; Figure 3), and consequently

higher annual precipitation. However, the climatic moisture deficit

model (based onDobrowski et al., 2013), which incorporates additional

variables beyond MAP and MAT (e.g., downward shortwave radiation

and wind velocity), suggested that Y. jaegeriana has a greater overall

moisture deficit than Y. brevifolia in portions of its range.
3.4 Species distribution models

SDMs predicted the Joshua tree habitats with high model

performance (Tables 3, S3). Most AUC values from spatial cross-
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validation were greater than 0.8, and scores for the algorithm

ensemble models were higher for RF than for GAM (Table 3).

The RF model for the rangewide map performed similarly

compared to the separate species models, with an AUC = 0.868

and R2 = 0.809 (Table 3, Figure 4). Given that spatial cross-

validation is a more stringent approach for model evaluation

than traditional random cross-validation (i.e., models are scored

based on their ability to predict into distinct geographic areas),

these metrics suggest that the SDMs are generalizable rather than

overfit and accurate in their predictions across the full

distribution. Inter-model standard deviations were generally

low (<0.2 in habitat probabilities) but more pronounced in

areas with fewer data points, such as the northern part of the

range where empirical coverage is low. Standard deviations for

the individual species models were also higher where we

extrapolated predictions into the range of the other species to

facilitate habitat comparisons (Figures 5, 6), but these areas were

typically of lower predicted habitat suitability, and the rangewide

ensemble SDM is not affected by this issue. Model calibration
FIGURE 3

Climatographs showing relationships between locations where Yucca brevifolia (YUBR) and Y. jaegeriana (YUJA) occur and the environmental
variables associated with these locations on a 0.25 km2 grid across the ranges of both species. Graphs are derived from gaussian kernel density
estimates for each variable.
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curves for the ensemble models indicated that, collectively, the

models tended to predict somewhat higher probabilities than

observed presences at the low end of values (<0.4), and

somewhat lower probabilities than expected at the higher end
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(Figure S1). However, the estimates were close enough to the

observed values that they would not result in mispredictions

when the model threshold is applied to determine a

suitability cutoff.
FIGURE 4

Rangewide species distribution model using presence and absence data for both Y. jaegeriana and Y. brevifolia – based on ensemble modeling of
eight candidate standard deviations (SDs) in predicted probabilities across candidate models.
TABLE 3 Average model spatial cross-validation performance.

Metric

Y. brevifolia Y. jaegeriana Rangewide

GAM RF GAM RF RF

AUC 0.849 0.876 0.794 0.857 0.868

TSS 0.553 0.593 0.458 0.562 0.576

R2 0.437 0.813 0.374 0.838 0.809

Cor1 0.54 0.603 0.464 0.583 0.596
1Point-biserial correlation.
Eight individual models were evaluated across 25 cross-validation runs (5 repetitions of spatially thinned presences × 5 repetitions of k-fold cross-validation with k=5) with geographic separation
between training and testing folds. Values in the table reflect the average score across all models for each dataset and algorithm. For the complete set of performance metrics across all models and
algorithms, see Supplementary Table S3.
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3.5 Model selection

Climate variables were typically more important predictors in the

SDMs than the vegetation or topography variables for each species.

For Y. jaegeriana, the GAM model with the best (lowest) AIC was

model 3, while for Y. brevifolia, the GAM with the lowest AIC was

model 7 (Supplementary Table S3), and models 3 and 7 were the top

twomodels for both Joshua tree species on this metric (Table S3). The

environmental variables for these models only differed by including

the climate moisture deficit (CMD for model 3), and summer

maximum temperature (STMX for model 7). Despite the large

differences in AIC, GAM models were largely consistent in

predictive performance based on other metrics, with AUC ranging

from 0.796 to 0.798 for Y. jaegeriana, and from 0.852 to 0.859 for Y.

brevifolia (Table S3) among the eight models. No single GAM model

scored highest across all performance metrics.

