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Chaos Theory- Origins to Applications 

 

 

Is chaos randomness or disorder? It 

depends on who is answering the question. 

When mathematicians speak of chaos it is 

rather likely not what most people have in 

mind upon hearing the word. In general, 

most people when they hear the term 

“chaos” think it is being used to describe 

things when there is complete confusion, no 

order or organization, and things are in 

disarray. (Chaos, 2018) Chaos theory or 

non-linear mathematics, when discussed by 

mathematicians on the other hand, describe 

things that look like they are in disarray but 

that actually obey certain laws and have a 

very elegant simplicity and order to them. 

Part of what gives objects described by 

nonlinear mathematics the appearance of 

being in disarray is the uncertainty principle. 

Even though the mathematics Chaos 

theory are incredibly complex and difficult 

for most people to understand the principle 

of things in this world being uncertain and 

unpredictable is something that people in all 

fields of study and all profession face and 

understand quite well.  

Uncertainty shows up in sports and is 

what makes the contest between opponents 

exciting. Military personnel deal with 

uncertainty in their campaigns. When lives 

are on the line and freedom is at stake, they 

endeavor to minimize the uncertainty they 

face on the battlefield. Medical professionals 

are working to understand the patterns 

created as objects obey the laws of chaos in 

order to understand and to know how to best 

help their patients. These modern 

professionals are reaping the benefits of 

work done and discoveries made by great 

thinkers long ago. 

By Karen McCain 

 

Origins of Erratic Behavior – Chaos 

Isaac Newton’s laws of physics first 

emerged in the 1680s. They were linear and 

showed, theoretically, how the universe and 

other such observable systems run like 

clockwork. In other words, with such 

deterministic laws, it seems that if we know 

enough about the current state of a system 

then we should be able to accurately predict 

its future outcome. His equations of motion 

worked when applied to his model of the 

universe which looked at the gravitational 

pull between two bodies. During the 

Nineteenth Century mathematicians weren’t 

sure about Newton’s laws really working on 

a large scale. One of those mathematicians 

was Henri Poincare. He applied Newton’s 

equations to three bodies instead of just two 

and found something unexpected. Adding a 

third body to the equation changes things. 

(Oestreicher, 2007) A seemingly 

deterministic system starts to show chaotic 

behavior. Slight differences in initial 

measurements of a system produce 

unpredictably huge differences in the 

system’s future outcome. He discovered that 

it was impossible to measure initial 

conditions with complete determination, 

therefore, it was impossible to predict the 

outcomes of complex systems with absolute 

certainty. He explained it this way: 

A very small cause, 

which eludes us, determines a 

considerable effect that we 

cannot fail to see, and so we 

say that this effect is due to 

chance. If we knew exactly 

the laws of nature and the 

state of the universe at the 

initial moment, we could 
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accurately predict the state of 

the same universe at a 

subsequent moment. But 

even if the natural laws no 

longer held any secrets for us, 

we could still only know the 

state approximately. If this 

enables us to predict the 

succeeding state to the same 

approximation, that is all we 

require, and we say that the 

phenomenon has been 

predicted, that it is governed 

by laws. But this is not 

always so, and small 

differences in the initial 

conditions may generate very 

large differences in the final 

phenomena. A small error in 

the former will lead to an 

enormous error in the latter. 

Prediction then becomes 

impossible, and we have a 

random phenomenon. 

(Oestreicher 2007) 

 

Visionaries - Henri Poincare and others 

Henri Poincare was truly a visionary. 

He put his genius towards studying 

philosophy and physics as well as 

mathematics. In mathematics, alone, he 

studied a number of areas including 

quantum theory, thermodynamics, 

electricity, and cosmology. He made 

contributions in several mathematical fields 

such as fluid mechanics, the philosophy of 

science and the special theory of relativity as 

a co-discoverer with Hendrik Lorentz and 

Albert Einstein. (O'Connor/Robertson 2003) 

Poincare’s discoveries and contributions to 

science and mathematics served as 

steppingstones for those who followed after 

him. 

