Effect of Temperature on the Rate of Reaction

Theory

The rate of a chemical reaction is influenced by various factors, including **temperature**, **concentration**, **surface area**, **and the presence of a catalyst**. In this experiment, we will investigate how temperature affects the rate of reaction between **sodium thiosulfate** and **hydrochloric acid**.

According to **collision theory**, for a reaction to occur, reactant particles must collide with enough energy to break bonds and form new ones. This energy is known as the **activation energy**.

Effect of Temperature on Reaction Rate

When temperature increases:

- 1. Particles move faster: Higher kinetic energy means reactant particles move more quickly.
- 2. More frequent collisions: Faster-moving particles collide more often.
- 3. **Higher energy collisions**: More particles have energy equal to or greater than the activation energy, leading to more successful reactions.

As a result, increasing temperature should **increase the rate of reaction**, while decreasing temperature should **slow it down**.

Hypothetical Experimental Data

Temperature (°C)	Time for Cross to Disappear (s)	Reaction Rate (1/time) (s ⁻¹)	Reaction Rate × 1000
10°C	140.0	0.0071	7.1
25°C	85.5	0.0117	11.7
40°C	47.2	0.0212	21.2
60°C	21.8	0.0459	45.9
80°C	12.4	0.0806	80.6

Science Practical Report Task

Using the data and theory provided, write a full scientific practical report investigating how temperature affects the rate of reaction. Your report should include all sections listed below, following the scientific method.

Science Practical Report Structure

1. Title

• Clearly state the aim of the experiment.

2. Introduction

- Explain what the rate of reaction is.
- Introduce collision theory and its relation to temperature.
- Define the independent and dependent variables in the experiment.

3. Hypothesis

• State a clear hypothesis predicting the effect of temperature on reaction rate.

4. Variables

Identify the independent, dependent, and controlled variables.

5. Materials

• List all equipment and chemicals used.

6. Method

- Provide a **step-by-step procedure** of the experiment.
- Write in past tense and third person.

7. Results

- Present the **hypothetical data table** (above).
- Plot a graph showing temperature vs. reaction rate.
- Show sample calculations for reaction rate.

8. Discussion

Answer the following:

- 1. **Describe the trend**: How does reaction rate change with temperature?
- 2. **Explain using collision theory**: Why does temperature affect reaction rate?

- 3. Predict the reaction rate at 50°C based on the data trend.
- 4. Evaluate accuracy: Were there any possible errors in the experiment?
- 5. Suggest improvements to make results more reliable.

9. Conclusion

- Summarize the findings.
- State whether the hypothesis was supported.
- Provide a **real-world application** of temperature effects on reaction rates (e.g., cooking, industrial reactions).

Notes for Students

- Write in scientific language (formal, objective, third-person).
- Include graphs and sample calculations.
- Use logical explanations based on scientific principles.