
	

https://koburadaxopi.tevav.co.za/gdy?utm_term=asymptotic+notation+in+data+structure+pdf


Asymptotic	notation	in	data	structure	pdf

Asymptotic	notation	in	data	structure	with	example.		Why	we	need	asymptotic	notation.		What	is	asymptotic	notation.		What	is	asymptotic	notation	in	data	structure.		

The	efficiency	of	an	algorithm	depends	on	the	amount	of	time,	storage	and	other	resources	required	to	execute	the	algorithm.	
The	efficiency	is	measured	with	the	help	of	asymptotic	notations.	An	algorithm	may	not	have	the	same	performance	for	different	types	of	inputs.	With	the	increase	in	the	input	size,	the	performance	will	change.	The	study	of	change	in	performance	of	the	algorithm	with	the	change	in	the	order	of	the	input	size	is	defined	as	asymptotic	analysis.
Asymptotic	Notations	Asymptotic	notations	are	the	mathematical	notations	used	to	describe	the	running	time	of	an	algorithm	when	the	input	tends	towards	a	particular	value	or	a	limiting	value.	For	example:	In	bubble	sort,	when	the	input	array	is	already	sorted,	the	time	taken	by	the	algorithm	is	linear	i.e.	the	best	case.	But,	when	the	input	array	is	in
reverse	condition,	the	algorithm	takes	the	maximum	time	(quadratic)	to	sort	the	elements	i.e.	the	worst	case.	When	the	input	array	is	neither	sorted	nor	in	reverse	order,	then	it	takes	average	time.	These	durations	are	denoted	using	asymptotic	notations.	There	are	mainly	three	asymptotic	notations:	Big-O	notation	Omega	notation	Theta	notation	Big-
O	Notation	(O-notation)	Big-O	notation	represents	the	upper	bound	of	the	running	time	of	an	algorithm.	Thus,	it	gives	the	worst-case	complexity	of	an	algorithm.	Big-O	gives	the	upper	bound	of	a	function	O(g(n))	=	{	f(n):	there	exist	positive	constants	c	and	n0	such	that	0	≤	f(n)	≤	cg(n)	for	all	n	≥	n0	}	The	above	expression	can	be	described	as	a
function	f(n)	belongs	to	the	set	O(g(n))	if	there	exists	a	positive	constant	c	such	that	it	lies	between	0	and	cg(n),	for	sufficiently	large	n.	For	any	value	of	n,	the	running	time	of	an	algorithm	does	not	cross	the	time	provided	by	O(g(n)).	Since	it	gives	the	worst-case	running	time	of	an	algorithm,	it	is	widely	used	to	analyze	an	algorithm	as	we	are	always
interested	in	the	worst-case	scenario.	Omega	Notation	(Ω-notation)	Omega	notation	represents	the	lower	bound	of	the	running	time	of	an	algorithm.	Thus,	it	provides	the	best	case	complexity	of	an	algorithm.	Omega	gives	the	lower	bound	of	a	function	Ω(g(n))	=	{	f(n):	there	exist	positive	constants	c	and	n0	such	that	0	≤	cg(n)	≤	f(n)	for	all	n	≥	n0	}
The	above	expression	can	be	described	as	a	function	f(n)	belongs	to	the	set	Ω(g(n))	if	there	exists	a	positive	constant	c	such	that	it	lies	above	cg(n),	for	sufficiently	large	n.	For	any	value	of	n,	the	minimum	time	required	by	the	algorithm	is	given	by	Omega	Ω(g(n)).	Theta	Notation	(Θ-notation)	Theta	notation	encloses	the	function	from	above	and	below.
Since	it	represents	the	upper	and	the	lower	bound	of	the	running	time	of	an	algorithm,	it	is	used	for	analyzing	the	average-case	complexity	of	an	algorithm.	Theta	bounds	the	function	within	constants	factors	For	a	function	g(n),	Θ(g(n))	is	given	by	the	relation:	Θ(g(n))	=	{	f(n):	there	exist	positive	constants	c1,	c2	and	n0	such	that	0	≤	c1g(n)	≤	f(n)	≤
c2g(n)	for	all	n	≥	n0	}	The	above	expression	can	be	described	as	a	function	f(n)	belongs	to	the	set	Θ(g(n))	if	there	exist	positive	constants	c1	and	c2	such	that	it	can	be	sandwiched	between	c1g(n)	and	c2g(n),	for	sufficiently	large	n.	If	a	function	f(n)	lies	anywhere	in	between	c1g(n)	and	c2g(n)	for	all	n	≥	n0,	then	f(n)	is	said	to	be	asymptotically	tight
bound.	

Asymptotic	Notations	are	the	expressions	that	are	used	to	represent	the	complexity	of	an	algorithm.	As	we	discussed	in	the	last	tutorial,	there	are	three	types	of	analysis	that	we	perform	on	a	particular	algorithm.	Best	Case:	In	which	we	analyse	the	performance	of	an	algorithm	for	the	input,	for	which	the	algorithm	takes	less	time	or	space.	