In 1959 an American meteorologist 

by the name of Edward Lorenz (1917-2008) 

fostered a rebirth of Poincare’s uncertainty 

theories. Lorenz was part of the 

meteorological community that was excited 

about using the new technology of 

computers to predict weather patterns more 

accurately. After running a sequence of 

numbers that simulate weather conditions 

through a computer, he decided to run the 

numbers again. He let the computer work in 

the simulated weather patterns and left for 

about an hour. When he returned, he noticed 

that the resulting numbers were different 

than the first set. Lorenz realized that the 

second set of numbers were not exactly the 

same as the first. The second set were 

rounded off numbers of the first set. This 

ever so slight change yielded enormous 

differences in the outcomes. From this 

incident, Lorenz discovered the 

phenomenon of sensitive dependence on 

initial conditions (SDIC). (Sorensen & 

Zobitz, 2012) 

A few years after Lorenz’s 

accidental discovery James A. York and his 

student, Tien-Lien Li, wrote a paper while at 

the University of Maryland in 1975. Their 

paper Period Three Implies Chaos appeared 

in American Mathematic Monthly. They 

used the term Chaos to describe the 

uncertainty of outcomes observed in systems 

in physics, biology, and mathematics. 

(Berger/Starbird 2013, pg. 552) As 

mentioned in the introduction chaos in 

mathematics is not randomness nor disorder. 

Mathematical chaos is in fact “an apparent 

lack of order in a system that nevertheless 

obeys particular laws or rules; this 

understanding of chaos is synonymous with 

dynamical instability…” that was first 

discovered by Poincare. (Rouse 2016) 

Taming the Chaos or At Least 

Understanding It 
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In 1972 Lorenz spoke at a meeting of 

the American Association for the 

Advancement of Science where he explained 

the butterfly effect.  The butterfly effect is an 

illustration of how minute changes in small 

air mass systems caused by a butterfly 

flapping its wings interact with and affect 

larger weather systems. It is said that these 

imperceptible changes in the beginning 

cascade into enormous consequences such 

as a tornado weeks later on the other side of 

the world. Scientists know that small 

changes yield “dramatic differences” but 

they don’t yet know what changes trigger 

which outcomes. (Berger/Starbird 2013, pp. 

552-554) 

 When Lorenz used the butterfly 

effect to explain Chaos Theory he made it 

more understandable for the masses. Most 

people are not going to grasp the uncertainty 

principle as it applies to particles in 

quantum mechanics but visualizing changes 

that happen in a system they are familiar 

with such as weather patterns helps it all 

make sense! 

 

 

 

 

Mathematics 

Chaos is evident in our world in a 

variety of forms. Scientists in a wide range 

of disciplines see chaos in the systems they 

study. Biologists and astronomers, as well as 

physicists, have all made interesting 

discoveries.   

The Lorenz Model 

The Lorenz Model is a simplification 

of a model of convection between two 

surfaces involving 6 equations. This system 

of differential equations was much simpler 

than Barry Saltzman’s previous system with 

14 or 12 variables. Edward Lorenz 

simplified Saltzman’s system to “a three 

parameter, three variable system of 

differential equations that exhibited non-

periodic solutions”. (Sorensen & Zobitz, 

2012, pg.25) This simpler system couldn’t 

be used to predict weather, but it might 

show how SDIC (sensitive dependence on 

initial conditions) develops and leads to 

chaos. (Sorensen & Zobitz, 2012) 

 

 
 

When the equations are solved the following 

graph show chaos and order. 

 
 

This set of equations is slightly different 

than the first, therefore, they produce a 

different graph. 
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The results of the equations need to be 

plotted in three dimensions in order to 

achieve a three-dimensional looking image. 

(Sprott, 2010) 

Elegant Chaos 

Most of the time when words such as 

“stunning”, “beautiful”, or “elegant” are 

used one does not think of mathematics. 