Among RF models, we observed less variation in predictive

performance across models than for GAM (Table S3). For Y.
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jaegeriana, models 2 and 1 had the highest AUC scores, while

models 2 and 5 had the highest TSS scores (Table S3). Both models

1 and 2 contained a measure of annual aridity (AHM); similarly,

model 5 reflected annual precipitation and temperature variables

(MAP, MAT) but not their seasonal components. However, the

models varied in AUC by only 0.004 (0.859 versus 0.855). For Y.

brevifolia, models 4 and 3 had the highest AUC and TSS scores

respectively (Table S3). These models only differed by including

either seasonal precipitation (SP, WP, Model 3) or annual

precipitation (MAP, Model 4). However, as with Y. jaegeriana,

AUC differed by only 0.004 between the highest and lowest

performing RF models for this species (0.878 versus 0.874),

suggesting similar predictive performance. The rangewide, multi-

species RF models also showed consistently high predictive

performance, with Models 7 and 8 showing the highest AUC

scores (Table S3). These models both contained seasonal

precipitation variables but varied in representing seasonal (Model

7) vs. annual (Model 8) temperature averages.
FIGURE 5

Species distribution models for Y. jaegeriana based on Random Forests and Generalized Additive Models. SDMs for each algorithm are derived as the
weighted average of predictions from eight individual candidate models based on the True Skill Statistic. Lower panels show the standard deviation
of predictions among the candidate models for each algorithm.
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3.6 Environmental variables predicting
modeled habitats in SDMs

For Y. jaegeriana, AHM and MAP were the strongest predictors

of Joshua tree habitat averaged across algorithms, followed by SP,

MAT, Pratio, PCV, and TSD (Table 4). For Y. brevifolia, MAT was

the strongest predictor averaged across GAM and RF followed by

TSD, PCV, SP, AHM, WTMN, and Pratio (Table 4). The best eight

environmental predictors averaged between RF and GAM differed

in rank but were largely shared between the two species, differing

only with respect to STMX (for Y. jaegeriana) and MAP (for Y.

brevifolia). For the rangewide RF model, AHM was the strongest

predictor, followed by MAP, MAT, SP, WP, STMX, Pratio, PCV,

TSD, and WTMN (Table 4).

We used partial response curves to illustrate relationships

between Joshua tree modeled habitat and individual

environmental variables across gradients in the landscape. Both Y.
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brevifolia and Y. jaegeriana have similar peaks in probability of

occurrence for the annual heat/moisture index (AHM), climatic

moisture deficit (CMD), and mean annual precipitation (MAP) for

the GAM and RF models (Figure 7). In contrast, Y. jaegeriana are

predicted to occur at somewhat higher temperatures than Y.

brevifolia for both RF and GAM algorithms (Figure 7). Summer

precipitation (SP) increased habitat probabilities at higher values for

Y. jaegeriana in the GAM and RF models, and this relationship was

also reflected in higher probability values with increasing ratio of

summer to winter precipitation (Pratio). Both the RF and GAM

response curves indicated that habitat probabilities for Y. brevifolia

may also increase in response to a higher ratio of summer

precipitation, which occurs in Y. brevifolia habitat in the vicinity

of the hybrid zone and in the most northerly parts of the species

range in NV. Similarly, while Y. jaegeriana typically occurs in areas

with more bimodal precipitation and hence lower precipitation

seasonality (PCV), response curves suggested that higher PCV
frontiersin.or
FIGURE 6

Species distribution models for Y. brevifolia based on Random Forests and Generalized Additive Models. SDMs for each algorithm are derived as the
weighted average of predictions from eight individual candidate models based on the True Skill Statistic. Lower panels show the standard deviation
of predictions among the candidate models for each algorithm.
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values (i.e., more winter-dominated precipitation) increased habitat

probability in the GAMmodel for Y. jaegeriana, likely reflecting the

large amount of potential habitat occurring in the western Mojave

that is often congruent with Y. brevifolia habitat (Figure 5). This is

also illustrated in the Fort Irwin area, where the GAM model

predicted higher habitat suitability values than the RF model (see

Figure 5). Higher levels of temperature variability were more

influential in the SDMs for Y. jaegeriana for both RF and GAM

(Figure 7). Full partial response curves from GAM and RF models

for each species are available in Supplementary Figures S2–S6.
3.7 Comparisons of modeled and
potential habitat

