ScienceDirect Contents lists available at sciencedirect.com Journal homepage: www.elsevier.com/locate/jval ### **Systematic Literature Review** # Cost-Effectiveness of Medicinal Cannabis for Management of Refractory Symptoms Associated With Chronic Conditions: A Systematic Review of Economic Evaluations Daniel Erku, BPharm, PhD, Shakti Shrestha, BPharm, Paul Scuffham, PhD ### ABSTRACT Objectives: Although there is a growing body of evidence suggesting that cannabinoids may relieve symptoms of some illnesses, they are relatively high-cost therapies compared with illicit growth and supply. This article aimed to comprehensively review economic evaluations of medicinal cannabis for alleviating refractory symptoms associated with chronic conditions. Methods: Seven electronic databases were searched for articles published up to September 6, 2020. The quality of reporting of economic evaluations was assessed using the Consolidated Health Economic Evaluation Reporting Standards checklist. The extracted data were grouped into subcategories according to types of medical conditions, organized into tables, and reported narratively. Results: This review identified 12 cost-utility analyses conducted across a variety of diseases including multiple sclerosis (MS) (N = 8), pediatric drug-resistant epilepsies (N = 2), and chronic pain (N = 2). The incremental cost-effectiveness ratio varied widely from cost saving to more than US\$451800 per quality-adjusted life-year depending on the setting, perspectives, types of medicinal cannabis, and indications. Nabiximols is a cost-effective intervention for MS spasticity in multiple European settings. Cannabidiol was found to be a cost-effective for Dravet syndrome in a Canadian setting whereas a cost-utility analysis conducted in a US setting deemed cannabidiol to be not cost-effective for Lennox-Gastaut syndrome. Overall study quality was good, with publications meeting 70% to 100% (median 83%) of the Consolidated Health Economic Evaluation Reporting Standards checklist criteria. Conclusions: Medicinal cannabis-based products may be cost-effective treatment options for MS spasticity, Dravet syndrome, and neuropathic pain, although the literature is nascent. Well-designed clinical trials and health economic evaluations are needed to generate adequate clinical and cost-effectiveness evidence to assist in resource allocation. Keywords: cannabinoids, cost-effectiveness, economic evaluation, medicinal cannabis. VALUE HEALTH. 2021; 24(10):1520-1530 ### Introduction Patient interest in the use of cannabis and cannabinoids to treat a variety of conditions including management of intractable symptoms associated with advanced medical conditions has increased over the last decade. The increased patient demand has also been accompanied by renewed scientific interest in the therapeutic effects of cannabis, and several clinical trials have recently evaluated the medical use of cannabinoids. Although the evidence base is limited and inconsistent, findings from systematic reviews of currently available controlled clinical trials suggest that cannabinoids, when used as either adjunctive treatment or drug of last resort, relieve some of symptoms of some illnesses such as chemotherapy induced nausea and vomiting, neuropathic pain and spasticity in multiple sclerosis (MS), Achronic non-cancer pain, and intractable childhood epilepsy for some patients. Medicine regulatory authorities in certain countries have already granted marketing authorizations, on the basis of an evolving yet limited evidence base, to a wide variety of plant-derived and synthetic cannabinoid-containing preparations for various indications. These products predominantly contain cannabidiol (CBD) with or without tetrahydrocannabinol (THC) in various concentrations and dosage forms and include drugs such as dronabinol (a synthetic version of THC), nabilone (a synthetic THC analog), and nabiximols (a cannabis plant extract containing a roughly 1:1 ratio of THC and CBD). Although an increasing number of patients are interested in or are using cannabis for medical reasons, the additional cost and resource utilization associated with medicinal cannabinoids should first be justified against its overall benefit to the patient, providers, and health system before introducing these drugs into specialist and primary healthcare settings. This is particularly so because adverse events from such medicines also cause morbidity. Cost-effectiveness analysis (CEA) is often conducted to systematically examine economic efficiency and value for money of adopting a new strategy or a new drug along with its impacts on patient care and outcomes. Herzog et al⁸ conducted a systematic review of costs and benefits of medicinal cannabis for the management of chronic illness (last search date: December 2016) and found only a handful of full economic evaluations limited to the management of MS spasticity. Nevertheless, several CEAs have since been published for various conditions including for pediatric drug-resistant epilepsies^{9,10} and neuropathic pain.¹ Therefore, the aim of this review was to update the previously published systematic review and provide a comprehensive overview of the cost-effectiveness of medicinal cannabis for the management of refractory symptoms associated with chronic conditions (eg, pediatric drug-resistant epilepsy, MS spasticity, chronic pain, anorexia-cachexia, cancer-related nausea, and intractable pain in patients with advanced cancer). The findings will serve to inform the subsequent development of a within-trial and modeled economic evaluation to determine costs and benefits of prescribed medicinal cannabis for symptom control in patients with advanced cancer in Australia. ### Methods This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guideline and the study protocol was registered on PROSPERO (CRD42020209372). ### Data Sources and Search Strategy A comprehensive literature search was undertaken using multiple databases (from inception of each databases to September 6, 2020): PubMed/Medline, Embase, PsycINFO, CINHAL, EconLit, Centre for Reviews and Dissemination databases (Database of Abstracts of Reviews of Effects and the National Health Service [NHS] Economic Evaluation Database), CEA Tufts, and Google Scholar to capture all full economic evaluations related to the use of medicinal cannabis for the management of refractory symptoms associated with chronic conditions. This was followed by complementary searches including forward and backward citation searches of included articles, manual search of health technology agency and government websites, and Google search to further locate eligible articles that were not identified in the database search. We have also rerun the database search in November 5, 2020, to check for updates. The keywords used in the search strategy were built on 2 key concepts of the subject as (1) cannabis products ("cannabis," "medical cannabis," "medical marijuana," "tetrahydrocannabinol," "cannabidiol," "dronabinol," "nabilone," "nabiximol") and (2) economic evaluations ("economic evaluation," "Costs and Cost Analysis," "Cost utility," "Cost-effectiveness," "Cost-benefit," "pharmacoeconomics," "health technology assessment," "Quality-Adjusted Life Years," "Disability Adjusted Life Years," "economic model") and tailored to each database. Boolean operators and truncations varied depending on the database. No restrictions on year of publication was applied. The full search strategy is presented in Appendix 1 in Supplemental Materials found at https://doi.org/10.1016/j.jval.2021. 04.1276. ### **Eligibility Screening** Studies were included if they were (1) full economic evaluations (both within-trial and model-based) or (2) health technology assessments that include a full economic evaluation. Studies comparing the cost-effectiveness of cannabis-based medicines (eg, CBD with or without THC and synthetic THC formulations nabilone and dronabinol) as an adjunct or complementary therapy with standard treatment (both pharmacologic and nonpharmacologic treatments) for the management of intractable symptoms associated with chronic conditions (eg, advanced cancer, dementia, or chronic conditions with an intractable symptoms such as pediatric drug-resistant epilepsy, MS-associated spasticity) were included. We excluded gray literature, methodology papers, literature reviews, studies published in languages other than English, and conference or dissertation abstracts without the full text available for retrieval. Before excluding conference abstracts, dissertation abstracts, and other relevant articles without full text, a repeated email contact was made with authors requesting for full text. The articles identified were then exported to COVIDENCE (Veritas Health Innovation Ltd), and 2 independent reviewers (D.E. and S.S.) screened all titles, abstracts, and full texts based on the eligibility criteria. Any discrepancies or disagreements between reviewers were resolved through discussion and consensus. The detailed search strategy and eligibility screening are presented in Figure 1. A list of excluded studies along with justification for exclusion is provided in Appendix 1 in Supplemental Materials found at https://doi.org/10.1016/j.jval.2021. 04.1276. ### **Reporting Quality of Studies** The reporting quality of each included study was assessed using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist. Developed by the International Society for Pharmacoeconomics and Outcomes Research Task Force, the CHEERS checklist provides a guidance for researchers, editors, and peer reviewers regarding optimal reporting of health economic evaluations. The checklist consists of 24 items subdivided into 6 main categories: (1) title and abstract, (2) introduction, (3) methods, (4) results, (5) discussion, and (6) "other."
