Table of Contents: Graphs of Factorised Cubic Functions

1. Introduction to Cubic Functions

- General form: $y = ax^3 + bx^2 + cx + d$
- Range of graph shapes
- Role of coefficients
- Minimum number of x-intercepts

2. Polynomial vs. Factorised Form

- Standard polynomial form
- What is factorised form?
- How factorised form helps in graphing
- Understanding graph transformations

3. x-axis and y-axis Intercepts

- Finding x-intercepts by solving y = 0
- Finding y-intercepts by substituting x = 0
- Interpreting intercepts on the graph

4. Sketching Graphs from Factorised Form

- Step-by-step example walkthrough (e.g. Example 24)
- Intervals and signs of y-values
- Graph shape based on signs between roots
- "Beyond the intercepts" behavior

5. Effects of the Leading Coefficient (a)

- Positive vs. negative cubic functions
- Reflections and end behavior
- Example: Graph of $y = -x^3 2x^2 + x + 2$

6. Sign Diagrams

- What is a sign diagram?
- Using number lines to predict function signs
- Connecting sign diagrams to graph shapes
- Example: Sign diagram for 3-factor cubic

7. Using Technology to Find Turning Points

- Using the TI-Nspire to find local maxima/minima
- Using the Casio ClassPad to graph and solve
- Steps for using "Analyze Graph" functions
- Example 25: Graphing and interpreting turning points

8. Repeated Factors in Cubic Graphs

- Identifying repeated roots
- Effect on the graph: bounce vs. cross
- Example: $y = x^2(x-1)$

9. Cubics with One x-axis Intercept

- When factorised form includes an irreducible quadratic
- Example: $y = -(x-1)(x^2 + 4x + 5)$
- Using the discriminant to explain root types
- CAS example for turning points

1. Introduction to Cubic Functions

洋 AIDA Framework Breakdown

- A Attention: Ever wondered why roller coaster tracks or water fountains arch and dip like wild waves? The path they follow often mirrors a cubic function—a powerful mathematical tool that lets us model curves with multiple turns. A
- I Interest: Cubic functions don't just go up or down—they twist, bounce, and intersect the axis up to three times! Perfect for representing real-world motion or behaviors. 📈 🤽
- **D Desire**: By learning to recognize and graph cubic functions, you'll unlock the ability to analyze patterns, predict behaviors, and design smooth curves in everything from physics to animation.
- A Action: Let's begin by exploring the basics of cubic functions, starting with their general form, their many shapes, and how their coefficients guide the graph's journey.

General Form: $y = ax^3 + bx^2 + cx + d$

A cubic function is a third-degree polynomial, meaning its highest power of x is 3. This is what gives the graph its characteristic "S" shape (or a flipped version).

The standard form is:

$$v = ax^3 + bx^2 + cx + d$$

- Here:
 - α = leading coefficient (affects direction + width)
 - b, c = influence the curve's turning points
 - *d* = y-intercept (where graph crosses y-axis)

Range of Graph Shapes

Cubic graphs can have multiple shapes, depending on the coefficients:

- They can have:
 - 3 x-intercepts (distinct real roots)
 - 2 x-intercepts (with a repeated root)
 - 1 x-intercept (1 real root + 2 complex roots)

Graph Shapes:

- 1. **Upward S-curve** (increasing overall) when a > 0
- 2. **Downward S-curve** (decreasing overall) when a < 0
- 3. **"Bounce" at root** if root is repeated (e.g. $(x-2)^2$)

Role of Coefficients

Coefficient	Role	
a	Determines end behavior and vertical stretch/compression	
b, c	Influence position and nature of turning points	
d	The y-intercept (value of y when $x = 0$)	

Example:

For $y = 2x^3 - 3x^2 + 5x - 4$:

- a = 2: S-curve opens upward
- b = -3, c = 5: Affect curve shape
- d = -4: y-intercept is -4

Minimum Number of x-Intercepts

A cubic function always has at least one real x-intercept. Why?

Because a degree 3 polynomial must cross the x-axis at least once—it can't float entirely above or below the axis like some quadratics.