Usually, these words are used to describe 

things more easily seen or aesthetically 

pleasing, for instance, a stunning sunset, a 

beautiful painting, or a woman in an elegant 

ball gown. When differential equations of 

the Lorenz Model are solved and graphed 

the resulting images are stunningly beautiful 

and their graceful lines create extremely 

elegant shapes. Some are reminiscent of 

butterfly wings and are a reminder of “The 

Butterfly Effect”. 

Even though this is the most 

common use of the word “elegant” 

mathematicians think of the term in a bit of a 

different way. Julian C. Sprott in his book 

Elegant Chaos: Algebraically Simple 

Chaotic Flows notes that the term ‘elegance’ 

used in his book is referring to the “form of 

the equation[s]” and not their “engaging 

plots”. (pg. 38) Mr. Sprott said, “A major 

theme of this book is to find values of the 

parameters that make the equations simple 

but that allow the system to behave 

chaotically.” (pg. 3) He went on to explain 

the following: 

 

A system of equations 

is deemed most elegant if it 

contains no unnecessary 

terms or parameters and if the 

parameters that remain have a 

minimum of digits. This 

notion can be quantified by 

writing an equation such as 

Eq. (1.9) in its most general 

form such as x¨ − (a1 − a2x
2 − 

a3x˙2)x˙ + a4 sin(a5x + a6) + 

a7x
3 = a8 sina9t (1.10) and 

adjusting the parameters a1 

through a9 to achieve this 

end. Ideally, we want as 

many of the parameters of be 

zero as possible while 

preserving the chaos, and the 

greatest number of those that 

remain should be ±1. Note 

that it is generally possible to 

linearly rescale the variables 

(x and t in this case) so that a 

corresponding number of the 

parameters are ±1. 

One way to quantify the 

elegance of Eq. (1.10) is thus 

to count the number of 

nonzero parameters and then 

add to that count the total 

number of digits including 

the decimal point but 

excluding leading and trailing 
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zeros for any parameters that 

are not ±1 so that integer 

parameters are preferred. The 

resulting number, which 

perhaps should be called 

inelegance, is the quantity to 

be minimized. By this 

criterion, Eq. (1.9) has an 

inelegance of 39, whereas Eq. 

(1.6), when viewed as a 

special case of Eq. (1.10) 

with a1 = a2 = a3 = a6 = a7 = 0 

and a4 = a5 = a8 = a9 = 1, has 

an inelegance of 4. (pp. 38-

39) 

In mathematics simplicity equals elegance 

and can lead to chaos.  The visual 

manifestation of the solutions of differential 

equations are also beautiful and contain their 

own elegance. 

 

 

 

 

The Logistic Equation Chaos 

 

Chaos shows up not only in physical 

systems but is also observable in biological 

systems, too. The logistical difference 

equation is a pretty simple quadratic 

equation. It has been used by biologists to 

predict animal populations. 

 

 
r = growth rate 

x = population size 

When r has a fixed value that is 

relatively low an x is also low (x1, x2, 

. . .xn ) The equation will produce a 

single number. When r reaches a 

value of 3.0 bifurcation occurs and 

we see an oscillation between two 

values. If r eventually reaches 3.57 

then xn passes bifurcations of period 

eight, sixteen, and on to chaos. These 

periods of bifurcation and chaos are 

repeated as r hits certain values. 

 

 

 

 

 

 

The Three Body Problem 

 

As mentioned in Strand One, 

Newton’s laws of physics explained that it is 

possible to predict the outcome of a system 

if we have enough information about its 

current state. When two celestial bodies 

interact with one another they are each only 

influenced in their orbits by the gravitational 

pull of the other. Therefore, their orbits 

remain constant. 

When a third body is in close enough 

proximity to influence the other ones its 

gravitational pull causes changes in the 

direction and speed of their orbits. This 

profound effect on their orbits makes it 

impossible to predict the outcome of the 

system. Thus, there is uncertainty and chaos. 

In a system with three or more bodies each 
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body feels and is affected by one another’s 

gravitational pull according to their mass, 

speed, and proximity to one another. Smaller 

bodies that orbit a larger one “tend to settle 

into settle into simple fraction (1/2, 2/3, 1/3, 

etc.) multiples of each other”. (The 

Physicist, 2011) A two-body system follows 

Newton’s deterministic laws. Our solar 

system has multiple planets, moons, comets, 

asteroids, etc. that all chaotically affect one 

another in their journeys. 