Studies were scored independently by 2 of the authors (D.E. and S.S.) as having met the criteria in full (designated as "Yes" and given a score of 1), do not fulfill (designated as "No" and given a score of 0), or not applicable ("NA"). Any disagreements were resolved through consensus and, if necessary, in consultation with a third reviewer. ### **Data Extraction and Synthesis** Two reviewers (D.E. and S.S.) independently extracted detailed information about the study characteristics and key study findings from each included study using a published data extraction form, after tailoring to our review objective and the study designs of included articles.¹³ A third reviewer resolved any disagreements. The final data extraction form included 2 main sections: (1) study characteristics (eg, publication details, country, study design, sample size, intervention/comparator, study perspective, analytical approach) and (2) study design and main outcomes (resource use, costs, effects, measurement, valuation methods, total and incremental quality-adjusted life-years [QALYs], incremental costeffectiveness ratios [ICERs], uncertainty and sensitivity analyses, author's conclusions). Where possible, standardized ICER (cost estimates adjusted to US dollars in 2018) were calculated using a Cost Converter v.1.6, developed by the Campbell and Cochrane Economics Methods Group (CCEMG) and the Evidence for Policy and Practice Information and Coordinating Centre (EPPI Centre).¹⁴ For model-based economic evaluations, details about the model structure (eg, health states, time horizon, and cycle length) and model inputs (eg, resource use and utility values) were extracted. For studies that reported probabilistic sensitivity analyses, we summarized the key model parameters reported the sensitivity analyses and their impact on the overall ICER estimate. The Figure 1. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram. extracted data were grouped into subcategories according to types of medical conditions, organized into tables, and reported narratively. ### Results ### **General Characteristics of Studies** After removal of duplicates and publications that did not meet the inclusion criteria, a total of 10 articles were included (Fig. 1). The studies were conducted between 2012 and 2020, and majority of them were from United Kingdom, $^{15-19}$ United States, 10,11 or Italy. 20,21 The characteristics of included studies are presented in Tables 1 and 2. MS-associated spasticity was the most common disease state for which cost-effectiveness of medicinal cannabis was evaluated (N = 7). $^{15-17,19-23}$ The remaining studies were conducted in patients with pediatric drug-resistant epilepsies (Dravet syndrome [DS] 9 and Lennox-Gastaut syndrome [LGS] 10) and chronic pain. 11,18 ### Study Design, Perspective, Time Horizon, and Discount Rates All studies applied cost-utility analysis (CUA), with majority of studies (N = 10) being CUAs based on a Markov model.^{9-11,16-19,21-23} The remaining studies were CUAs conducted alongside a clinical trial¹⁵ or based on real-world patient-level data from a national registry.²⁰ All included studies were analyzed using a healthcare payer perspective. All except one studies included "standard of care (SoC)" in both intervention and comparator arms whereas the Mantovani et al²⁰ study compared cannabinoid oromucosal spray with "no treatment" instead of the SoC. One study⁹ considered a societal perspective in their sensitivity analysis alongside a payer perspective. The time horizons ranged from 6 months to lifetime. Discount rates were reported in 8 of the studies. 9-11,15-17,21,23 For the remaining studies, discounting was either not reported²² or not applicable because the main analysis considered a time horizon of 6 months. ²⁰ ### **Reporting of Costs and Effectiveness** Table 2 shows the costs included in the analyses and measurement and valuation of preference-based health outcomes. Although the types of costs included depended on the study setting and study perspectives, drug costs, direct medical costs (eg, laboratory tests and monitoring), and health system-related costs (eg, homecare workers, general practitioners) were the key inputs for the cost analysis in majority of the studies. All studies described the approach used to estimate unit costs and cost calculations. Several sources were used to derive data regarding costing of resource use including from literature review (eg, previous economic evaluations, resource utilization study)^{9-11,16,17,21-23} and ex-factory price for drugs.^{9,20} All studies clearly described the choice of outcomes and used QALY as the summary health outcome measure. All but one study¹¹ reported valuation of preference-based outcomes. Most of the effectiveness data were collected from randomized controlled trials (RCTs)^{10,15,16,18,19,21,23} and observational data^{20,22} or were estimated based on a literature review.^{9,17} **Table 1.** General characteristics of studies (N = 12). | Author,
y | Country | Type of economic evaluation | Perspective | Disease
or
condition | Study
population/
sample | Intervention | Comparators | Health
outcomes | Time
horizon | Funding | |--|------------------------------|---|---|----------------------------|---|--|--|--------------------|-----------------|---| | Ball et
al, ¹⁵ 2015 | United
Kingdom | WTEE (CUA) | NHS and
personal and
social services | Progressive
MS | 493 adults
aged 18-65 y | Oral Δ9-THC
(maximum
28 mg/d)
plus SoC | SoC alone | QALYs | 3 y | National
Institute for
Health
Research | | NICE, 2019 ¹⁸ | United
Kingdom | Markov
model (CUA) | NHS and
personal and
social services | Chronic
pain | Patients of
any age
with chronic
pain | THC/CBD
spray plus
SoC | SoC alone | QALYs | Lifetime | NICE | | Elliott
et al, ⁹ 2020* | Canada | Markov
model (CUA) | Canadian
public
healthcare
system | Dravet
syndrome | Children aged
from 5 to 18 y | Adjunctive
cannabinoid
oil (CanniMed
1:20 oil)
on a
background
of clobazam
and
valproate | (1) Adjunctive
stiripentol
(on a background
of clobazam and
valproate) and (2)
treatment with
clobazam plus
valproate alone | QALYs | 13 y | None | | Flachenecker, ²²
2013 | Germany | Markov
model (CUA) | German
healthcare
system | MS
spasticity | 300 adults | Nabiximols
plus SoC | SoC alone | QALYs | 5 y | Laboratorios
Almirall, SA | | Gras and
Broughton, ¹⁶
2016 | United
Kingdom
(Wales) | Markov
model (CUA) | NHS in
Wales and
personal
social
services | MS
spasticity | Not clearly
stated | THC/CBD
plus SoC | SoC alone | QALYs | 30 y | Bayer plc. | | Lu et al, ¹⁷ 2012 | United
Kingdom | Markov
model (CUA) | United
Kingdom
NHS | MS
spasticity | Adults with
MS
spasticity
who did not
respond
adequately
to oral
anti-spasticity
agents | Nabiximols
plus oral
anti-spasticity
agents | Oral anti-spasticity
medicines alone | QALYS | 5 y | National
Institute for
Health
Research | | Mantovani
et al, ²⁰ 2020 | Italy | CUA based on
real-world data | Italian NHS | MS
spasticity | Adults patients
with
drug-resistant
moderate-
to-severe
MS (n = 1350) | Nabiximols
treatment | No treatment | QALYs | 6 mo | Almirall
S.p.A. | | Neuberger
et al, ¹⁰ 2020 | United
States | Markov
decision
analytic
model (CUA) | US payer
perspective | LGS | A probable LGS