Key Point:

- It might touch the axis once (repeated root), or
- Cross it up to three times if all roots are real and distinct

Visual Examples:

1. Three real roots:

$$y = (x-2)(x+1)(x+1)$$

- ➤ Crosses x-axis at -3, -1, 2
- 2. Repeated root:

- ➤ Bounces at -1, crosses at 2
- 3. Only one real root:

$$y = (x-1)(x^2 + 4x + 5)$$

➤ Only x-intercept is at 1

- 1. **Remembering**: What is the highest power of x in a cubic function?
- 2. Understanding: What does the leading coefficient tell us about the graph?
- 3. **Applying**: Given $y = -x^3 + 3x$, predict whether the graph increases or decreases from left to right.
- 4. **Analyzing**: How does the graph of $y = (x-2)^2(x+1)$ differ from one with three distinct roots?
- 5. **Evaluating**: Which function would cross the x-axis the most:

a)
$$y = x^3 - x$$
,

b)
$$y = (x+2)^2(x-1)$$
, or

c)
$$y = (x-3)^3$$
?

- 6. **Creating**: Can you construct a cubic function that touches the x-axis only once?
- 7. Socratic Method: If every cubic must cross the x-axis at least once, what does that imply about its roots?

2. Polynomial vs. Factorised Form

🐥 AIDA Framework Breakdown

- A Attention: Ever tried solving a puzzle without knowing where the pieces fit? That's what it's like graphing a cubic from its expanded form. But the moment you see it factorised, the picture becomes clearer! 🧩 🧩
- I Interest: Just like knowing the ingredients of a recipe makes it easier to cook, knowing the factors of a cubic makes it easier to graph. Q 📈
- D Desire: Mastering the difference between polynomial and factorised forms helps you go from equations to precise, accurate, and fast graphs with confidence.
- A Action: Let's compare the two forms, explore how factorised form helps with graphing, and understand how transformations apply. 🧠 🥕

Standard Polynomial Form

This is the expanded version of a cubic equation:

$$y = ax^3 + bx^2 + cx + d$$

- Pros:
 - Shows general shape and end behavior
 - Useful for finding **y-intercept** easily (just plug in x = 0)
- Cons:
 - Doesn't directly show the x-intercepts
 - Harder to sketch by hand without factoring

Example:

Given:

$$y = x^3 + 2x^2 - 5x - 6$$

This tells us:

- Cubic with leading coefficient a = 1 (graph opens up)
- y-intercept is d = -6

But we don't know where it crosses the x-axis unless we factor it.

This form shows the roots of the equation directly:

$$y = a(x - r_1)(x - r_2)(x - r_3)$$

Where r_1, r_2, r_3 are the **x-intercepts** (roots).

- Pros:
 - You can immediately see where the graph touches or crosses the x-axis.
 - Helps you draw sign diagrams.
 - Easier to sketch the shape accurately.
- Cons:
 - Doesn't directly show the y-intercept unless you calculate it.

Example:

$$y = (x+1)(x-2)(x+3)$$

- x-intercepts: -3, -1, 2
- y-intercept: Plug $x = 0 \rightarrow y = (1)(-2)(3) = -6$
- This is the same function as the one above: $y = x^3 + 2x^2 5x 6$

How Factorised Form Helps in Graphing

Step-by-Step Benefits:

- 1. Instant x-intercepts <
- 2. Use sign diagram to determine whether the curve is above or below the x-axis
- 3. Shape recognition: repeated roots \rightarrow bounce, single roots \rightarrow cross \checkmark
- 4. Predict end behavior from the sign of the leading coefficient <
- 5. **Easy turning point estimation** (especially with tech like TI-Nspire)

Understanding Graph Transformations

Transformations modify how the base cubic $y = x^3$ looks:

Transformation	Function Form	Description
Vertical stretch	$y = 2x^3$	Steeper graph
Vertical flip	$y = -x^3$	Flips upside down

Transformation	Function Form	Description
Horizontal shift	$y = (x - 1)^3$	Moves graph right by 1
Vertical shift	$y = x^3 + 4$	Moves graph up by 4