 

Modern Application 

When one thinks about Chaos 

Theory one most likely thinks of physicists, 

quantum mechanics, the universe and other 

lofty or complicated subjects.  Chaos Theory 

can be seen in a variety of fields of study 

and even where one might never think to 

look, for examplein the sport of Football. 

Chaos Theory looks at systems and 

subsystems that interact with one another in 

unpredictable ways to yield unexpected 

outcomes. Anyone who has watched a 

football game knows how unpredictable the 

final score is.  

Team 1 and Team 2 are systems all 

their own. Each has a group of offensive 

players and a group of defensive players. A 

team gets 4 chances or “downs” to move the 

ball at least 10 yards towards their end zone 

where they can score. If they succeed in 

moving the ball at least 10 yards they are 

allowed another 4 downs. If they fail the 

other team gets the ball and they then work 

at moving the ball into scoring position. If 

each team met at the line of scrimmage and 

the game went as follows; Team 2’s defense 

waited for Team 1’s Quarterback to have the 

ball hiked to him so he can pass it to a 

teammate, that teammate is tackled by 

members of Team 2’s defense after moving 

the ball a few yards when team 1’s offense 

tries unsuccessfully to block them, after 4 

downs the ball wouldn’t be moved very far, 

and it would be Team 2’s turn to employ its 

offense against Team1’s defense in its 

attempts to move the ball and score. This 

kind of game would be extremely boring! 

What makes Football exciting is the 

anticipation of the unexpected. Football fans 

have come to expect the unexpected. In 

mathematical terms, this is called chaos or 

uncertainty.  

From the very first moments of the 

game, there was uncertainty. It starts with 

the kickoff. To a viewer who is unfamiliar 

with the game of football the kickoff can 

look like a very random event. With both 

teams on the field and seemingly spread 

around without any rhyme or reason. One 

team kicks the ball, and all the players start 

running around like ants when their anthill 

gets stepped on.  

These aimless looking actions do 

have a purpose. The kicking team kicks the 

ball and runs forward. The receiving team 

tries to catch the ball and run it as far as they 

can towards their end zone. There are also 

several strict rules in the NFL’s (National 

Football League) (NFL, 2017) handbook 

that give parameters for a kickoff. These 

rules dictate how far away the receiving 

team has to be from the ball when it is 

kicked, how far the ball has to travel to be 

called fair, etc. As the game continues there 

is a whole host of rules that must be 

followed. These rules or parameters form a 

structure inside which the game is played. 

This set of rules also sets forth very specific 

penalties to be applied when a rule is 

broken. 

It seems that within a game with so 

many parameters there would never be any 

room for the unexpected. When Team 1’s 

offense has the ball, they devise a play to get 

past Team 2’s defense on the field and move 

the ball as far as possible. At the same time, 
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Team 2 is trying to anticipate Team 1’s 

actions and perform a counter play that will 

thwart Team 1’s plan. If Team 2 succeeds 

and Team 1’s plan is foiled, they must now 

improvise the rest of the play and it is called 

a “broken play”. Chaos had set in.  

If a pass is thrown too short or 

too long, it might be intercepted by the other 

teams and suddenly the direction of play 

changes as the ball is being raced to the 

other end of the field. The timing of the 

player throwing the ball might exactly 

lineup with the receiver but if the opposing 

defense gets close enough to the receiver, 

they could tackle him immediately or 

stop him before he gets very far down the 

field. On the other hand, the receiver could 

even aid the other team's defense, outrun 

them and score a touchdown.  It all depends 

on an innumerable number of 

variables; their agility, the running speed of 

each player, their ability to catch and remain 

in control of the ball, etc. Even when these 

traits are finally homed in a player there are 

still other variables. The sun or stadium 

lights might shine in a player’s eyes making 

it difficult to see. Moisture on a player's 

gloves can make it hard to complete a pass. 