Worst	Case:	In	which	we	analyse	the	performance	of	an	algorithm	for	the	input,	for	which	the	algorithm	takes	long	time	or	space.	Average	Case:	In	which	we	analyse	the	performance	of	an	algorithm	for	the	input,	for	which	the	algorithm	takes	time	or	space	that	lies	between	best	and	worst	case.	Types	of	Data	Structure	Asymptotic	Notation	1.	

Big-O	Notation	(Ο)	–	Big	O	notation	specifically	describes	worst	case	scenario.	2.	Omega	Notation	(Ω)	–	Omega(Ω)	notation	specifically	describes	best	case	scenario.	3.	Theta	Notation	(θ)	–	This	notation	represents	the	average	complexity	of	an	algorithm.	Big-O	Notation	(Ο)	Big	O	notation	specifically	describes	worst	case	scenario.	

It	represents	the	upper	bound	running	time	complexity	of	an	algorithm.	Lets	take	few	examples	to	understand	how	we	represent	the	time	and	space	complexity	using	Big	O	notation.	

O(1)	Big	O	notation	O(1)	represents	the	complexity	of	an	algorithm	that	always	execute	in	same	time	or	space	regardless	of	the	input	data.	O(1)	example	The	following	step	will	always	execute	in	same	time(or	space)	regardless	of	the	size	of	input	data.	Accessing	array	index(int	num	=	arr[5])	O(n)	Big	O	notation	O(N)	represents	the	complexity	of	an
algorithm,	whose	performance	will	grow	linearly	(in	direct	proportion)	to	the	size	of	the	input	data.	O(n)	example	The	execution	time	will	depend	on	the	size	of	array.	When	the	size	of	the	array	increases,	the	execution	time	will	also	increase	in	the	same	proportion	(linearly)	Traversing	an	array	O(n^2)	Big	O	notation	O(n^2)	represents	the	complexity
of	an	algorithm,	whose	performance	is	directly	proportional	to	the	square	of	the	size	of	the	input	data.	O(n^2)	example	Traversing	a	2D	array	Other	examples:	Bubble	sort,	insertion	sort	and	selection	sort	algorithms	(we	will	discuss	these	algorithms	later	in	separate	tutorials)	Similarly	there	are	other	Big	O	notations	such	as:	logarithmic	growth	O(log
n),	log-linear	growth	O(n	log	n),	exponential	growth	O(2^n)	and	factorial	growth	O(n!).	If	I	have	to	draw	a	diagram	to	compare	the	performance	of	algorithms	denoted	by	these	notations,	then	I	would	draw	it	like	this:	O(1)	<	O(log	n)	<	O	(n)	<	O(n	log	n)	<	O(n^2)	<	O	(n^3)<	O(2^n)	<	O(n!)	Omega	Notation	(Ω)	Omega	notation	specifically	describes
best	case	scenario.	It	represents	the	lower	bound	running	time	complexity	of	an	algorithm.	So	if	we	represent	a	complexity	of	an	algorithm	in	Omega	notation,	it	means	that	the	algorithm	cannot	be	completed	in	less	time	than	this,	it	would	at-least	take	the	time	represented	by	Omega	notation	or	it	can	take	more	(when	not	in	best	case	scenario).	Theta
Notation	(θ)	This	notation	describes	both	upper	bound	and	lower	bound	of	an	algorithm	so	we	can	say	that	it	defines	exact	asymptotic	behaviour.	In	the	real	case	scenario	the	algorithm	not	always	run	on	best	and	worst	cases,	the	average	running	time	lies	between	best	and	worst	and	can	be	represented	by	the	theta	notation.	
ReadDiscussCoursesPracticeImprove	Article	Save	Article	Like	Article	In	mathematics,	asymptotic	analysis,	also	known	as	asymptotics,	is	a	method	of	describing	the	limiting	behavior	of	a	function.	In	computing,	asymptotic	analysis	of	an	algorithm	refers	to	defining	the	mathematical	boundation	of	its	run-time	performance	based	on	the	input	size.	For
example,	the	running	time	of	one	operation	is	computed	as	f(n),	and	maybe	for	another	operation,	it	is	computed	as	g(n2).	This	means	the	first	operation	running	time	will	increase	linearly	with	the	increase	in	n	and	the	running	time	of	the	second	operation	will	increase	exponentially	when	n	increases.	Similarly,	the	running	time	of	both	operations	will
be	nearly	the	same	if	n	is	small	in	value.Usually,	the	analysis	of	an	algorithm	is	done	based	on	three	cases:Best	Case	(Omega	Notation	(Ω))Average	Case	(Theta	Notation	(Θ))Worst	Case	(O	Notation(O))All	of	these	notations	are	discussed	below	in	detail:Omega	(Ω)	Notation:Omega	(Ω)	notation	specifies	the	asymptotic	lower	bound	for	a	function	f(n).