In factorised form, transformations look like:

- $y = a(x-r)^3 + k$: Single repeated root
- $y = a(x r_1)(x r_2)(x r_3)$: General graph with 3 real roots

Examples:

- 1. $y = (x-2)(x+3)^2$
 - ➤ Touches x-axis at -3 (repeated root), crosses at 2
- 2. y = -2(x-1)(x+2)(x-4)
 - ➤ Negative a-value flips it downward
- 3. $y = (x-1)^3$
 - \triangleright One real root, flattens at x = 1 (no turning points)

- 1. Remembering: What is the general form of a cubic function?
- 2. Understanding: What can we immediately see from a function in factorised form?
- 3. Applying: Factorise $y = x^3 + x^2 6x$ and identify the intercepts.
- 4. Analyzing: Compare the graph of y = (x-1)(x+2)(x+3) with $y = (x+2)^2(x-1)$.
- 5. Evaluating: Which form—polynomial or factorised—is more helpful for graphing, and why?
- 6. Creating: Construct a cubic with x-intercepts at -3, 0, and 2.
- 7. Socratic Method: Why might a graph touch the x-axis but not cross it?

3. x-axis and y-axis Intercepts

AIDA Framework Breakdown

- A Attention: Want to know where your cubic graph hits the axes? That's where the magic begins! * The intercepts are the anchors of your graph.
- I Interest: Once you find the x- and y-intercepts, you can start sketching without a calculator. 6 It's like solving the first part of a mystery!
- **D Desire**: Mastering intercepts lets you create **accurate graphs**, **interpret real-world problems**, and understand how the graph moves.
- A Action: Time to learn how to find intercepts step by step using factorised cubic functions!

• Finding x-intercepts by Solving y = 0

To find the x-intercepts (roots), we solve:

$$y = a(x - r_1)(x - r_2)(x - r_3) = 0$$

Since any number multiplied by 0 equals 0, set each factor equal to 0:

Rule:

If ab = 0, then either a = 0 or b = 0

Example:

$$y = (x-2)(x+3)(x+1)$$

To find x-intercepts, let y = 0:

$$0 = (x-2)(x+3)(x+1) \Rightarrow x = 2, -3, -1$$

✓ These are the points where the graph crosses the x-axis.

• Finding y-intercepts by Substituting x = 0

To find the y-intercept, plug x = 0 into the function:

$$y = a(0-r_1)(0-r_2)(0-r_3)$$

This gives the point where the graph cuts the y-axis.

Example:

$$y = (x-1)(x+2)(x+1)$$

$$y = (-1)(2)(1) = -2$$

ightharpoonup So the y-intercept is (0, -2)

Interpreting Intercepts on the Graph

- x-intercepts = Where the graph touches or crosses the x-axis
 - Root of the equation
 - If root is **repeated** (like $(x-1)^2$), graph **touches** the axis but doesn't cross
 - If all roots are real and distinct → graph crosses at each root
- y-intercept = Where the graph crosses the y-axis
 - Only one y-intercept in a function
 - Often helps to sketch the vertical position of the graph at x = 0

* Real Graph Example (from textbook Example 24):

Given:

$$y = (x-1)(x+2)(x+1)$$

- **x-intercepts**: Set y = 0 $\rightarrow x = 1, -2, -1$
- y-intercept: Set x = 0y = (-1)(2)(1) = -2

So the graph:

- Crosses x-axis at 1, -1, -2
- Crosses y-axis at -2

More Practice Examples:

1.
$$y = (x-3)^2(x+2)$$

- x-intercepts: x = 3 (repeated), x = -2
- y-intercept: $x = 0 \rightarrow y = (0-3)^2(0+2) = 9 \times 2 = 18$

2.
$$y = -x(x-2)(x+4)$$

- x-intercepts: x = 0, 2, -4
- y-intercept: y = -0(0-2)(0+4) = 0

© Summary Table

Туре	How to Find	What It Tells You
x-intercepts	Solve $y = 0$	Where graph crosses or touches x-axis
y-intercept	Evaluate y when $x = 0$	Where graph crosses y-axis
Repeated root	Same x-value shows up more than once	The graph touches the axis at that root