Niche similarity statistics used on SDMs suggested considerable

overlap between the two species, with D = 0.629 and I = 0.882 for

the multi-algorithm ensemble predictions. However, AUC

comparisons suggested that the niche similarity was asymmetric:

while the Y. jaegeriana ensemble SDM predicted Y. brevifolia

presences with an AUC = 0.764, the Y. brevifolia ensemble SDM

predicted Y. jaegeriana presences with an AUC = 0.667. We note

that SDMs extrapolated beyond the known range of a species are

prone to uncertainty: we projected each species SDM into the range

of the other species to illustrate where the habitat may be similar,
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but this does not imply occupancy of both species in these areas,

and these observations are corroborated by the habitat mapping

reported here.

Spatial comparisons of the ensemble SDMs for each species further

illustrate that potential habitat (modeled habitat where presences were

not detected in surveys) for Y. jaegeriana extends farther into the

habitat of Y. brevifolia than vice versa (Figure 8). In fact, potential

habitat for Y. jaegeriana extends throughout the entire range of Y.

brevifolia, while potential habitat of Y. brevifolia only occurs in small

patches beyond its extant range (Figures 8B, C), in addition to the area

of obscured imagery where both species share potential habitat.

Overall, potential habitat derived from the ensemble SDM for Y.

brevifolia covers approximately 16,400 km2 and is of similar size to

the area of occupied habitat (Figure 8B). However, potential habitat

had a median probability value of 0.624, lower than the median of

0.726 for grid cells in occupied habitat (e.g., those overlapping with

surveyed presences). Potential habitat for Y. brevifolia also overlaps

with approximately 1,834 km2 of occupied Y. jaegariana habitat.

Potential habitat for Y. jaegeriana covers approximately 27,638 km2

and is substantially larger than the occupied habitat for this species

(Figure 8C). As observed for Y. brevifolia, potential habitat for Y.

jaegeriana may be of lower current suitability, with a median habitat

probability of 0.61 versus a median of 0.73 for occupied habitat.

Approximately 5,410 km2 of Y. jaegeriana’s potential habitat is

currently occupied by Y. brevifolia, mirroring the asymmetric niche
TABLE 4 Relative importance of environmental covariates in species distribution models for each algorithm and species.

Term
Y. brevifolia Y. jaegeriana Rangewide

RF GAM Average RF GAM Average RF

MAT 8.736 11.531 10.134 9.146 7.589 8.368 8.383

TSD 7.519 9.139 8.329 5.395 5.424 5.41 5.78

PCV 6.891 9.368 8.13 5.409 6.167 5.788 6.593

SP 4.894 10.248 7.571 7.725 9.102 8.414 7.039

AHM 8.605 6.502 7.554 9.447 18.6 14.024 9.592

MAP 8.209 4.53 6.37 9.016 16.471 12.744 9.048

WTMN 6.158 8.784 7.471 5.851 4.754 5.303 5.601

Pratio 6.905 6.513 6.709 5.849 6.92 6.385 6.749

MAXn 4.668 7.447 6.058 4.164 3.766 3.965 4.446

AMPn 2.96 2.078 2.519 2.932 1.333 2.133 3.109

STMX 7.148 5.173 6.161 6.792 3.277 5.035 6.844

CMD 6.189 4.735 5.462 6.031 4.599 5.315 5.536

HLI 1.437 0.891 1.164 1.283 0.185 0.734 1.288

Sand pct 2.65 1.819 2.235 5.005 4.496 4.751 3.718

Slope 2.32 1.371 1.846 2.286 1.293 1.79 2.408

TPI 2.404 3.606 3.005 2.751 1.999 2.375 2.562

Trange 4.849 3.982 4.416 3.837 2.107 2.972 4.299

WP 7.456 2.282 4.869 7.081 1.919 4.5 7.005
For random forest, relative importance of terms was derived through permutation. For GAM, relative importance values were derived based on the likelihood ratio tests for model coefficients.
Bold values represent highest averaged importance values between the RF and GAM algorithms.
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similarity measures noted above. Overall, the two species share

approximately 9,669 km2 of potential habitat that is not currently

occupied by either species. Much of this area of shared potential habitat

falls within the area of obscured imagery (Figure 8); hence, a caveat to

the calculations presented here is that the amount of occupied habitat

in the obscured imagery area is unknown.