cohort
of patients
aged an
average age
of 13 y | CBD plus SoC | SoC alone | QALYs | Lifetime | Genentech | | Slof and Gras, ²³
2012 | Spain | Markov
model (CUA) | German and
Spanish
healthcare
payer
perspective | MS
spasticity | Not clearly
reported | Nabiximols
plus SoC | SoC alone | QALYs | 5 y | Almirall | | Slof et al, ²¹
2015 | Italy | Markov
model (CUA) | Italian
healthcare
system | MS
spasticity | Not clearly reported | Nabiximols
plus SoC | SoC alone | QALYs | 5 y | Almirall | | NICE, 2019 ¹⁹ | United
Kingdom | Markov
model (CUA) | NHS and
personal and
social services | MS
spasticity | Patients
with MS
spasticity
who did not
respond
adequately
to oral
anti-spasticity
agents | THC/CBD
spray
plus
SoC | SoC alone | QALYS | 5 y | NICE | | Tyree et al, ¹¹
2019 | United
States | Markov
model (CUA) | US healthcare
sector
perspective | Neuropathic
pain | Microsimulation
of 1 000 000
patients | Adjunctive
smoked
cannabis
plus SoC | SoC alone | QALYs | 1 y | National
Institutes
of Health | CBD indicates cannabidiol; CUA, cost-utility analysis; LGS, Lennox-Gastaut Syndrome; MS, multiple sclerosis; NHS, National Health Service; NICE, National Institute for Health and Care Excellence; QALY, quality-adjusted life-years; SoC, standard of care; THC, tetrahydrocannabinol; WTEE, within-trial economic evaluation. *Doses of drugs included in the model: CBD, 12 mg/kg/day; clobazam, 12 mg/kg/day of 1 mg/ kg/day to a maximum of 40 mg/day; valproate, 60 mg/ kg/day; stiripentol, 50 mg/kg/day. Table 2. Reporting of costs and effectiveness (N = 12). | Author, y | Perspective | Resources and | l costs | | Discount rate | Preference-bas
outcomes | ed
health
 | | |---|---|--|---|-----------------------|---------------------------|----------------------------|---|---| | | | Types of cost data | Sources of cost data | Currency | Base year
(conversion) | | Type/
measurement | Valuation | | Ball et al, ¹⁵
2015 | NHS and personal
and
social services | Drug cost,
intervention
costs (neurology
consultations,
management
of
adverse events),
hospital admissions,
primary and acute
care services,
personal
care services | Case report form,
expert opinion, and
patient questionnaire | Pound
sterling | 2010/11 | 3.5% | QALYs;
calculated
by applying
an area under
the curve
method | Using the EQ-5D valued based or the preferences of a community sample of people in the United Kingdom No information on the type of EQ-5D used | | NICE 2019 ¹⁸ | NHS and personal
and
social services | Drug cost, adverse
event costs, home
care
and community-
based visits,
outpatient
clinic visits,
hospital admissions | Drug Tariff; NHS
reference
costs; Reference
costs;
expert assumption | Pound
sterling | Not
reported | 3.5% | QALYs | Used utility values fron
a utility study that
included 2719 patients
with chronic
neuropathic pain | | Elliott et al, ⁹
2020 | Canadian public
healthcare
system | Direct costs
(eg, drug
costs, healthcare
resource
use) | Provincial
formularies,
manufacturer's
website,
and literature view | Canadian
dollars | 2019 | 1.5% | QALYS | Used utility values from
Lennox-Gastaut
syndrome, which were
elicited from members
of the general Canadian
public by use of the EQ
5D-3L questionnaire,
time trade-off, and
visual analog scale | | Flachenecker ²²
2013 ⁵ | German healthcare
system | Direct costs (drug
costs,
hospital visits,
laboratory tests) | Literature review,
Delphi panel,
resource
utilization study, and
public price tables | Not
reported | Not
reported | Not
reported | QALYs | Utilities were derived
from EQ-5D QoL data
collected in nabiximols
clinical trial
No information on
valuation and type of
EQ-5D used | | Gras and
Broughton, ¹⁶
2016 | NHS in Wales and
personal
social services | Drug cost
(only for THC/CBD
spray),
consultation, hospital
admissions, and
home
care costs | Survey of clinical
experts,
United Kingdom
resource
utilization
study and published
unit
costs | Pound
sterling | 2013 | 3.5% | QALYs | UK-weighted utility
values obtained from
data collected using EC
5D questionnaire from
pivotal trial
No information on the
type of EQ-5D used | | Lu et al, ¹⁷
2012 | United Kingdom
NHS | Costs associated
with drugs,
drug wastage, drug
administration, and
clinical
monitoring of
patients | Literature review,
expert
opinions and only
consisted
of clinical visits.
Costs were taken
from
NHS
reference
costs 2009 | Pound
sterling | 2009 | 3.5% | QALYS | Health-state utilities were estimated based on the EQ-5D utility values collected published in nabiximol clinical trial. No information on valuation and type of EQ-5D used | | Mantovani
et al, ²⁰ 2020 | Italian NHS | Drug costs
(Nabiximols) | Ex-factory
cost for a
puff of Nabiximols | Euro (€) | 2017 | Not
applied | QALYs | MS Spasticity NRS
scores were
transformed into utility
value following the
correlation between EC
5D utility value and the
NRS score based on
published study | | Neuberger et al, ¹⁰
2020 | United States payer
perspective | Drug costs, inpatient
admissions,
emergency
department,
outpatient visits, and
antiepileptic
prescription
fills | Literature review,
marketScan research
databases | United
States (\$) | 2020 | 3.0% | QAYs | Time spent in health
states were weighted butilities based on a
published utility
elicitation study (a time
trade-off interviews
among members of th
UK general public) | Table 2. Continued | Author, y | Perspective | Resources and costs | | | | | Preference-bas
outcomes | ed health | |--------------------------------------|--|--|---|---------------------------|-----------------|----------------------|----------------------------|---| | | | Types of cost data | Sources of Currency cost data | Base year
(conversion) | | Type/
measurement | Valuation | | | Slof and
Gras, ²³ 2012 | German and
Spanish
healthcare
payer perspective | Drug costs, direct
medical
costs (eg,
tests and monitoring)
and health
system-related costs
(eg, homecare
workers,
general
practitioners) | Literature review,
interviews, hospital
and health insurance
tariffs | Euro (€) | 2010 | 3.5% | QALYs | Utilities for mild,
moderate and severe
MS spasticity were
derived from data
collected using the EQ-
5D questionnaire in a
clinical trial
No other information on
valuation and type of
EQ-5D used | | Slof et al, ²¹
2015 | Italian healthcare
system | Drug costs, direct
medical
costs (eg,
tests and
monitoring)
and health system-
related
costs
(eg, physiotherapy) | Literature review,
databases,
and official
sources | Euro (€) | 2013 | 3.0% | QALYs | Utilities for mild,
moderate and severe
MS spasticity were
derived from data
collected using the EQ-
5D questionnaire in a
clinical trial
No other information on
valuation and type of
EQ-5D used | | NICE,
2019 ¹⁹ | NHS and personal
and social
services | Drug acquisition
costs; MS
background
management
costs;
costs of adverse
events;
home care visits | Literature review;
NHS
Drug tariff and other
and official sources | Pound
sterling | Not
reported | 3.5% | QALYs | Health-state utilities in
the model were based
on a published utility
regression model of EQ-
5D, spasticity NRS, and
EDSS | | Tyree et al, ¹¹
2019 | United States
healthcare
sector perspective | Drug costs | Literature review | United
States (\$) | 2017 | 3.0% | QALYs | Valuation not clearly
stated.