- 1. **Remembering**: How do you find the x-intercepts of a factorised cubic?
- 2. Understanding: Why do we set y = 0 when finding x-intercepts?
- 3. **Applying**: Find the x- and y-intercepts of y = (x + 1)(x 2)(x + 3)
- 4. Analyzing: Compare the graphs of y = (x-1)(x+2)(x+3) and $y = (x-1)^2(x+3)$
- 5. Evaluating: Is it possible for a cubic function to have only one x-intercept? Explain.
- 6. Creating: Write a factorised cubic with x-intercepts at -2, 0, and 3, and a y-intercept of 6
- 7. **Socratic Method**: Why does plugging in x = 0 always give the y-intercept?

4. Sketching Graphs from Factorised Form

洋 AIDA Framework Breakdown

- A Attention: Ever wonder how you can sketch a beautiful, accurate cubic graph without needing a graphing calculator? 6
- I Interest: Knowing just the factors and a few smart steps, you can predict exactly how the graph looks! 🚀
- D Desire: Mastering this lets you sketch fast and impressively essential for exams, assignments, and competitions!
- A Action: Let's walk through a complete example, learn about intervals and signs, and understand graph shapes. 🧠 💡

Step-by-Step Example Walkthrough (Example 24)

Given Function:

$$y = (x-1)(x+2)(x+1)$$

Step 1: Find x-intercepts

Set y = 0:

$$(x-1)(x+2)(x+1) = 0$$

Solutions:

$$x = 1, \quad x = -2, \quad x = -1$$

These are the points where the graph crosses the x-axis.

Step 2: Find y-intercept

Substitute x = 0:

$$y = (0-1)(0+2)(0+1) = (-1)(2)(1) = -2$$

ightharpoonup So the y-intercept is (0, -2).

Order:
$$-2, -1, 1$$

This helps create intervals:

•
$$-2 < x < -1$$

•
$$-1 < x < 1$$

•
$$x > 1$$

* Step 4: Determine signs in each interval

Pick test points in each interval and plug into y.

Interval	Test Point	Sign Check	Overa ll Sign	Graph Behavior
x < -2	x = -3	(-)(-)(-) = -	Negative	Below x-axis
-2 < x < -1	x = -1.5	(+)(-)(-) = +	Positive	Above x-axis
-1 < x < 1	x = 0	(-)(+)(+) = -	Negative	Below x-axis
<i>x</i> > 1	x = 2	(+)(+)(+) = +	Positive	Above x-axis

Step 5: Sketch the general shape

- Starts **below** x-axis (negative) before x = -2
- Crosses to **above** x-axis between -2 and -1
- \bullet Dips **below** x-axis between -1 and 1
- Rises above x-axis after x = 1
- Classic S-curve behavior!

Quick Sketch Description:

- Curve **below** before x = -2
- Crosses up at x = -2
- Crosses down at x = -1
- Crosses up again at x = 1
- y-intercept at (0, -2)

Intervals and Signs of y-values

Using sign analysis:

- Between each root, the graph is either entirely above or entirely below the x-axis.
- The sign diagram helps predict these sections.

Summary Table:

Interval	Sign	Behavior
x < -2	Negative	Below axis
-2 < x < -1	Positive	Above axis
-1 < x < 1	Negative	Below axis
<i>x</i> > 1	Positive	Above axis

Graph Shape Based on Signs Between Roots

- Graph crosses x-axis at every single root (no repeated factors).
- It alternates between above and below the axis.
- Curve bends smoothly at turning points (local max/min).

Turning points happen somewhere between each pair of intercepts.

"Beyond the Intercepts" Behavior

Look at **leading coefficient** *a*:

- If positive → Left ↓, Right ↑
- If negative → Left ↑, Right ↓

In our example:

- a = 1 (positive)
- So left side down, right side up

Graph goes to negative infinity as $x \to -\infty$, and goes to positive infinity as $x \to +\infty$.