Potential habitat predicted for both species tended to occur at

higher elevations than currently occupied habitat, suggesting that
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SDMs did not typically extrapolate into warmer areas. For example,

potential habitat for Y. brevifoliawas at significantly higher elevation

than occupied habitat (mean of 1459 m versus 1325 m, respectively;

t = 71.07, P < 0.0001), received more annual precipitation (MAP of

206 mm versus 189 mm; t = 57.52, P < 0,0001), and had lower

annual temperatures (MAT of 13.7°C versus 14.4°C; t = 61.62; P <

0.001). Similarly, potential habitat for Y. jaegeriana was higher in

elevation (average of 1408 m versus 1078 m; t = 230.99, P < 0.0001)
B

A

FIGURE 7

Partial dependence plots from (A) Random Forest and (B) GAM species distribution models for Y. brevifolia (blue curves) and Y. jaegeriana (orange
curves). Curves show the marginal influence of each term on the predicted probability of habitat. 95% confidence intervals (colored bands) are
derived from cross-validation.
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and cooler (MAT of 14.1°C versus 17.2°C; t = −295, P < 0.0001) than

occupied habitat. However, precipitation was lower in Y.

jaegeriana’s potential habitat (MAP of 190 mm versus 210 mm in

occupied habitat; t = −86.52, P < 0.0001), reflecting a westward shift

into areas receiving less summer precipitation that are more typical

of Y. brevifolia habitat.

While higher elevation and lower temperatures in potential

habitat suggest these areas could serve as refugia as the climate

warms, accessibility to current populations could be a major

constraint. For Y. jaegeriana, potential habitat that is contiguous

with actual habitat is rarely more than a few kilometers deep around

Y. jaegeriana stands (Figure 8). Outlying patches and diffuse cells of

potential habitat are likely inaccessible for colonization under

present climatic conditions because the unoccupied intervening

areas do not support Joshua trees and Joshua trees seem to be

dispersal limited (Vander Wall et al., 2006). While the pattern is

similar for most of Y. brevifolia’s range, there are some large
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potential habitat patches in the southwest of the range that are

largely contiguous with occupied habitat.
4 Discussion

4.1 Yucca spp. distributions

Our species distribution models are based on the most

comprehensive presence and absence data yet available for Joshua

trees, enabling us to evaluate the environmental variables

underlying each species’ distribution. Thus, we present the first

highly accurate and nearly complete empirically derived range maps

for Yucca brevifolia and Y. jaegeriana. By coupling Google Earth

imagery to detect adult Joshua trees with extensive field validation,

we identified presences on 0.25 km2 grids across the ranges of both

species. While presence data were lacking for one area of obscured
frontiersin.or
FIGURE 8

(A–C) Overlap in modeled habitat predicted by overlaying separate SDMs for both Joshua tree species (Y. brevifolia and Y. jaegeriana). (A) Modeled
habitat overlap (blue) was determined by applying a threshold to the individual species SDMs, and then overlaying these raster layers to determine
where the modeled habitat for each species overlaps. While these maps reflect areas of similar habitat characteristics, they do not imply occupancy
of both Joshua tree species in areas of joint modeled habitat. (B, C) Comparison of occupied versus potential habitat for each species. Here, habitat
indicates cells with an observed presence from satellite and/or ground surveys, whereas potential habitat indicates cells with modeled habitat that
were not underlain by a surveyed presence.
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imagery where national defense is a priority for the Department of

Energy and the Department of Defense, we used our high-

resolution presence and absence data to fit SDMs across the full

range, resulting in completed rangewide distribution maps.