Tired or sore muscles can affect how fast a 

player is able to run or how well he can 

throw the ball or even catch it. 

 

 When a play does go as planned it 

might be because the team in possession of 

the ball is able to trick the opponent into 

running to the wrong area of the field while 

they run the other way and are able to score. 

Another variable is the decisions made by 

the players about how to handle the ball in 

each play. If time is short and there is a lot 

of yardage to cover before a goal is possible 

a player may throw a Hail Mary (Sporting 

Charts, 2015). That means that the ball is 

thrown forward from the line of scrimmage 

in desperation of one final goal and to run 

out the clock. A ball being thrown from a 

great distance has a greater chance of being 

intercepted by the other team or being 

fumbled. All these small variables that affect 

the play of the game eventually have an 

impact on the final score. That is why a final 

score can be guessed at but never predicted 

accurately just by looking at the players or 

each team as a whole. 

 

At the beginning of each football 

season on both the college and professional 

levels, teams are looked at, ranked, 

analyzed, and almost dissected. People want 

to know the skill level of the players, their 

recent injuries, past achievements, all their 

stats, etc. This deep study of the athletes and 

their teams is done with the hope of 

knowing, even in some small way, what 

kind of season to expect. Yet, somewhere in 

the back of their minds, the spectators know 

that in football one should expect the 

unexpected. Ben Cohen and Jonathan Clegg 

wrote an article on The Wall Street Journal’s 

website (2015) about the chaos of college 

football in the 2014 season. They mentioned 

the just going from 2 teams in the playoffs 

to 4 teams means that there are more games 

that add more variables to the whole 

equation.  

 

Rankings change on a weekly basis 

because of last-minute victories and 

unexpected injuries that cause the loss of an 

instrumental player and the loss of a game. 

Fans can't just root for their team alone. 

They understand that the outcomes of 

matchups between the other teams affect the 

ranking of their favorite team.  Predicting 

who will be the winning team at the end of 

the playoffs when it’s still September is 

impossible. It can be speculated about 

and guessed at but never accurately 

predicted. In the world of professional 

football, the saying goes: "Any given 
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Sunday any team can win". The same is true 

on Saturdays in the world of college 

football, too. 

 

Military Science is another field 

where the concept of Chaos is being applied. 

It is not just a passing fad. Back in 1996, the 

U.S. Marine Corps included in their 

Doctrinal Publication 6 entitled Command 

and Control instructions on understanding 

Chaos Theory and how it relates to warfare. 

(U.S. Marine Corps, 1996) 

Unpredictability on the battlefield 

has been growing since the beginning of 

WWII. In the most recent generation chaos 

on the battlefield has increased as the use of 

more sophisticated processing technologies 

and information gathering has increased. 

These new and highly advanced 

technologies were intended to “reduce 

confusion on the battlefield”. (Pfaff, 2000) 

In some respects that was the case, however, 

commanders in several different campaigns 

saw unexpected outcomes with their use. 

For example, a gang leader in Somalia who 

did not possess the same technological 

advantages as the world’s last superpower 

used the element of surprise to catch them 

off guard and won. The United States and 

her allies made up the coalition forces in the 

Gulf War. They faced an enemy force that 

equaled them in size and strength. In the 

end, there weren’t even 200 friendly 

casualties when they expected tens of 

thousands as the price of victory. In that 

instance, the unexpected result was a 

positive one. 

In the past, an army sought to gain 

higher ground. This would give them the 

advantage over their enemy. By being up 

high enough to see their approach from a 

great distance it gave them time to prepare 

to defend against them, reducing or 

eliminating the element of surprise. The 

higher ground also made it harder for the 

enemy to reach them for an attack. Modern 

technology uses satellite imaging along with 

devices that utilize light and thermal 

amplification to visualize the battlefield and 

keep track of the enemy. (Pfaff, 2000) 

Small changes that occurred on the 

battlefield were seized by the Germans in 

WWII when they acted to destabilize the 

system. They used them to their advantage. 