- **✓** Roots: x = -2, -1, 1
- \checkmark y-intercept: (0, -2)
- Left arm down, right arm up
- Crosses x-axis at each root
- "S" shape with smooth bends at turning points

- 1. **Remembering**: What is the first step when sketching a cubic in factorised form?
- 2. Understanding: Why does the graph alternate between being above and below the x-axis?
- 3. **Applying**: Sketch the graph of y = (x-2)(x+1)(x-4) by following these steps.
- 4. **Analyzing**: How does the number of x-intercepts affect the number of bends in the graph?
- 5. **Evaluating**: If a graph only touches the x-axis at a root instead of crossing, what does it mean?
- 6. Creating: Create a factorised cubic with roots at -3, 0, and 2, then sketch the graph.
- 7. **Socratic Method**: Why does the graph cross the x-axis at a single root but bounce off at a repeated root?

5. Effects of the Leading Coefficient (a)

🔅 AIDA Framework Breakdown

- A Attention: Ever noticed how some graphs "rise up" on both ends, while others "fall and dive"? 🔼 It's not random—it's controlled by a single number: the leading coefficient!
- I Interest: By just glancing at the sign of a, you can predict the graph's ultimate behavior without even sketching. 🤒
- D Desire: Knowing how the leading coefficient affects the graph lets you draw, analyze, and understand cubic functions lightning fast! 🔸
- A Action: Let's dive in and explore reflections, end behavior, and real examples! 🎯

Positive vs. Negative Cubic Functions

In a cubic function:

$$y = ax^3 + bx^2 + cx + d$$

the leading coefficient a determines the graph's end behavior and whether the graph rises or falls.

If $a > 0$	If $a < 0$
Left side ↓	Left side ↑
Right side ↑	Right side ↓
S-curve rises overall	S-curve falls overall
"Natural" cubic look	Flipped cubic look

Examples:

1.
$$y = x^3 - 4x$$

•
$$a = 1$$
 (positive)

2.
$$y = -2x^3 + x^2 - x$$

•
$$a = -2$$
 (negative)

Reflections and End Behavior

When a is **negative**, it **reflects** the graph across the x-axis — just like flipping a pancake \mathbf{Q} .

End Behavior Summary:

а	As $x \to -\infty$	As $x \to +\infty$
Positive	$y \to -\infty$	$y \to +\infty$
Negative	$y \to +\infty$	$y \to -\infty$

🔔 Think: the graph always heads opposite directions at each end.

• Example: Graph of $y = -x^3 - 2x^2 + x + 2$

Let's break it down:

- Leading coefficient $a = -1 \rightarrow$ Graph is reflected.
- As $x \to -\infty$, $y \to +\infty$
- As $x \to +\infty$, $y \to -\infty$

Now find intercepts:

x-intercepts: Solve $-x^3 - 2x^2 + x + 2 = 0$

(Factoring may be needed, or use technology if messy!)

y-intercept: Substitute x = 0

$$y = -(0)^3 - 2(0)^2 + (0) + 2 = 2$$

So the graph crosses the y-axis at (0, 2).

✓ Shape: S-curve flipped — starts high on the left, ends low on the right.

Quick Sketch Summary:

- Left arm goes up 🚹
- Right arm goes down
- x-intercepts found by solving
- y-intercept at (0,2)
- Reflected S-curve!

Concept Check Questions:

1. **Remembering**: What effect does a negative a have on the graph?

- 2. **Understanding**: Why does a positive a mean the graph rises to the right?
- 3. **Applying**: Describe the end behavior of $y = -2x^3 + 3x^2 5x$
- 4. **Analyzing**: How would the graph of $y = x^3 + 2x^2 3x$ change if a were negative?
- 5. **Evaluating**: Which graph rises both left and right: $y = x^3$ or $y = -x^3$? Explain.
- 6. Creating: Write an equation for a cubic graph that falls to the right and has x-intercepts at -2, 1, and 3.
- 7. **Socratic Method**: If a cubic graph rises to the left and falls to the right, what can you immediately say about the sign of a?