Identifying large, multi-stem Joshua trees using remotely sensed

Google Earth data is relatively straightforward, especially in the absence

of other large non-target succulent species that are similar in

physiognomy. However, Joshua trees can be challenging to

distinguish remotely from other large species including Mojave yucca

(Y. schidigera Roezl ex Ortgies), soaptree yucca (Y. elata Engelm.),

banana yucca (Y. baccata Torr.), giant saguaro cactus (Carnegiea

gigantea (Engelm.) Britton & Rose), desert almond (Prunus

fasciculata (Torr.) A. Gray); sugar sumac (Rhus ovata S. Watson),

creosote bush (Larrea tridentata Coville), or trees such as pinyon pines

(e.g., Pinus monophyla Torr. & Frém.) and junipers (e.g., Juniperus

osteosperma (Torr.) Little). Clonal Joshua tree forms can also be

difficult to observe remotely where they are prevalent, e.g., on the

western margin of Y. brevifolia distributions. Areas scarred by wildfires

can have exceptionally low densities of Joshua trees, which also makes

them difficult to detect. Joshua trees that were within natural

distributions, but recognizably in cultivation (i.e., planted specimens

within fences, urban settings) were not included as presences. Despite

these difficulties, extensive field validations of imagery-based presence

and absence classifications indicated the method to be highly effective,

with 87% of over 29,000 field surveyed grid cells requiring no change

(Table S2). Secondary imagery-based validations of over 76,000 grid

cells by experienced observers further refined our presence and absence

data, resulting in reclassifications of 5.5% of grid cells and likely

increased accuracy in the most challenging areas of imagery (Table S2).

Yucca jaegeriana habitat occurs in discrete well-defined and

homogeneously occupied populations of the eastern Mojave Desert

and neighboring ecoregions, while Y. brevifolia populations have a

sprawling distribution of considerably less homogeneous patches

along the western boundary of the Mojave Desert. Furthermore,

empirical demographic measurements at the leading edges of

Joshua tree distributions indicate that small founder trees

occurring there extend less than a kilometer from the edges of

established Joshua tree stands. This is consistent with observations

during demographic transect surveys, in which young Joshua trees

are well represented within some Joshua tree stands and taper off

within a few 100 m near the stand edges (Smith, et al., unpublished

data). These distributional patterns are generally consistent with

previous Joshua tree range maps (Rowlands, 1978; Godsoe et al.,

2009; Cole et al., 2011; Smith et al., 2011; Wilkening et al., 2020);

however, the habitat we defined has 23.8% less areal coverage than

the distribution identified in the most recently published

distribution map (see Supplementary Table S4; Wilkening et al.,

2020). Within populations we found absences of Y. jaegeriana only

in small, widely scattered locations; in contrast, Y. brevifolia

populations were more diffuse owing to a greater number of

absences dispersed throughout the populations, especially in the

southwest of the range. Based on satellite imagery some of those

absences within Y. brevifolia populations appear to be the result

from urban development, fire, and other cumulative disturbances.
Frontiers in Ecology and Evolution 16
The upper and lower elevational, latitudinal, and longitudinal

limits were revised for both species where appropriate (see

Figure 2). Differences we noted from previous work mostly

represent the higher resolution of imagery now available and the

benefits of widespread ground searches, rather than recent changes

in species range limits. The northern limit for Y. jaegeriana range

was increased by a few kilometers but the eastern limit that we

interpreted from Rowlands (1978) was reduced by a few kilometers

(P. Rowlands – pers. comm.), while the southern and western limits

remain unchanged (Rowlands, 1978). The northern limit of Y.

brevifolia was increased by 35 km, and the western limit was not

previously well-defined, and misrepresented by a herbarium record

with an erroneous locality, but is currently at the junction of Orwin

Way road and the Quail Canyon Motocross road in Los Angeles,

Co., CA. The eastern limit remains in Tikaboo Valley, NV (verified

genetically near the hybrid zone – Starr et al., 2013) and the

southern limit also remains the same as identified by

Rowlands (1978).
4.2 Environmental variables and Yucca spp.