The Germans used their aircraft and tanks in 

fast-moving campaigns and in unexpected 

ways against the allied forces in their slower 

moving but well-fortified formations. The 

Germans also employed the use of 

misinformation given to the allies by spies. 

This misinformation caused confusion and 

led to an opening in the French lines which 

the Germans used to bring about the fall of 

France in mere hours. (Pfaff, 2000) The 

complexity of the system and the use of 

unpredictable or “irregular actions” (Sun-

Tzu, Huang, 1993) led to a German victory. 

While new and extremely 

sophisticated technology has created chaos 

on the battlefield, some rather simple tactics 

have been used throughout the ages to gain 

an advantage over one’s enemy in wartime. 

Sun-Tzu teaches in his ancient text, The Art 

of War, (Haung 1993) how to see that an 

enemy is weakened through the use of 

“unconventional means”. By utilizing 

deception, discouragement, evasion, 

surprise, attacking their weak points, etc. an 

army can cause uncertainty and 

unpredictability, thereby gaining an 

advantage over their enemy. Sun-Tzu didn’t 

call his tactics chaos but causing chaos is 

certainly what he proposed in several areas 

of his writings. (Sun-Tzu, 1993) 

Psychotherapy 

Psychotherapists are finding new 

approaches to their work of understanding 

how personality develops by utilizing chaos 
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theory or nonlinear mathematics. They feel 

that it is not easy to find a symbol to 

represent the complexity of the material they 

deal with. Some in the field feel that perhaps 

the Mandelbrot set with its overwhelming 

complexity used in conjunction with colored 

graphics created by a computer could be 

helpful. A therapist may be able to use these 

tools to understand how much of the 

session's material focuses on the heart of the 

person as opposed to external events. 

 

 Another pattern made of fractals and 

designed by Mandelbrot is called the 

monkey's tree. Like the Mandelbrot set it is 

a self-repeating pattern.  This aspect of its 

nature may not be apparent upon first 

observing it but with closer inspection, one 

can see that the shape of the monkeys is 

repeated in positive and negative space, in 

different angles and sizes. 

 

In her paper entitled Chaos 

Theory: A New Paradigm for 

Psychotherapy? (1991) Isla Lonie points out 

that studying the monkey's tree and 

eventually discovering the self-repeating 

pattern is very reminiscent of what it can be 

like working with a patient. At first, there is 

so much information to take in and make 

sense of. It can be very complex, even 

overwhelming. With perseverance and 

continual study, one starts to see a self-

repeating pattern and things start to make 

more sense.  Is the initial time of uncertainty 

during treatment necessary?  Some 

therapists believe it is. Perhaps it is what 

builds patience in the therapist. (Lonie, 

1991) 

 

  Other images created in nonlinear 

mathematics are the limit cycle attractor, the 

strange attractor, and the equilibrium 

attractor. When an observation of a cross-

section of one of these attractors (a Poincaré 

map) is made a pattern is not visible early 

on. However, just as with the monkey's tree 

a pattern is eventually noticed. When a 

therapist discovers behavior that repeats like 

a limit cycle attractor it is then possible to 

identify and then start to work at changing 

it. These are just a few of the ways non-

linear mathematics are being used to 

enhance the field of psychotherapy. (Lonie, 

1991) 

 

 Whether psychotherapists are 

battling the unknown to understand and heal 

the mind of a patient or a military 

commander is fighting survival on the 

battlefield, the number of variables they face 

are innumerable. These variables create 

uncertainty. People are trying to understand 

our world and the systems within it. 

Professionals in science, medicine, sports, 

and even on the battlefield are working to 

understand chaos theory and how they can 

use it to their advantage. Using nonlinear 

mathematics or Chaos theory gives them a 

platform from which to observe these and 

other systems in new and lifesaving ways. 

 

We should understand that 

mathematics touches more than just 

computational lessons in a classroom. If we 

truly grasp this and open our minds to new 

applications of nonlinear mathematics the 

future of many scientific, artistic, and social 

fields will yield beautiful comprehension of 

concepts never before conceived of. 
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