CTJan27 Online Year 10 Revision

48 marks from 48 questions

Question 1

Evaluate each term.

1 64 ²	64 ³	<u>1</u> 64 ⁶
8		

Question 2

Choose *all* correct answers.

 $\frac{1}{\sqrt{b^{-1}}}$ is equivalent to:

a.
$$\frac{1}{\sqrt{b}}$$
 b. \sqrt{b} c. b^2 d. $b^{\frac{1}{2}}$

Question 3

Select the true statement.

a) $8^{\frac{3}{2}}$ is a rational number. b) $8^{\frac{3}{2}}$ is an irrational number. c) $8^{\frac{3}{2}}$ is not a real number so it is neither rational nor irrational.

Question 4

$$y^2 = -49$$

This equation can be solved:

a) in the rational number system b) in the irrational number system c) in the imaginary number system

Question 5

 $\sqrt{8y} \times \sqrt{2y} =$

Evaluate $\left(\frac{1}{\sqrt{5}}\right)^{-4}$

 $\left(\frac{1}{\sqrt{5}}\right)^{-4} =$

Question 7

Write $2\sqrt{432}$ using its simplest base.

Question 8

Write the answer in its simplest form, with a rational denominator and with the surd expressed with its simplest base.

Question 9

Which of the following fractions is equivalent to $\frac{\sqrt{7}-1}{3}$?

a)
$$\frac{2}{\sqrt{7}-1}$$
 b) $\frac{3}{\sqrt{7}-1}$ c) $\frac{3}{\sqrt{7}+1}$ d) $\frac{2}{\sqrt{7}+1}$

Question 10

$$\left(\frac{2}{\sqrt{5}-1}\right)^2 =$$

a) $\frac{2}{2-\sqrt{5}}$ b) $\frac{2}{3-\sqrt{5}}$ c) $\frac{\sqrt{5}+1}{2}$

 $7^{-} = 1$

Therefore:

log₇ 1 =

Question 12

Evaluate

Question 13

The Richter scale is logarithmic base 10.

Enter a number to complete this sentence.

An earthquake measuring 6 on the Richter scale is	times more powerful than a quake
measuring 2.	-

Question 14

Select the true completion of this statement when considering all bases that are positive integers greater than 1.

If $\log_x y = m$, then m can never be:

- **a.** \bigcirc less than x
- **b.** \bigcirc greater than *x*
- **c.** \bigcirc less than y
- **d.** \bigcirc greater than y
- e. O less than zero
- **f.** \bigcirc greater than zero

Evaluate this logarithm by first writing $\frac{1}{y^8}$ in index form.

Question 16

Question 17

The point (729, 6):

- **a.** \bigcirc lies above the curve $y = \log_3 x$
- **b.** \bigcirc lies below the curve $y = \log_3 x$
- **c.** \bigcirc lies on the curve $y = \log_3 x$

Question 18

This is the graph of $y = \log_{a} x$ where the base, a, is an integer.

What is the value of *a*?

a =

Solve:

 $7^{k-5} = 1$

k =

Question 20

Solve for *x* :

 $2^{x} \times 3^{x-1} = 2592$

x =

Question 21

Solve $2^{4 x - 8} = 1$

x =

Question 22

Solve for y.

 $2^{2} - 16 \times 2^{y} + 64 = 0$

Hint: Substitute *k* for 2^{y} . Solve the new equation for *k* then solve for *y*.

y =

Question 23

Which of the following shows the factors of 11 k^2 – 46 k + 8?

a) $(11 \ k + 2)(k + 4)$ b) $(11 \ k - 2)(k - 4)$ c) $(11 \ k + 2)(k - 4)$ d) $(11 \ k - 2)(k + 4)$

Question 24

The area of a rectangle is given by the expression 2 x^2 + 11 x - 40. The width of the rectangle is (x + 8). What is its length?

Length = (

Enter the simplified answer to this calculation.

Question 26

Enter the missing values.

$$\frac{y+7}{y^2-3y-10} + \frac{y-5}{y-5} = \frac{4y+y}{(y-5)(y+2)}$$

Question 27

$$P(x) = x^2 - 5 x + c$$

If P(4) = 7, find the value of c.

c =

Question 28

P(x) = (x - 3)(x + 3)(x - 7)

Enter the constant term of this polynomial:

Question 29

Enter a number to complete this sentence.