Applying SDMs to our Joshua tree presence and absence data

facilitates understanding the ecological correlates of Joshua tree

distributions. Clarifying the roles of abiotic and biotic ecological

factors are key to understanding species distributions (Lexer and

Fay, 2005), and how Joshua trees may interact with future

disturbances such as climate change. In this study, climate

variables were the most important environmental correlates of

Joshua tree distributions compared with remotely sensed or

topographic variables; however, we did not include some

important biotic variables in our analyses such as pollinator

biology or intraspecific genomic variation also important to

Joshua tree distributional patterns (Godsoe et al., 2008; Smith

et al., 2008; Royer et al., 2016; Royer et al., 2020).

Several variables highlight differences between Y. jaegeriana and Y.

brevifolia in the climatographs generated from survey-based presence

data, and functional response curves generated from SDMs. Variables

with the greatest contrast between species were the precipitation

coefficient of variation, the precipitation ratio, and temperature

standard deviation (Figure 3). Climatographs showed that the overall

frequency distributions of both species were similar for mean annual

precipitation and winter precipitation (Figure 3), however, only Y.

jaegeriana occupies regions receiving regular summer precipitation.

This influence is also correlated with the distribution of the species in

relation to the precipitation coefficient of variation. Yucca jaegeriana

also experiences more variable temperature patterns than Y. brevifolia

(Figure 3). For example, mean annual temperature had a similar

amplitude between species but was clearly skewed toward higher

temperatures for Y. jaegeriana and lower temperatures for Y.

brevifolia which is similar to functional response curves for SDMs

(Figure 7). The standard deviation for monthly mean temperatures

(TSD) was also higher for Y. jaegeriana, indicating the species

experiences both warmer and more variable temperatures.
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Higher temperatures experienced by Y. jaegeriana are

ameliorated by greater summer precipitation (SP), such that the

overall aridity profile (e.g., AHM, Figure 3) is similar between

species. Patterns in seasonality and amount of precipitation

experienced by Y. jaegeriana contrast with those of Y. brevifolia,

particularly for the most easterly populations. This contrast is the

result of a regional precipitation pattern of greater winter

precipitation in the west, a more even precipitation pattern

central to the range and near the hybrid zone, and bi-modal

precipitation in the east (Hereford et al., 2006). Central and

northern populations of Y. jaegeriana share a more similar

climate with Y. brevifolia populations, and SDMs suggest that Y.

jaegeriana species could extend further into the western Mojave

absent limits on pollination, dispersal and other unaccounted

factors. However, the Mojave Desert and surrounding regions are

predicted to experience rapidly changing climate over the next

several decades (Dai, 2013), and local adaptation within the range of

each species could lead to differences in the population’s response to

future changes in climate, particularly if climate change alters the

seasonality of precipitation. Recruitment of Joshua tree populations

follows narrow seasonal precipitation and temperature cues

(Reynolds et al., 2012). Like other large and long-lived desert

plants (Steenbergh and Lowe, 1969; Steenbergh and Lowe, 1977;

Jordan and Nobel, 1979), seedling and juvenile Joshua trees are

more vulnerable to drought-related mortality than adults (Esque

et al., 2015). Rapid shifts in the climate regime could limit a

population’s ability to recruit while adult Joshua trees continue to

survive in undisturbed habitat, leading to lag effects (Svenning and

Sandel, 2013) that may not be detected using the methods presented

here. Lags in population change for long-lived plants are already

observed among the large tree-like quiver tree (Aloidendron

dichotomum) of South Africa and Namibia (Foden et al., 2007;

Brodie et al., 2021).
4.3 Comparison of habitat, modeled
habitat, and potential habitat
between species

Although the sister species of Joshua tree currently exist in

allopatry, except for the narrow hybrid zone (Godsoe et al., 2009) –

a pattern not uncommon to many sister species (Barton and Hewitt,

1985) – our SDM projections of potential habitat suggest this

pattern may reflect ecological relationships other than habitat

suitability, as previously hypothesized (Godsoe et al., 2009).