Health-state utilities
were adopted from a
published study | CBD indicates cannabidiol; EDSS, Expanded Disability Status Scale; LGS, Lennox-Gastaut Syndrome; NHS, National Health Service; NICE, National Institute for Health and Care Excellence; NRS, numeric rating scale; QALY, quality-adjusted life-year; QoL, quality of life; THC, tetrahydrocannabinol. *In model-based studies, QALYs were calculated based on the utility value for each health state and the number of years spent in that health state. 17-19,22,23 In majority of the studies, health-state utilities were estimated from utility values provided in the literature (eg, EQ-5D utility values collected in clinical trials), ^{16,17,20-23} whereas one study obtained utility values from the patients using the time trade-off method.⁹ ## Cost-Effectiveness Outcomes According to Disease Conditions and Drivers of ICER Estimates Economic evaluation results are summarized in Table 3. Eleven studies reported ICERs as the final economic evaluation outcome and clearly stated the willingness to pay (WTP) threshold used 9 - 11,16,17,20 or referred to the National Institute for Health and Care Excellence (NICE)'s threshold (ie, £20 000-£30 000 per QALY gained) to determine cost-effectiveness. $^{18,19,21-23}$ One study compared incremental costs and QALYs but did not calculate ICER because the intervention (oral $\Delta 9$ -THC, maximum 28 mg/day for progressive MS) was not shown to be effective. 15 The ICERs varied widely from cost saving 23 to more than US \$451800 per QALY 10 depending on the setting, perspectives, types of medicinal cannabis and indications. ### Multiple Sclerosis Nabiximols for the management of MS spasticity were deemed to be cost-effective in 6 studies conducted in Germany,^{22,23} Italy,^{20,21} Spain,²³ and United Kingdom^{16,19} settings and not cost-effective in one study conducted in the United Kingdom setting.¹⁷ All except one study (5 of 7 studies) that found nabiximols to be a cost-effective intervention were industry funded. The remaining 2 studies were funded by the United Kingdom government and reported conflicting conclusions (not cost-effective by Lu et al 17 study and cost-effective in a study commissioned by the United Kingdom's NICE 19). An economic evaluation conducted alongside a clinical trial in the United Kingdom (Cannabinoid Use in Progressive inflammatory Brain Disease trial) 15 found that oral $\Delta 9\text{-THC}$ (dronabinol) had
significant additional costs with no improvement in health outcomes for patients with progressive MS (ie, dominated by usual care and thus not cost-effective). ### Pediatric Drug-Resistant Epilepsy A study conducted in United States¹⁰ comparing CBD with the usual care for the management of LGS concluded that CBD is not a cost-effective option for this patient population at a WTP threshold of US \$150 000/QALY (ICER \$451 800 per QALY gained). On the other hand, a study from Canada (using a Canadian public healthcare system perspective and a WTP of CAD \$50 000 per QALY gained) found adjunctive cannabinoid oil to be cost-effective option for patients with DS (ICER CAD \$32 399 per QALY gained).⁹ #### **Chronic Pain** Two studies^{11,18} evaluated cost-effectiveness of medicinal cannabinoids for chronic pain. The NICE in the United Kingdom conducted CUA of THC/CBD spray as an add-on therapy for patients with chronic pain (compared with usual care alone) using a Markov model. In addition to THC/CBD spray, the model considered other medicinal cannabinoids (ie, oral dronabinol, oral nabilone, and oromucosal THC) in sensitivity analyses. According to findings from the base case and sensitivity analyses, THC/CBD spray (ICER £151431/QALY gained) and all other medicinal cannabinoids were found to be not cost-effective interventions for chronic pain including for all treatment and condition specific subgroups. Another study evaluated cost-effectiveness of a standardized herbal cannabis product (12.5% THC) for chronic neuropathic pain in United States setting¹¹ and found it to be a cost-effective intervention (ICER \$48594 per QALY gained) when augmenting second-line treatment. ### **Findings From Sensitivity Analyses** All except one 15 study reported the results of one-way sensitivity analyses, with some of them reporting probabilistic sensitivity analyses. Uncertainty in health-state utilities (eg, pain state utility, adverse events) was the largest contributor to uncertainty in the model outcomes in 5 studies. 10,11,17,21,23 Other model parameters with the greatest influence on model outcomes were variations in drug $cost^{10,11,17,22,23}$ and $dose,^{11,17,21,23}$ adherence to therapy,¹¹ and other costs such as costs of physiotherapy sessions,²³ homecare support,^{16,23} and hospitalizations.¹⁶ Findings from sensitivity analysis in one of the studies where nabiximols was considered to be not cost-effective for MS spasticity¹⁷ suggest that it could be cost-effective if a dose much lower than the mean dose reported in RCTs provided patients with adequate benefits and if there was a substantial difference in utilities between responders and non-responders. Similarly, findings from sensitivity analysis of a study conducted in a United Kingdom setting (a range of medicinal cannabinoids for chronic pain) suggest that for the ICER to be within the commonly accepted cost-effectiveness threshold (£30000 per QALY gained), medicinal cannabinoids must be at least 8 times more effective or 6 times less expensive than the usual care. All other model parameters reported in sensitivity analyses did not significantly change ICER estimates. ### Assessment of the Reporting Quality of Studies The assessment of the reporting quality of each study using the CHEERS checklist is provided in Appendix 1 in Supplemental Materials found at https://doi.org/10.1016/j.jval.2021.04.1276. Overall, the reporting quality of the included studies varied from 70% to 100% (median 83%). The study perspective was clearly stated in all the studies. Although all model-based studies explicitly stated the modeling approach, none of them gave reasons for the specific type of decision-analytical model used. Among the modeling studies where the specified time horizon exceeded one year (n = 7), one study did not specify that costs and outcomes were discounted²² whereas the remaining studies applied discount rates in accordance with national guidelines and ranged from 1.5% to 3.5% per annum. The item that least complied with the CHEERS were on characterizing heterogeneity, compliant only in 2 of 10 articles. ### **Discussion** In this study, we sought to summarize the currently available evidence on the economic evaluation of use of a variety of medicinal cannabinoids for various disease conditions, with the intention of guiding future within-trial economic evaluation aimed at assessing the cost-effectiveness of oral medicinal cannabinoids to relieve symptom burden in the palliative care of patients with advanced cancer. This review identified 12 CUA conducted across a variety of diseases including MS, DS, LGS, and chronic pain. This body of evidence showed that THC/CBD spray is a costeffective intervention in managing MS spasticity when used either as an adjunctive treatment or drug of last resort, reported to be cost-effective in 6 of 7 studies. An abstract on CUA of THC/CBD spray conducted in a Belgium setting reported that for patients with MS spasticity, adding THC/CBD spray to standard spasticity care dominated the standard spasticity care alone, with cost savings of €7530/patient and a QALY gain of 0.162 over the 5 year time horizon.