

🐥 1. Introduction to Measures of Spread

© Why Do We Measure Spread?

When we look at a set of data, it's not just about the average — we also want to know how spread out the data is.

Are most of the values close together? "

Or are they far apart? 🛞

This is where measures of spread come in — they help us understand the variability in data. [1]

What Are Measures of Spread?

Measures of spread give us important information about how data values differ from each other.

They help answer questions like:

- How wide is the range of scores?
- Are there outliers (unusual values)?
- Is the data tightly clustered or scattered?

Common Measures of Spread

Here are three key tools you'll use to measure spread:

- 1. The Range The simplest measure, showing the difference between the highest and lowest values.
- 2. The Interquartile Range (IQR) Measures the spread of the middle 50% of data, less affected by outliers.
- 3. **The Standard Deviation Tells** us how much the data varies around the **mean**.

🐇 2. The Range

■ What is the Range?

The range is the simplest measure of spread.

It tells us how far apart the smallest and largest values in a dataset are.

👉 It gives a quick sense of how wide the data is spread.

Formula for the Range

$$R =$$
largest value $-$ smallest value

Just subtract the smallest number from the largest, and you've got it!

- Large range = More spread
- **Small range** = Less spread

Worked Example (Example 14): Finding the Range

Let's look at marks from two different tasks given to a group of students:

> Task A Marks:

- ✓ Smallest value = 2
- ✓ Largest value = 94
- Range for Task A:

$$R = 94 - 2 = \boxed{92}$$

> Task B Marks:

- Smallest value = 11
- ✓ Largest value = 91
- Range for Task B:

$$R = 91 - 11 = \boxed{80}$$

Interpreting the Results

- Task A has a larger range (92) compared to Task B (80).
- At first glance, this suggests Task A's scores are more spread out.
- BUT... is that the whole story? (Stay tuned for Section 3 to find out why range might not always tell the full truth! \(\bigcirc\) \(\bigcirc\)

1 3. Limitations of the Range

The Problem with the Range

While the range is super easy to calculate, it's not always reliable.

Why? Because it can be heavily affected by outliers — values that are much higher or lower than the rest.

Just one unusual number can make the range look way bigger than it should be!

Visual Check: Stem-and-Leaf Plots

Let's compare Task A and Task B using **stem-and-leaf plots**:

Task A

```
0 | 269
1 | 0 1 2 3
2 | 3 4 6 6 7
3 | 4 5 8 8 9
4 | 2 6 7
5 | 2 2 6 6 9
6 | 0
7
8
9 | 1 4
```

Task B

```
0
1 | 1 6 9
2 | 1 3 8
3 | 1 1 3 8
4 | 1 9
5 | 2 3 4 6 9
6 | 3 5 8
7 | 1 2 3 5 8 8
```

8		6	8
9	I	1	

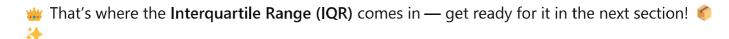
What Do We See?

- Task A has two very high scores (91 and 94) that stretch the range. 6
- Most of Task A's scores are clustered in the middle, with just a couple of outliers.
- Task B's scores are more evenly spread the range reflects the distribution a bit more accurately.

Conclusion: We Need a Better Tool!

The range doesn't always give us the full picture \mathbb{N} . We need a measure that:

- Focuses on the middle values
- Ignores extreme outliers 🛇



4. The Interquartile Range (IQR)

Definition

The interquartile range (IQR) tells us how spread out the middle 50% of the data is. Unlike the range, it ignores the lowest 25% and highest 25% of values.

of It's a more reliable measure of spread, especially when outliers are present!

Formula for IQR

$$IQR = Q_3 - Q_1$$

Where:

- Q_1 = First Quartile (25th percentile)
- Q_3 = Third Quartile (75th percentile)

Steps to Find the IQR

- 1. **!!** Order the data from smallest to largest
- 2. Split the data into two equal halves
 - Lower half (first 50%)
 - Upper half (last 50%)
- 3. **6** Find Q_1 = median of the lower half
- 4. **6** Find Q_3 = median of the upper half
- 5. Subtract:

$$IQR = Q_3 - Q_1$$

Worked Example (Example 15): Finding the IQR

Let's find the IQR for Task A and Task B:

Task A Data

- 30 total values
- Split into:
 - Lower half: 2, 6, 9, 10, 11, 12, 13, 22, 23, 24, 26, 26, 27, 33, 34
 - $Q_1 = 22$
 - Upper half: 35, 38, 38, 39, 42, 46, 47, 47, 52, 52, 56, 56, 59, 91, 94
 - $Q_3 = 47$

IQR for Task A:

$$IQR = 47 - 22 = \boxed{25}$$

🌛 Task B Data

- 30 total values
- Split into:
 - Lower half: 11, 16, 19, 21, 23, 28, 31, 31, 33, 38, 38, 41, 49, 52, 53
 - $Q_1 = 31$
 - Upper half: 54, 56, 59, 63, 65, 68, **7**1, 72, 73, 75, 78, 78, 86, 88, 91
 - $Q_3 = 73$

IQR for Task B:

$$IQR = 73 - 31 = \boxed{42}$$

📊 Comparison & Conclusion

- **Z** Task A IQR = 25 → Scores are more concentrated
- **V** Task B IQR = 42 → Scores are more spread out

What it means:

The IQR shows that Task A's data is less variable than Task B's data.