For	a	given	function	g(n),	Ω(g(n))	is	denoted	by:Ω	(g(n))	=	{f(n):	there	exist	positive	constants	c	and	n0	such	that	0	≤	c*g(n)	≤	f(n)	for	all	n	≥	n0}.	This	means	that,	f(n)	=	Ω(g(n)),	If	there	are	positive	constants	n0	and	c	such	that,	to	the	right	of	n0	the	f(n)	always	lies	on	or	above	c*g(n).Graphical	representationFollow	the	steps	below	to	calculate	Ω	for
a	program:Break	the	program	into	smaller	segments.Find	the	number	of	operations	performed	for	each	segment(in	terms	of	the	input	size)	assuming	the	given	input	is	such	that	the	program	takes	the	least	amount	of	time.Add	up	all	the	operations	and	simplify	it,	let’s	say	it	is	f(n).Remove	all	the	constants	and	choose	the	term	having	the	least	order	or
any	other	function	which	is	always	less	than	f(n)	when	n	tends	to	infinity,	let	say	it	is	g(n)	then,	Omega	(Ω)	of	f(n)	is	Ω(g(n)).Omega	notation	doesn’t	really	help	to	analyze	an	algorithm	because	it	is	bogus	to	evaluate	an	algorithm	for	the	best	cases	of	inputs.Theta	(Θ)	Notation:Big-Theta(Θ)	notation	specifies	a	bound	for	a	function	f(n).	For	a	given
function	g(n),	Θ(g(n))	is	denoted	by:Θ	(g(n))	=	{f(n):	there	exist	positive	constants	c1,	c2	and	n0	such	that	0	≤	c1*g(n)	≤	f(n)	≤	c2*g(n)	for	all	n	≥	n0}.	This	means	that,	f(n)	=	Θ(g(n)),	If	there	are	positive	constants	n0	and	c	such	that,	to	the	right	of	n0	the	f(n)	always	lies	on	or	above	c1*g(n)	and	below	c2*g(n).Graphical	representationFollow	the	steps
below	to	calculate	Θ	for	a	program:Break	the	program	into	smaller	segments.Find	all	types	of	inputs	and	calculate	the	number	of	operations	they	take	to	be	executed.	Make	sure	that	the	input	cases	are	equally	distributed.Find	the	sum	of	all	the	calculated	values	and	divide	the	sum	by	the	total	number	of	inputs	let	say	the	function	of	n	obtained	is	g(n)
after	removing	all	the	constants,	then	in	Θ	notation,	it’s	represented	as	Θ(g(n)).	Example:	In	a	linear	search	problem,	let’s	assume	that	all	the	cases	are	uniformly	distributed	(including	the	case	when	the	key	is	absent	in	the	array).	So,	sum	all	the	cases	when	the	key	is	present	at	positions	1,	2,	3,	……,	n	and	not	present,	and	divide	the	sum	by	n	+
1.Average	case	time	complexity	=	⇒	⇒	⇒	Since	all	the	types	of	inputs	are	considered	while	calculating	the	average	time	complexity,	it	is	one	of	the	best	analysis	methods	for	an	algorithm.Big	–	O	Notation:Big	–	O	(O)	notation	specifies	the	asymptotic	upper	bound	for	a	function	f(n).	For	a	given	function	g(n),	O(g(n))	is	denoted	by:O	(g(n))	=	{f(n):	there
exist	positive	constants	c	and	n0	such	that	f(n)	≤	c*g(n)	for	all	n	≥	n0}.	This	means	that,	f(n)	=	O(g(n)),	If	there	are	positive	constants	n0	and	c	such	that,	to	the	right	of	n0	the	f(n)	always	lies	on	or	below	c*g(n).Graphical	representationFollow	the	steps	below	to	calculate	O	for	a	program:Break	the	program	into	smaller	segments.Find	the	number	of



operations	performed	for	each	segment	(in	terms	of	the	input	size)	assuming	the	given	input	is	such	that	the	program	takes	the	maximum	time	i.e	the	worst-case	scenario.Add	up	all	the	operations	and	simplify	it,	let’s	say	it	is	f(n).Remove	all	the	constants	and	choose	the	term	having	the	highest	order	because	for	n	tends	to	infinity	the	constants	and
the	lower	order	terms	in	f(n)	will	be	insignificant,	let	say	the	function	is	g(n)	then,	big-O	notation	is	O(g(n)).It	is	the	most	widely	used	notation	as	it	is	easier	to	calculate	since	there	is	no	need	to	check	for	every	type	of	input	as	it	was	in	the	case	of	theta	notation,	also	since	the	worst	case	of	input	is	taken	into	account	it	pretty	much	gives	the	upper
bound	of	the	time	the	program	will	take	to	execute.Last	Updated	:	28	Oct,	2022Like	Article	Save	Article