²⁴ The findings are also in line with a recently published systematic review which concluded that prescribed cannabis-based products are a potentially cost-effective add-on treatment for MS spasticity.8 Nevertheless, some of the evaluations that reported THC/CBD spray to be a cost-effective treatment for MS spasticity have a several methodological limitations which potentially introduce uncertainty to the ICER estimate. For example, an industry-funded CUA conducted in a United Kingdom setting found that THC/CBD spray plus SoC was £3836 more expensive and produced 0.35 more QALYs over a 30-year time horizon than SoC alone, making it cost-effective at the £20 000-£30 000 per QALY threshold. Nevertheless, the model has several limitations including (1) extrapolating short-term RCT Data from Novotna et al⁴ (4 plus 12 weeks) to a 30-year model time horizon, (2) missing important parameters such as adverse events (thus favoring to the THC/CBD spray strategy), (3) relying on subjective estimates for resource use, (4) attributing all cost to spasticity alone while some of the costs might overlap with the management MS patients, and (5) potential conflict of interest as it was funded by THC/CBD spray manufacturer. Furthermore, one of the studies²⁰ compared cannabinoid oromucosal spray with "no treatment" instead of the SoC and assumed no costs or utility value change for the "no treatment" option. Although omitting the SoC in both intervention and comparator arms may not affect the overall cost estimate, this approach could potentially favor the cannabinoid strategy because utility values for some patients (including those with uncontrolled and resistant MS spasticity) will likely deteriorate with "no treatment." In Australia, similar cost-effectiveness claims were indicated in a submission made by Novartis Pharmaceuticals Australia Pty Ltd in 2013 (resubmitted again by Emerge Health Pty Ltd in 2020) to the Pharmaceutical Benefits Advisory Committee (PBAC) to list Sativex (nabiximols 10 mL; comparator, oral anti-spasticity treatment alone) for the adjunctive treatment of drug-resistant, moderate-to-severe MS spasticity. In both submissions, the PBAC did not recommend listing of nabiximols the Pharmaceutical Benefits Scheme and noted in the decision that (1) treatment effects are likely overestimated owing to the design of the key clinical trial and (2) ICER was uncertain owing to "substantial structural issues and unrealistic assumptions" in the economic model.²⁵ A study conducted in a US setting found a cannabis whole-plant product containing 12.5% THC cost-effective for management of chronic neuropathic pain as an add-on treatment there are a study conducted in a United Kingdom setting found a range of medicinal cannabinoids (THC/CBD spray, oral dronabinol, oral nabilone, and oromucosal THC) not cost-effective interventions for the management of chronic pain, with ICERs more than £150 000/QALY gained. The high ICER in the later study can partially be attributed to the modest treatment effects relating to symptom alleviation and the high and ongoing cost of treatment with THC/CBD spray and other medicinal cannabinoids. In addition, the lack of high-quality long-term data for almost all parameters in the model, extrapolation of data on some parameters from indirect sources (eg, adverse event disutility), and lack of **Table 3.** Cost-effectiveness outcomes (N = 12). | Author, | Perspective | Condition | Intervention | WTP | Analysis/m | ain findings | | | Author's | |---|---|--------------------|---|---|---|--|---|--|--| | У | | | | used | Cost | QALY | ICER
(reported by
authors) and
standardized
ICER* | Sensitivity
analysis | conclusion | | Ball et al, ¹⁵
2015 | NHS and Personal
and Social Services | Progressive
MS | Oral Δ9-THC
(maximum
28 mg/d) | Not
clearly
stated | Incremental
cost: £30130 | Incremental
QALY: 0.066 | ICER: Not
mentioned as ICER | Not reported | Because intervention
was not shown to be
effective, a full
cost-effectiveness
analysis
was not conducted.
Overall, the
intervention
is not cost-effective. | | NICE 2019 ¹⁸ | NHS and personal
and social services | Chronic pain | THC/CBD
spray
plus SoC | Not reported
(reference was
made to
NICE's WTP
of £30 000) | Total cost:
£63 924
Incremental
cost: £24 474 | Total QALY:
10.606
Incremental
QALY: 0.162 | ICER: £151 431/QALY
gained.
Standardized ICER:
Baseline
currency year not
reported | A probabilistic
sensitivity
analysis showed a
0% probability
that THC/CBD are
cost-effective even
under extreme
assumptions. | THC/CBD spray was
found to be not
cost-effective
intervention
for all treatment and
condition specific
subgroups | | Elliott et al, ⁹
2020 | Canadian public
healthcare
system | Dravet
syndrome | Adjunctive
cannabinoid oil
(CanniMed
1:20 oil)
on a
background of
clobazam
and valproate | CAD \$50 000
per QALY | Total cost:
CAD \$386 239 | Total QALY:
15.12 | ICER: CAD\$32 399 per
QALY
gained.
Standardized ICER:
US\$26 378.24
per QALY gained | When societal perspective was taken, cannabinoid oil was dominant over both stiripentol and clobazam and valproate. The interpretation of the results was insensitive to all model structural assumptions. | Adjunctive
cannabinoid
oil may be a cost-
effective.
Stiripentol was
dominated
by cannabinoid oil. | | Flachenecker ²² 2013 | German
healthcare
system | MS Spasticity | Nabiximols
plus SoC | Not Reported
(reference
was
made to
NICE's WTP
of £30 000) | Incremental
cost: €359671 | Incremental
QALY: 32.53 | ICER: €11 060 per
QALY gained
Standardized ICER:
Baseline
currency year not
reported | Except for a ±20% change in the cost of Nabiximols and ±20% utility weights for mild, moderate, or severe patients, ICER value was insensitive to all other variables. | Nabiximols is a
cost-effective
treatment option
for patients with
MS spasticity
in Germany | | Gras and
Broughton ¹⁶
2016 | NHS in Wales
and Personal
Social Services | MS Spasticity | THC/CBD
plus SoC | NICE (£30 000
per QALY) | Total cost:
£102337
Incremental
cost: £3836 | Total QALY:
11.00
Incremental
QALY: 0.35 | ICER: £10 891/QALY
gained.
Standardized ICER:
US\$16 966.