The *sum* of a cubic and a quadratic polynomial will have at most terms.

Question 30

P(x) has degree 5 and Q(x) has degree 4.

What is the degree for the sum of P(x) and Q(x)?

$(x^{2} + 11 x + 38) \div (x + 4) = (x + 2)$) remainder		
Question 32			
$(x^{3}-3) \div (x-2) = x^{2} + \boxed{x+2}$	remainder		
Question 33			
$P(x) = x^{3} - 3x^{2} - 4x - 30$			

$$= (x - 5)(x^{2} + 2x + c)$$

What is the value of c?

c =

Question 34

What values of x would you substitute into a polynomial P(x) to prove that ($x^2 - 64$) was a factor of P(x)?

For marking purposes, enter the answers in *ascending order*.

Question 35

Solve $x^3 + 17 x^2 + 59 x - 77 = 0$.

Enter the answers in ascending order for marking purposes.

 $y = x^3 + 2x^2 - x - 2$

This equation will graph to form a curve on the Cartesian plane.

What are the x –intercepts of this curve?

Enter the answers in ascending order for marking purposes.

Question 37

Select *ALL* the functions below that will pass through the origin.

- **a.** $\Box x (x-3)(x+\sqrt{5})(x-\sqrt{5})$ **b.** $\Box 7(x+2)(x-2)$ **c.** $\Box x^{3}(x-1)$
- **d.** 🗌 (*x* 4)³

Question 38

This curve has only two x –intercepts: 3 and 7.

Using the nature of those intercepts, what is the *minimum* possible degree for P(x)?

Question 39

What is the *y* –*intercept* of $y = (x + 3)^2 + 1$?

y =

By first *completing the square* for $x^2 - 6x + ... = (x - 3)^2$, rearrange $y = x^2 - 6x + 16$ to find the coordinates of the vertex.

$$y = x^{2} - 6 x + 16$$

= $(x - 3)^{2} + ?$
The vertex is (_____, ___).

Question 41

 $-x^{2} + 12 x + 3 =$ **a.** $\bigcirc -(x-6)^{2} + 39$ **b.** $\bigcirc -(x-6)^{2} - 39$ **c.** $\bigcirc -(x+6)^{2} - 33$ **d.** $\bigcirc -(x+6)^{2} + 33$

Question 42

Select the parabola below that will have only *one x* –intercept.

- **a.** $\bigcirc y = (x 4)^2 7$
- **b.** $\bigcirc y = (x 4)^2 + 16$
- **c.** $\bigcirc y = (x 4)^2$

Question 43

 $y = 2 x^2 + 8 x + 5$

Determine the coordinates of the *vertex* of this parabola (its turning point).

(_____, ____)

5 x + 12 - x^2

This expression:

- **a.** \bigcirc is positive for all values of *x*
- **b.** \bigcirc is negative for all values of *x*
- **c.** \bigcirc is positive, negative and zero depending upon the value of *x*

Question 45

What is the equation of the hyperbola?

a)
$$y = \frac{4}{x}$$
 b) $y = -\frac{2}{x}$ c) $y = \frac{2}{x}$ d) $y = -\frac{4}{x}$

Question 46

What is the maximum number of possible points of intersection for:

 $y = ax^{2} + c$ and xy = k? a) 1 b) 2 c) 3 d) 4 e) 6

Question 47

To transform
$$y = \frac{6}{x}$$
 into $y = \frac{6}{x+3}$:

- **a.** \bigcirc translate it 3 units up
- **b.** \bigcirc translate it 3 units down
- **c.** \bigcirc translate it 3 units right
- **d.** \bigcirc translate it 3 units left

The cost per person at a graduation event is modelled by a hyperbola in the form:

$$C = \frac{k}{n} + 25$$

where *C* is the cost per person (in dollars)

and *n* is the number of people attending

If 150 people attend, the cost per person is \$105.

By finding the value of k, determine the cost per person if 250 people attend.

Cost per person = \$