6. Sign Diagrams

AIDA Framework Breakdown

A – Attention: Want a secret shortcut to know whether your cubic graph is above or below the x-axis? 🕺 🔆 Sign diagrams reveal the answer without guessing!

- I Interest: Instead of plotting dozens of points, you can use sign diagrams to predict the entire shape based just on the roots.
- D Desire: Mastering sign diagrams makes your graphing faster, more accurate, and way more powerful, especially for complex cubics. 📊 🦾
- A Action: Let's break down how to create and interpret sign diagrams for factorised cubics! 6

What is a Sign Diagram?

A sign diagram is a number line showing whether the value of the function is positive or negative between its xintercepts.

- Above the axis (positive): Curve is above x-axis
- Below the axis (negative): Curve is below x-axis

It helps you predict where the graph is up and where it is down. 🧠 📈

Using Number Lines to Predict Function Signs

Steps to Create a Sign Diagram:

- 1. Find the x-intercepts by solving y = 0.
- 2. Mark intercepts on a number line.
- 3. Pick test points between each intercept and plug into the equation.
- 4. Record the sign (+ or -) for each interval.

Example:

Given:

$$y = (x+2)(x-1)(x-3)$$

x-intercepts: x = -2, 1, 3

Intervals:

Region 1: x < -2

- Region 2: -2 < x < 1
- Region 3: 1 < x < 3
- Region 4: x > 3

Test Points:

- $x = -3 \rightarrow \text{plug into } y$
- $x = 0 \rightarrow \text{plug into } y$
- $x = 2 \rightarrow \text{plug into } y$
- $x = 4 \rightarrow \text{plug into } y$

Check Signs:

Interval	Test Point	Sign	Behavior
x < -2	x = -3	$(-)(-)(-) \rightarrow Negative$	Below x-axis
-2 < x < 1	x = 0	$(+)(-)(-) \rightarrow Positive$	Above x-axis
1 < x < 3	x = 2	$(+)(+)(-) \rightarrow Negative$	Below x-axis
<i>x</i> > 3	x = 4	$(+)(+)(+) \rightarrow Positive$	Above x-axis

Connecting Sign Diagrams to Graph Shapes

Now that you know where the graph is positive or negative, you can:

- Sketch the general "up" and "down" parts of the graph
- Know when the graph crosses the x-axis
- Predict local maxima and local minima
- Positive region: Graph is above x-axis
- P Negative region: Graph is below x-axis

Graph Sketch:

- Starts below x-axis before -2
- Rises above x-axis between -2 and 1
- Dips below x-axis between 1 and 3
- Rises above x-axis after 3

A classic **S-curve**! 🎢

Example: Sign Diagram for a 3-factor Cubic

$$y = (x-1)(x+2)(x+4)$$

x-intercepts: -4, -2, 1

Test points:

•
$$x = -5$$
, $x = -3$, $x = 0$, $x = 2$

Checking signs:

Interval	Test Point	Sign	Behavior
x < -4	x = -5	$(-)(-)(-) \rightarrow Negative$	Below
-4 < x < -2	x = -3	$(+)(-)(-) \rightarrow Positive$	Above
-2 < x < 1	x = 0	$(+)(+)(-) \rightarrow Negative$	Below
<i>x</i> > 1	x = 2	$(+)(+)(+) \rightarrow Positive$	Above

Thus, the graph:

• Starts below, rises above between -4 and -2, dips below between -2 and 1, and rises again after 1. 🔽

Summary

Concept	Meaning
Sign Diagram	A tool showing positive/negative regions of graph
Number Line	Place roots on number line, test between them
Interpret	Where positive → above x-axis, negative → below

3.0

- 1. Remembering: What is a sign diagram?
- 2. Understanding: Why do we pick test points between x-intercepts?
- 3. **Applying**: Create a sign diagram for y = (x-1)(x+2)(x-3)
- 4. Analyzing: How does the number of sign changes relate to x-intercepts?
- 5. Evaluating: Which is faster: using sign diagrams or plotting lots of points? Why?
- 6. Creating: Make a cubic with x-intercepts at -1, 0, and 4, and sketch its sign diagram.