13 per QALY gained | Findings were robust
to changes in
parameters in
sensitivity analyses,
remaining cost-
effective at a WTP
of £30 000 per QALY. | The THC/CBD spray was found to be cost-effective for the treatment of MS spasticity, and dominant, if home carer costs were included. | | Lu et al, ¹⁷
2012 | NHS and
Personal
and Social
Services | MS Spasticity | Nabiximols
plus oral
anti-spasticity
agents | NICE (£30 000
per QALY) | Total cost:
£8925
Incremental
cost: £7627 | Total QALY:
2.3716
Incremental
QALY: 0.1548 | ICER: £49 300 per
QALY gained.
Standardized ICER:
US\$82 221.24
per QALY gained | Findings were
sensitive to the costs
of Nabiximols and
differences in utilities
between responders
and non-responders. | Nabiximols is not
cost-effective
for MS spasticity at a
WTP
threshold of £30 000
per QALY. | | Mantovani
et al, ²⁰ 2020 | Italian NHS | MS Spasticity | Nabiximols
treatment | NICE (£30 000
per QALY),
and Italy
(€60 000
per QALY) | Total cost:
£1008.34
Incremental
cost: 1008.34 | Total QALY:
0.1744
Incremental
QALY: 0.0284 | ICER: €35516 per
QALY gained.
Standardized ICER:
US\$48925.18
per QALY gained | There was little
variability around the
central
estimate of ICER, and
remained cost-
effective
at a WTP thresholds
used. | Nabiximols is a
cost-effective
option for patients
with MS-resistant
spasticity. | | Neuberger
et al, ¹⁰ 2020 | United States
payer
perspective | LGS | CBD plus SoC | \$150 000/QALY | Total cost:
US \$331 400 | Total QALY: 8.6 | ICER: \$451 800 per
QALY gained.
Standardized ICER:
US \$434 825.64
per QALY gained | Uncertainty in
health-state utilities
was
the largest
contributor to
uncertainty
in the results. | Cannabidiol is not a
cost-effective
option in LGS
patients at a WTP
threshold
of \$150 000/QALY. | | Slof and
Gras, ²³ 2012 | German and
Spanish
healthcare
payer
perspective | MS Spasticity | Nabiximols
plus Soc | Not reported
(reference
was made to
NICE'S WTP
of £30 000) | Germany
Incremental
cost: €359672 | Incremental
QALY: 32.07 | ICER: €11214 per
QALY gained in
Germany, and the
dominant
option in Spain
Standardized ICER:
US\$17897.16
per QALY gained in
Germany, | ICERs were found to
be sensitive to
utility data. | Nabiximols was
shown to be a
cost-effective for
MS-related spasticity
in Germany.
Nabiximols may
provide direct cost
savings to the
healthcare system in
Spain.
continued on next page | Table 3. Continued | Author,
y | Perspective | Condition | Intervention | WTP | Analysis/m | Author's | | | | |------------------------------------|---|---------------------|----------------------------------|---|---|---|---|---|--| | | | | | used | Cost | QALY | ICER
(reported by
authors) and
standardized
ICER* | Sensitivity
analysis | conclusion | | Slof et al, ²¹
2015 | ltalian healthcare
system | MS Spasticity | Nabiximols
plus SoC | Not reported
(reference
was made to
NICE's
WTP of
£30 000) | Incremental
cost: €2152 | Incremental
QALY: 0.433 | ICER: €4968 per QALY
gained
Standardized ICER:
US\$7084.46
per QALY gained | In all scenarios
analyzed in the
sensitivity
analysis, the ICER
remained below
generally
accepted WTP
thresholds | Nabiximols is a cost-
effective
option for patients
with
MS-related spasticity
in Italy. | | NICE, 2019 ¹⁹ | NHS and Personal
and Social Services | MS Spasticity | THC/CBD spray
plus SoC | NICE (£30 000
per QALY) | Total cost:
£32210
Incremental
cost: £1580 | Total QALY: 1.367
Incremental
QALY: 0.081 | ICER: £19512/QALY
gained
Standardized ICER:
Baseline
currency year not
reported | The model was sensitive to the assumptions related to treatment effects (odds ratios) and dosing of THC: CBD spray but in all scenarios analysed in the sensitivity analysis, the ICER remained in the range normally | THC: CBD spray is a
cost-effective option
for
patients with MS-
related
spasticity in the UK. | | Tyree
et al, ¹¹ 2019 | US healthcare
sector
perspective | Neuropathic
pain | Adjunctive
smoked
cannabis | United States
(\$110 000
to \$300 000
per QALY) | Total cost:
US\$7007
Incremental cost:
US\$610 | Total QALY: 0.489
Incremental
QALY: 0.013 | ICER: \$48 594 per QALY
gained (second-line
adjunctive
cannabis)
Standardized ICER:
US\$49 689.69
per QALY gained
(second-line
adjunctive cannabis) | ICER was sensitive to
changes in adherence
threshold, mild pain
state utility, and
moderate-to-severe
pain state utility | Cannabis appears
cost-effective when
augmenting second-
line
treatment for painful
neuropathy | CBD indicates cannabidiol; ICER, incremental cost-effective ratio; MS, multiple sclerosis; NHS, National Health Service; NICE, National Institute for Health and Care Excellence; QALY, quality-adjusted life-year; SoC, standard of care; THC, tetrahydrocannabinol; WTP, willingness to pay. *Cost estimates adjusted to US dollar in 2018 robust estimates of costs and resource use and reliance on expert opinion in the model have direct influence on the ICER estimate. Nevertheless, these and other model parameters were tested in the probabilistic sensitivity analysis under various assumptions, and the findings remained the same—a 0% probability that THC/CBD spray is cost-effective for chronic pain. ¹⁸ A conference article reported findings from a trial based CUA of THC/CBD spray plus SoC compared with SoC alone for neuropathic pain in patients with MS. The analysis was conducted from a Canadian provincial government payer perspective over a one-year time horizon and found an ICER of \$70103 per QALY gained. Nevertheless, it was difficult to critically examine the analysis because it was a conference abstract and we were unable to retrieve the full text of the study. ²⁶ The conclusion regarding the cost-effectiveness of CBD preparations for drug-resistant pediatric epilepsies (DS and LGS) is mixed. Although a Canadian study found CanniMed Oil, a CBD dominant preparation (1:20 mg/mL), to be a cost-effective intervention for patients with DS, another CUA conducted in a United States setting deemed the use of CBD oral solution not cost-effective for patients with LGS. This could be partially explained by the difference
in the WTP threshold used in the United States (US\$110 000-\$300 000 per QALY) and Canada (CAD\$50000 per QALY gained). After the recent registration of Epidyolex, a CBD product, for use as adjunctive therapy of seizures associated with LGS or DS on the Australian Register of Therapeutic Goods as an orphan drug, it was listed on the Pharmaceutical Benefits Scheme (PBS) on 1 May 2021 for Dravet syndrome, making it the first medicinal cannabis product to be listed on the PBS. The main shortcomings in publication quality as assessed by the CHEERS checklist were a lack of reasoning for the type of decision analytic model used and a lack of reporting on characterizing heterogeneity. In addition, all but one study did not consider a societal perspective, either in the base case or sensitivity analysis. This could have a significant impact on the strength of the cost-effectiveness conclusion because some relevant cost categories that fall outside the healthcare system might have been excluded. For example, indirect costs including informal care or care provided by patient-remunerated staff are major contributors to the total costs associated with the management of MS.²⁷ Productivity losses in patients with MS can also be substantial because it predominantly affects adults of working age (diagnosed between the ages of 20 and 45 years).