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Price Elasticity:  Modeling Demand Functions 

 
Once one has collected the pricing data, the next step is to build a model that 

fits the data connections between price and volume and can guide future price changes.  
There are options.  One can build demand curves that do not make assumption about 
the underlying distribution of the data or one can assume that there is an underlying 
pattern.   Because there are options, it is important to consider which one might not 
only be more accurate, but which might be more practical in terms of data collection 
and acceptance by those who must use it. 

A curve that does not assume a constant pattern among the data could be one 
that, for instance, is based upon judgment.  It may look “bumpy” after connecting the 
data points.  This curve could take into account, for instance, that price could vary 
depending upon the price point.  For instance, there might be certain threshold price 
points where price responses change as they are crossed.  Ultimately, this form of 
demand curve may what one ends up with after considering the other, more function-
based models.  Pulling together a demand curve that fits the collective wisdom of those 
closest to the market can be done with a demand curve tool such as included in the 
Toolkit.  This template leverages wisdom-of-the-crowds techniques by averaging 
individual responses separately and then averaging them together to form the curve.  
This template also has several checks for cannibalization assumptions and simple 
competitive response assumptions. 

If, however, one wants a price-response model grounded in more consistent 
statistical logic, there are other options.  One source of model variety is the choice of 
the statistical model itself.  The more common models assume that the data follow 
linear, power, or logarithmic functions.  These will be discussed below.  The examples 
below come from the excellent book on pricing, Segmentation, Revenue Management, 
and Pricing Analytics, by Tudor Bodea and Mark Fergusons. 1   Another source of 
variety is the types of variables, sales, price, promotional quality, competitive activity, 
marketing mix, etc.  A third form of variety is whether or not the data is transformed 
from its raw form in order to fit the assumptions required of the model, such as taking 
the logarithm of sales and/or price data.  Multivariate or marketing mix models are not 
explored here.   

 
Linear Demand: 

The simplest form of the price response curve is a simple regression line that fits 
the untransformed sales and price data.  For formula for this model is: 

𝑑 𝑝 = 𝐷 +𝑚 ∗ 𝑝 
with d(p) = the demand at price p; D = the demand at price = 0 (free),  and m = the 
change in volume units per change in price units that best fits the data.  Using a standard 
least squares regression method, such as one finds in the ln() function in Excel, one can 
find a linear relationship across the data like below.  (Bodea, p 158-160) In the example 
																																																								
1	Bodea,	Tudor	and	Ferguson,	Mark,	Segmentation,	Revenue	Management,	and	
Pricing	Analytics,	Routledge,	New	York,,	2014.		
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below from Bodea’s book, the slope of -4.3 reflects the best fit across the data, which 
means that for every change in price units, the units of volume will change by -4.3.  One 
can also see from this graph that the price elasticity (the rate of change in volume/ rate 
of change in price at any given point) varies throughout the curve even though the units 
change is constant. 
 

                             
 
 There are pros and cons with assuming linear relationships between price and 
volume.  One of the main advantages is that it is simple to understand and apply, which 
is worth a lot.  For this particularly date, there is also a good fit with an R^2 of .89. 
Often, however, there is not a good fit with linear assumptions like this.  Another 
disadvantage is that the function also could be misinterpreted because it is unit 
dependent.  For instance: the slope would be different if one measured volume change 
in gallons or liters.  A more unit-less measure would be one based upon the rate of 
change in volume for a rate of change in price.  This is the standard formula for price 
elasticity, which has some other uses such as checking for optimal pricing given one’s 
costs.  One sees from this graph that this elasticity measure varies throughout the 
model in a logarithmic progression. 
 
Constant Elasticity Funtion: 
  
The model that I have come across the most in my work is a multiplicative model that 
assumes constant elasticity across the data.   

𝑑(𝑝) = 𝐶 ∗ 𝑝𝛆 
(c>0, ε <0) 

 With d(p) equals the demand at price (p), C = the demand at price = 0(free), p = 
the price, and e = the rate of change in price divided by the rate of change in volume.  
The example put forward in Bodea’s book is from an in-store price experiment that 
yields the following graph. 
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                    This model also has a number of pros and cons.  While it appears 
intimidating, over small changes from the current price, 𝛆 can be treated as percent 
change in price vs. a percentage change in volume and can applied as a simple algebraic 
equation that is broadly interpretable.  The constant price elasticity number also lends 
itself to other useful calculations, such as price and margin optimization checks.  A 
disadvantage of this approach is that as one moves away from the current price, the 
effect in units for this formula moves exponentially towards the extremes.  So, while it 
never is a good idea to extrapolate beyond the sample data, in my experience, this it if 
often done, and one drastically over or under estimate the impact of changes beyond 
small difference vs. from the current situation.  One can see this effect in the example 
above. 
 
Logarithmic Response Function: 
 
 A model that I have seen less commonly used is one that assumes a logarithmic 
relationship across the data.  The formula for this is even more intimidating:  

𝑑 𝑝 =  𝐶 ∗ 𝛆
!!!∗!
! /( 1+ 𝛆 𝒂!𝒃∗𝒑 ) 

(C >0, b <0) 
Using this formula might have some appeal if the data, based upon a visualization of it, 
shows an S-curve demand relationship.  It also has some intuitive appeal in that the 
elasticity flattens out at the extremes.  An example of this formula from Bodea and 
Ferguson is shown below.  Because of the need in this formula to solve for severable 
variable simultaneously, the example below was solved using an R program instead of 
just Excel to solve for the key variables.  The ability to use more sophisticated software 
is another consideration when using this function.  In the Bodea book, the examples 
shown also reflected discussions with management as to the right model to use.  
Interpretability was a key element in the ultimate choice. This seems like a best practice. 
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In conclusion, one can see that there are many ways to model the relationships 
between price and volume. This Guide only discussed some of the possibilities.   As 
convenient as it might be to standardize on one model, the ideal is to be able to pick 
from several models in order to make the best inferences for future pricing decisions.  
At the end of the day, the final demand curve may very well include a hybrid of 
approaches.  This brings one back to the importance of merging experience with the 
results of the data and analysis to provide the best advice on the impact of future 
changes.  It also indicates why having someone skilled in modeling and the business 
context, who can guide the decision-makers through the decision process, is so valuable.  
It also indicates why this combination of skills is also not widely available. 