7. Using Technology to Find Turning Points

🔅 AIDA Framework Breakdown

- A Attention: Struggling to find those tricky peaks and dips on cubic graphs? 📈 🙃 Technology like the TI-Nspire and Casio ClassPad can instantly reveal them!
- I Interest: Turning points show you where your graph changes direction super important in physics, economics, and optimization problems. 📉 📈
- D Desire: Learning to quickly find maxima and minima will boost your speed, accuracy, and understanding in math tests and real-life projects! 🌋 🧠
- A Action: Let's walk through how to graph cubics and find turning points step-by-step using tech! 📕 🕛

Using the TI-Nspire to Find Local Maxima/Minima

The **TI-Nspire** CAS calculator can:

- Plot cubic graphs 📈
- Find local maximum (highest point in an interval)
- Find local minimum (lowest point in an interval)

Steps to Find Turning Points:

- 1. Enter the function:
 - Press Home \rightarrow Graphs \rightarrow Type your cubic equation, e.g., y = (x-1)(x+2)(x+3)
- 2. Adjust graph view:
 - Zoom out if necessary (menu → window settings)
- Analyze Graph:
 - Press Menu → Analyze Graph → Choose:
 - Maximum to find peaks
 - Minimum to find dips
- 4. Set bounds:
 - Move cursor to left of turning point → Press Enter
 - Move cursor to right of turning point → Press Enter
 - TI-Nspire calculates the exact point! 6

Graph y = (x-2)(x+1)(x+3).

- Find two turning points:
 - A maximum (local peak)
 - A minimum (local dip)

Answer:

Approximate maximum at (-2, 6), minimum at (1, -4).

Using the Casio ClassPad to Graph and Solve

The Casio ClassPad offers powerful graphing features too! 🍀

Steps to Find Turning Points:

- 1. Graph function:
 - Tap Graph & Table
 - Enter your cubic equation
- 2. Draw the graph:
 - Press Draw
- 3. Analyze:
 - Tap G-Solv (Graph Solve)
 - Choose:
 - Max for local maximum
 - Min for local minimum
- 4. Read the coordinates:
 - ClassPad displays exact values on the graph!

Example:

Graph $y = -x^3 + 2x^2 + x - 2$.

- Find turning points:
 - Maximum and minimum values.

Answer:

Approximate maximum at (0.5, 0.375), minimum at (1.5, -2.375).

Steps for Using "Analyze Graph" Functions

Both calculators follow a similar general method:

Step	Action
1. Graph the function	Enter the cubic function
2. Zoom as needed	Adjust to see the whole curve
3. Analyze Graph	Use "Analyze Graph" → Select "Maximum" or "Minimum"
4. Set bounds	Pick points to the left and right of turning point
5. Record coordinates	Read exact locations of turning points (both x and y values)

Pro Tip: Always check that you're correctly selecting left and right bounds — this makes sure you find the correct turning point!

Example 25: Graphing and Interpreting Turning Points

Given:

$$y = (x+2)(x-1)^2$$

- 1. Graph the function using TI-Nspire or Casio ClassPad.
- 2. Analyze the graph:
 - Find where the maximum or minimum points occur.
- 3. Interpret:
 - Maximum: the highest point the graph reaches locally.
 - Minimum: the lowest dip of the graph locally.
- Interpretation:
- The turning point at x = 1 is a **touching point** (since $(x 1)^2$) graph bounces off the x-axis there.
- No real maximum, graph rises and falls gradually.