²⁸ Nevertheless, these cost categories were not considered in all the studies that deemed THC/CBD spray as a cost-effective intervention for MS spasticity. Another key limitation of several studies included in this review was that they relied on proxy cost data from health professionals and expert opinion to estimate resource use, which might create issues with accuracy resulting from response biases such as recall bias and potential over-estimation of resource consumption²⁹ with a direct implication on the validity of ICER estimate. Similarly, 4 of the 6 economic evaluations of nabiximols for MS spasticity included in this review estimated treatment efficacy based on same clinical trial conducted by Novotna et al⁴ and the remaining studies used observational studies or patient records. Novotna et al study⁴ was a 19-week follow-up RCT in patients with MS spasticity not fully relieved with the SoC. The inclusion criteria specified that patients had spasticity values ≥4 in the numeric rating scale (NRS) at baseline which suggest that patients with very low NRS or very high NRS may not have been represented. With this, it is unclear how the models in some of the studies ¹⁶ calculated the transition probabilities from this RCT, nor was it explored in the probabilistic sensitivity analysis. The strength of the clinical evidence and the plausibility of clinical outcomes extrapolated beyond the study duration was seldom discussed in most of the studies. It is also worth mentioning that most of the evaluations that reported THC/CBD spray to be a cost-effective treatment for MS spasticity were industry funded, further introducing selection bias and uncertainty to the ICER estimate. Although the clinical evidence regarding the role of medicinal cannabinoids for various medical conditions is growing, the current evidence base is mixed and inconsistent. This is reflected in recently published systematic reviews on the clinical benefit of medicinal cannabinoids for MS spasticity which have reported contrasting findings.³⁰ In such situations where the evidence base is contentious and uncertain, using selected RCTs for deriving treatment effects or utility weights for economic evaluations will certainty suffer from bias with a direct implication on the ICER estimate. For example, the industry-funded CUA study of nabiximols for MS spasticity¹⁶ derived treatment effects from a single RCT (Novotna et al⁴) and used utilities measured using the EQ-5D data from the same trial, which may have led to an overestimate of cost saving from nabiximols (ICER of £10891 per QALY). This contrasts with the recent CUA conducted by the United Kingdom's NICE¹⁹ which have used 4 different RCTs for deriving treatment effects and reported an ICER of £19512 per QALY gained. Although ICER estimates from both studies fall within the United Kingdom's commonly accepted WTP threshold of £20 000-£30 000 per QALY, the difference in ICER estimates demonstrate how failing to consider all available evidence can potentially lead to over- or under-estimation of clinical benefits (ie, utilities) from the use of a medicinal cannabis product, thereby affecting its costeffectiveness. Generally, there is a need for a larger, better-designed clinical trial with longer-term follow-up of participants to ascertain the role of medicinal cannabis in medical conditions where there is no or insufficient evidence. It is important that these clinical trials include measures of various utility-based health-related quality of life measures which are important to estimate benefit in terms of QALYs. In Australia, more than 40 observational and RCTs of medicinal cannabis have been registered by Australian New Zealand Clinical Trials Registry (as of November 2020) for a range of indications including for symptom control in people with MS, advanced cancer, chronic pain, sleep disorder, neurological disorders, and mental disorders. Evidence from such well-designed RCTs will provide data on the safety, efficacy, and relative effectiveness of medicinal cannabinoids. This will, in turn, facilitate economic evaluations to establish whether products that are clinically effective also represent good value for money. ### Strength and Limitations Although we have employed rigorous and standard approaches to summarize and present empirical data on cost-effectiveness of medicinal cannabis from published literature, our review is not without limitations. We excluded studies reported in languages other than English and studies for which the full text was unavailable (eg, conference abstracts), which may have limited our study findings. The inherent subjectivity of assessing the quality of reporting of economic evaluations³¹ is another key limitation of this review although we have used a second reviewer to reduce the subjectivity in scoring. The CHEERS checklist is a guidance for the reporting economic evaluations, rather than assessing the quality of published economic evaluations, and thus, this review is limited to assessing what has been reported. Because most of the conditions included in this review (particularly MS) have undergone a big pharmaceutical development in the last few years, the number of therapeutic alternatives for these patients has increased in recent years. This could affect the definition of appropriate comparisons for the economic evaluations, thus affecting the external validity of the existing economic evaluations (and the conclusions of this review). ### Conclusion Our findings suggest that medicinal cannabis-based products may be cost-effective treatment options for a variety of medical conditions and symptoms including MS spasticity, DS, and neuropathic pain, albeit considerable uncertainty in the ICER estimates. Model parameters with the greatest influence on ICER estimates were uncertainties in health-state utilities, variations in drug cost and dose, and consideration of other costs such as homecare support. Well-designed clinical trials and health economic evaluations are needed to generate adequate clinical and cost-effectiveness evidence regarding use of medicinal cannabis products in various disease conditions to inform clinical practice and assist in resource allocation or public reimbursement decisions. ### **Supplemental Materials** Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.jval.2021.04.1276. ### **Article and Author Information** Accepted for Publication: April 10, 2021 Published Online: July 17, 2021 doi: https://doi.org/10.1016/j.jval.2021.04.1276 **Author Affiliations:** Centre for Applied Health Economics, Griffith University, Nathan, Queensland, Australia (Erku, Scuffham); Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia (Erku, Scuffham); School of Pharmacy, University of Queensland, Brisbane, Queensland, Australia (Shrestha). **Correspondence:** Daniel Erku, BPharm, PhD, Menzies Health Institute Queensland, Griffith University, G05 Gold Coast Campus, Gold Coast Queensland 4222, Australia. Email: d.erku@griffith.edu.au Author Contributions: Concept and design: Erku, Scuffham Acquisition of data: Shrestha Analysis and interpretation of data: Erku, Shrestha, Scuffham Drafting of the manuscript: Erku, Scuffham Critical revision of the paper for important intellectual content: Erku, Shres- tha. Scuffham Statistical analysis: Erku Obtaining funding: Scuffham Administrative, technical, or logistic support: Scuffham Supervision: Scuffham **Conflict of Interest Disclosures:** Prof Scuffham reported being a chief investigator of a National Health and Medical Research Council (NHMRC) Centre for Research Excellence in Medicinal Cannabis grant (grant number APP1135054). Dr Erku is funded through this grant. Dr Scuffham is an editor for *Value in Health* and had no role in the peer-review process of this article. No other disclosures were reported. **Funding/Support:** This study was funded through a NHMRC Centre for Research Excellence (grant #1135054). Prof Scuffham is part funded from a NHMRC Senior Research Fellowship (grant #1136923). **Role of the Funder/Sponsor:** The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the article; or decision to submit the article for publication. **Acknowledgment:** We thank Prof Jennifer H Martin, University of Newcastle, for providing a critical review of the draft. ### **REFERENCES** - The National Academies of Sciences Engineering and Medicine. The Health Effects of