It's a clearer picture of the real spread—without being tricked by outliers! 6

5. The Standard Deviation

What Is the Standard Deviation?

The standard deviation (s) is a powerful measure of spread that tells us how much data values deviate from the mean (average).

If values are close to the mean
Small standard deviation If values vary a lot from the mean 🔁 🕎 Large standard deviation

Formula

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Where:

- x = individual data value
- \bar{x} = mean (average) of the data
- n = number of values
- \sum = sum of all the values
- S =sample standard deviation

🧠 Breaking It Down

• 1. \bar{x} – The Mean

Find the average of all your values:

$$\bar{x} = \frac{\sum x}{n}$$

• 2. $x - \bar{x}$ – Deviation from the Mean

For each value, find how far it is from the mean.

• 3. $(x - \overline{x})^2$ – Squared Deviations

Square each deviation so that positive and negative differences don't cancel out.

• 4. $\sum (x - \bar{x})^2$ – Total Variation

Add all the squared deviations together.

• 5. Divide by n-1

This is called **Bessel's correction** — it adjusts for the fact that we're working with a **sample** (not the whole population).

It helps get a more accurate estimate of variability.

• 6. Take the Square Root

This brings the units back to the original scale of the data.

• Why Use n-1 Instead of n?

Because we're often working with a sample, not the full population.

Using n-1 prevents us from **underestimating** the spread.

ill It corrects the bias and gives a more accurate picture of how variable the data really is.

So, while the range and IQR give you a sense of spread...

Standard deviation gives you a precise, mathematical look at how data clusters around the mean!

63

6. Worked Example: Calculating the Standard Deviation

Let's calculate the sample standard deviation for this simple data set:

Bata Set:

$$\{2, 3, 4\}$$

Step 1: Find the Mean \bar{x}

$$\bar{x} = \frac{2+3+4}{3} = \frac{9}{3} = 3$$

✓ The mean is 3

Step 2: Create a Table

x	$x - \overline{x}$	$(x-\overline{x})^2$
2	2 - 3 = -1	$(-1)^2 = 1$
3	3 - 3 = 0	$(0)^2 = 0$
4	4 - 3 = 1	$(1)^2 = 1$

Sum of squared deviations:

$$1 + 0 + 1 = 2$$

Step 3: Apply the Formula

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}} = \sqrt{\frac{2}{3 - 1}} = \sqrt{\frac{2}{2}} = \sqrt{1}$$

🞉 Final Answer:

The sample standard deviation of the data set $\{2,3,4\}$ is:

1

What Does Standard Deviation Tell Us?

The standard deviation is a number that tells us how spread out the values in a dataset are from the mean (average).

- ightharpoonup Small SD (e.g., SD = 1):
 - Most values are close to the mean \rightarrow data is tightly clustered.
 - → Example: Test scores where most students scored around 80.
- Larger SD (e.g., SD = 2 or more):
 - Values are more spread out → more variation or inconsistency.
 - → Example: Some students scored 50, some 90, even though the average is still 70.

🧠 How to Interpret SD Values

Imagine a class of students with a mean test score of 70:

- **6** SD = 1: Most students scored between 69 and 71 → very consistent performance
- \P SD = 10: Scores vary widely, from 60 to 80 and beyond → large performance gap

So, SD helps you understand:

- Are the results similar (low SD)?
- Or are they **all over the place** (high SD)?

📦 Real-Life Examples of Standard Deviation

1. Education – Test Scores

Let's say two classes have the same average test score (75), but:

- Class A has $SD = 2 \rightarrow Most$ students scored around 75
- Class B has SD = $15 \rightarrow$ Some students got 40, some got 100
- This helps a teacher identify which class had more consistent learning outcomes.

A company tracks weekly sales across branches:

- Branch X has SD = \$200 → Stable sales each week
- Branch Y has SD = \$1,000 → Some weeks are great, some terrible
- Managers can use this to decide where to invest training or resources to stabilize performance.

3. Health – Blood Pressure Readings

In a clinical trial, if one group has blood pressure with low SD, the treatment is working consistently.

But if the SD is high, it suggests the treatment has varying effects — it might not be reliable.

4. Manufacturing – Quality Control

If a machine produces metal rods with length = 10cm:

- SD = 0.1cm → Most rods are between 9.9 and 10.1cm → Excellent consistency
- SD = 0.5cm → Lots of variation → May cause issues with product quality
- ✓ Lower SD = more precision and quality

확 Key Takeaway

Standard deviation is a tool to understand consistency.

The smaller the SD, the more predictable and reliable the data.

The larger the SD, the more uncertainty or variation there is.