Device	Key Button/Tool	Main Task
TI-Nspire	Analyze Graph	Find max/min by setting left/right bounds
Casio ClassPad	G-Solv → Max/Min	Find max/min directly after graphing
Common Goal	Graph, Analyze, Read!	Quick and accurate turning points

- 1. Remembering: Which button on TI-Nspire lets you find a maximum?
- 2. Understanding: What do maxima and minima represent on a cubic graph?
- 3. **Applying**: Graph $y = (x + 2)(x 3)^2$ and find the minimum.
- 4. Analyzing: Why does setting bounds (left/right) matter when using Analyze Graph?
- 5. **Evaluating**: Compare finding turning points manually versus using a calculator.
- 6. Creating: Sketch a cubic graph based on given turning points: maximum at (-2,5), minimum at (1,-3).
- 7. Socratic Method: If a cubic graph has two turning points, what does that suggest about its general shape?

8. Repeated Factors in Cubic Graphs

🔅 AIDA Framework Breakdown

- A Attention: Have you seen a cubic graph touch the x-axis without crossing it? That's the magic of repeated roots!
- I Interest: Repeated factors give the graph a special bounce or flattening effect making it look softer and more curved at that point.
- D Desire: Recognizing repeated roots means you can predict graph behavior more accurately and sketch faster! 🧪 🔽
- A Action: Let's learn to identify repeated roots and see how they affect the curve's behavior!

Identifying Repeated Roots

Repeated roots happen when a factor is raised to a power greater than 1.

- $(x-r)^2 \rightarrow$ repeated twice (double root)
- $(x-r)^3$ \rightarrow repeated thrice (triple root)

😂 What does it mean?

- The root (x-intercept) is the same value more than once.
- The graph either bounces off the axis or flattens there, instead of cleanly crossing.

Example:

$$y = (x+2)^2(x-3)$$

- Repeated root at x = -2 (appears twice)
- Single root at x = 3

Thus:

- At x = -2, the graph touches the x-axis, but does not cross.
- At x = 3, the graph crosses the x-axis.

Effect on the Graph: Bounce vs. Cross

Type of Root	Graph Behavior
Single Root	Crosses x-axis
Double Root	Touches x-axis ("bounces" off)
Triple Root	Crosses x-axis but flattens (point of inflection)

Visual Behavior:

- Single root: Sharp crossing (linear-like)
- Double root: Smooth "kiss" or bounce
- Triple root: Crosses but with a flattened bend

How to recognize:

- If a factor is squared → graph bounces at that root.
- If a factor is cubed → graph **crosses** but flattens.

• **Example:**
$$y = x^2(x - 1)$$

Let's break it down:

Given:

$$y = x^2(x-1)$$

- Roots:
 - x = 0 (repeated root, double root because x^2)
 - x = 1 (single root)

Graph Behavior:

- At x = 0: Graph bounces off the x-axis (since it's a double root)
- At x = 1: Graph crosses the x-axis normally

Sketch Summary:

- Left of 0: graph is positive or negative? (Test x = -1)
 - $(-1)^2(-2) = 1 \times (-2) = -2 \rightarrow \text{Negative}$

- Between 0 and 1: graph is positive or negative? (Test x = 0.5)
 - $(0.5)^2(-0.5) = 0.25 \times (-0.5) = -0.125 \rightarrow \text{Negative}$
- After 1: graph is positive or negative? (Test x = 2)
 - $(2)^2(1) = 4 \times 1 = 4 \rightarrow Positive$

Thus:

- Left of 0: Below x-axis
- Touches at 0 but stays below (because of bounce)
- Crosses at 1 and goes above

© Key Takeaways:

Root Type	Behavior
Single	Crosses x-axis normally
Double	Touches (bounces) at x-axis
Triple	Crosses but flattens

Remember: Power of factor tells you behavior!

- 1. Remembering: What happens at a double root?
- 2. Understanding: Why does the graph "bounce" at a repeated root?
- 3. Applying: Sketch the behavior of $y = (x+1)^2(x-3)$ at x = -1 and x = 3.
- 4. Analyzing: How does the graph of $y = (x-2)^3(x+1)$ behave at x = 2?
- 5. **Evaluating**: Would a graph with a triple root at x = 0 have the same behavior as a double root? Why or why not?
- 6. Creating: Create a cubic equation that has a repeated root at x = 2 and a single root at x = -3.
- 7. **Socratic Method**: If a graph only touches the x-axis but never crosses it, what can you conclude about the nature of that root?