Cannabis and Cannabinoids: the Current State of Evidence and Recommendations for Research. Washington, DC: National Academies Press (115): 2017 - European Monitoring Centre for Drugs and Drug Addiction. Medical use of cannabis and cannabinoids: questions and answers for policymaking. Luxembourg. Luxembourg: Publications Office of the European Union; 2018. - Collin C, Ehler E, Waberzinek G, et al. A double-blind, randomized, placebocontrolled, parallel-group study of Sativex, in subjects with symptoms of spasticity due to multiple sclerosis. *Neurol Res.* 2010;32(5):451–459. - Novotna A, Mares J, Ratcliffe S, et al. A randomized, double-blind, placebocontrolled, parallel-group, enriched-design study of nabiximols*(Sativex), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur J Neurol. 2011;18(9):1122–1131. - Andreae MH, Carter GM, Shaparin N, et al. Inhaled cannabis for chronic neuropathic pain: a meta-analysis of individual patient data. J Pain. 2015;16(12):1221–1232. - Mücke M, Phillips T, Radbruch L, Petzke F, Häuser W. Cannabis-based medicines for chronic neuropathic pain in adults. *Cochrane Database Syst Rev.* 2018;3(3):CD012182. - Stockings E, Zagic D, Campbell G, et al. Evidence for cannabis and cannabinoids for epilepsy: a systematic review of controlled and observational evidence. J Neurol Neurosurg Psychiatry. 2018;89(7):741–753. - 8. Herzog S, Shanahan M, Grimison P, et al. Systematic review of the costs and benefits of prescribed cannabis-based medicines for the management of chronic illness: lessons from multiple sclerosis. *Pharmacoeconomics*. 2018;36(1):67–78. - Elliott J, McCoy B, Clifford T, Potter BK, Wells GA, Coyle D. Economic evaluation of cannabinoid oil for Dravet syndrome: a cost-utility analysis. *Pharmacoeconomics*. 2020;38(9):971–980. - Neuberger EE, Carlson JJ, Veenstra DL. Cost-effectiveness of cannabidiol adjunct therapy versus usual care for the treatment of seizures in Lennox-Gastaut syndrome. *Pharmacoeconomics*. 2020;38(11):1237–1245. - Tyree GA, Sarkar R, Bellows BK, et al. A cost-effectiveness model for adjunctive smoked cannabis in the treatment of chronic neuropathic pain. Cannabis Cannabinoid Res. 2019;4(1):62–72. - Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS)—explanation and elaboration: a report of the ISPOR health economic evaluation publication guidelines good reporting practices task force. Value Health. 2013;16(2):231–250. - 13. Wijnen BF, Van Mastrigt G, Redekop W, Majoie H, De Kinderen R, Evers S. How to prepare a systematic review of economic evaluations for informing evidence-based healthcare decisions: data extraction, risk of bias, and transferability (part 3/3). Expert Rev Pharmacoecon Outcomes Res. 2016;16(6):723-732. - Shemilt I, Thomas J, Morciano M. A web-based tool for adjusting costs to a specific target currency and price year. Evid Policy. 2010;6(1):51–59. - Ball S, Vickery J, Hobart J, et al. The cannabinoid use in progressive inflammatory brain disease (CUPID) trial: a randomised double-blind placebo-controlled parallel-group multicentre trial and economic evaluation of cannabinoids to slow progression in multiple sclerosis. *Health Technol Assess*. 2015;19(12). vii-187. - Gras A, Broughton J. A cost-effectiveness model for the use of a cannabisderived oromucosal spray for the treatment of spasticity in multiple sclerosis. Expert Rev Pharmacoecon Outcomes Res. 2016;16(6):771–779. - Lu L, Pearce H, Roome C, Shearer J, Lang IA, Stein K. Cost effectiveness of oromucosal cannabis-based medicine (Sativex) for spasticity in multiple sclerosis. *Pharmacoeconomics*. 2012;30(12):1157–1171. - NICE Guideline Updates Team (UK). Cannabis-Based Medicinal Products (NICE Guideline, No. 144.) [B], Evidence Review for Chronic Pain. London, UK: National Institute for Health and Care Excellence; 2019. https://www.ncbi.nlm.nih.gov/books/NBK552240/. Accessed March 1, 2021. - NICE Guideline Updates Team (UK). Cannabis-Based Medicinal Products. Evidence review for spasticity. London, UK: National Institute for Health and Care Excellence; 2019. https://www.ncbi.nlm.nih.gov/books/NBK552187/. Accessed March 1, 2021. - Mantovani LG, Cozzolino P, Cortesi PA, Patti F, SA.FE. study group. Costeffectiveness analysis of cannabinoid oromucosal spray use for the management of spasticity in subjects with multiple sclerosis. Clin Drug Investig. 2020;40(4):319–326. - Slof J, Ruiz L, Vila C. Cost-effectiveness of Sativex in multiple sclerosis spasticity: new data and application to Italy. Expert Rev Pharmacoecon Outcomes Res. 2015;15(3):379–391. - Flachenecker P. A new multiple sclerosis spasticity treatment option: effect in everyday clinical practice and cost-effectiveness in Germany. Expert Rev Neurotherapeutics. 2013;13(3 Suppl 1):15–19. - Slof J, Gras A. Sativex® in multiple sclerosis spasticity: a cost–effectiveness model. Expert Rev Pharmacoecon Outcomes Res. 2012;12(4):439–441. - Oppe M, Ortín-Sulbarán D, Silván V, Estévez-Carrillo A, Quintero-González AM. Cost-utility analysis of delta-9-tetrahidrocannabinol and cannabidiol oromucosal spray. Value Health. 2019;22(Supplement 3):S753. - The pharmaceutical benefits scheme. Public summary documents. Australian Government Department of Health. https://www.pbs.gov.au/pbs/industry/ listing/elements/pbac-meetings/psd. Accessed December 28, 2020. - McDonald HP, Mittmann N, Isogai P. Economic evaluation of sativex for treatment of neuropathic pain in patients with multiple sclerosis (PND14). https://core.ac.uk/download/pdf/82447347.pdf. Accessed December 17, 2020. - Sobocki P, Pugliatti M, Lauer K, Kobelt G. Estimation of the cost of MS in Europe: extrapolations from a multinational cost study [published correction appears in Mult Scler. 2008;14(4):574]. Mult Scler J. 2007;13(8):1054–1064. - Ernstsson O, Gyllensten H, Alexanderson K, Tinghög P, Friberg E, Norlund A. Cost of illness of multiple sclerosis-a systematic review. PLoS One. 2016;11(7): e0159129 - Chapel JM, Wang G. Understanding cost data collection tools to improve economic evaluations of health interventions. Stroke Vasc Neurol. 2019;4(4):214–222. - Nielsen S, Germanos R, Weier M, et al. The use of cannabis and cannabinoids in treating symptoms of multiple sclerosis: a systematic review of reviews. Curr Neurol Neurosci Rep. 2018;18(2):8. - Watts RD, Li IW. Use of checklists in reviews of health economic evaluations, 2010-2018. Value Health. 2019;22(3):377–382.