Potential habitat for Y. brevifolia is closely associated with

occupied habitat and does not extend far into the range of Y.

jaegeriana east of the hybrid zone with a few scattered exceptions

(Figure 8). Conversely, for Y. jaegeriana west of the hybrid zone

(where this species does not currently exist), extensive potential

habitat is predicted and closely mimics the habitat of Y. brevifolia

with few exceptions. Considering this pattern, as well as the

tendency for introgression of Y. jaegeriana genetic material

westward into Y. brevifolia populations (Starr et al., 2013; Royer
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et al., 2020), one wonders why Y. jaegeriana is not the dominant

species in a front moving westward across the Mojave Desert. We

suggest this may be largely dependent on biological factors that we

did not account for in this analysis. Such factors include but are not

limited to pollination interference by mis-matched pollinators, lack

of vigor in hybrids for a variety of reasons, low capability of

pollinator dispersal, reproductive isolation, and low seed dispersal

distances (Vander Wall et al., 2006; Smith et al., 2008; Godsoe et al.,

2009; Waitman et al., 2012; Royer et al., 2016; Royer et al., 2020). As

Godsoe et al. (2009) previously suggested, the natural experiment

between Joshua tree species in the hybrid zone is not sufficient to

understand all the dynamics driving the patterns observed there.

Further experimentation using known matrilines in combination

with growth chambers and common gardens to tease out differences

in species performance by genetics, physiology, and phenology

would be a good start toward unraveling these patterns.
5 Conclusions and future directions

One of the most compelling questions toward the conservation

of Y. brevifolia and Y. jaegeriana, i.e., how they will respond to

current and future climate change, is the topic of a second

manuscript. This question is related to a host of ecological

questions about species distributions and climate change, and the

work presented here lends itself directly to answering such

questions. Joshua trees may be more challenging than most in

regard to climate change, because of the symbiotic relationship with

their obligate pollinators (Smith et al., 2008; Starr et al., 2013). Thus,

we may well understand the relationships with climate variability

for the adult Joshua trees, but their responses to climate change may

be influenced by how yucca moths (genus Tegeticula) will respond

and interact with Joshua trees and changing climate

While the overall presence and absence data sets for Joshua

trees were very robust, the area of obscured imagery in the north-

central portion of the study area introduces unwanted variability

and increased error for that location (Figures 5, 6). Acquiring this

information would aid our understanding of the distributions of

each species for management. Such an endeavor would be greatly

enhanced by the acquisition of genetic samples in the same area,

which is partially adjacent to the hybrid zone between the species.

A caveat to our approach of mapping Joshua tree habitats is that

recent recruits to Joshua tree populations (perhaps the past 30 years

– Esque et al., 2015) are mostly not visible with remote sensing

because these small Joshua trees are closely tied to nurse plants

which benefit the juvenile Joshua trees through crypsis from

herbivores (Esque et al., 2015). Juvenile Joshua trees are typically

hidden by the canopy of associated nurse plants, and rarely survive

in the absence of these larger hosts (Brittingham and Walker, 2000;

Esque et al., 2015). Not being able to detect recruitment for decades

from remotely sensed data is a drawback of this method, because

the lack of recruitment detections confounds our understanding of

recent Joshua tree recruitment which is essential for understanding

their population status. It will be necessary to establish demographic
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plots that are searched on-the-ground for juvenile Joshua trees if we

are to fully understand population recruitment in coming decades.

Furthermore, conditions for recruitment of Joshua trees are very

specific and were not accounted for in these models (Reynolds et al.,

2012). Future modelling work will undoubtedly include recruitment

conditions (Diamond, 2018). However, Artificial Intellligence

technicques advance rapidly; perhaps with higher resolution

imagery and other technological advances mapping juvenile

Joshua trees will be possible. Such advances would allow greater

ability to forecast how populations will respond to variable climates

in terms of distributional shifts and recruitment.
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