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SIMPLER PROOFS OF WARING’'S THEOREM ON CUBES,
WITH VARIOUS GENERALIZATIONS*

BY
L. E. DICKSON

1. Introduction. In 1770 Waring conjectured that cvery positive in-
teger is 2 sum of nine integral cubes =0. The first proof was given by
Wieferich;T but owing to & numerical error he failed to treat a wide range of
numbers corresponding to»=4. Bachmann} indicated a long method to fill
the gap, but himgelf made certain errors. The latter were incorporated in
the unsuccessful attempt by Lejneck.§ The gap was first filled by Kempner.l

All of these writers make use of three tables. The computation of cach
of the last two tables is considerably longer than the first. The third table
as given by Wieferich and reproduced by Bachmann contains six errors,
corrected by Kamke (cf. Kempner, Mathematische Annalen, loc. cit., p. 399).
It is shown here that the last two tables may be completely avoided. The
resulting simple proof of Waring’s theorem in §§2, 3 is based on the customary
prime 5. The second simple proof in §4 is based on the prime 11. By §5, we
may also use the prime 17.

However, the main object of the paper is to prove generalizations of two
types. Let C. denote the sum of the cubes of # undetermined integers 0.
Waring’s theorem states that C, represents all positive integers. It is proved
in §§ 4, 5 that tx*+C; represents all positive integers if 1123, #5420, but
not if £>>23. To complete the discussion for =20 would require the extension
of von Sterneck’s table from 40,000 to 61,500.

It is proved in §6 that lx*+2y*+C; represents all positive integers if
1=1=34, 10, 15, 20, 25, 30. Also that tx*+35*+C; represents all if
1=¢259, 5. Various similar theorems are highly probable in view of Lemma
8. More interesting empirical theorems on cubes were announced by the
writer in the American Mathematical Monthly for Aprl, 1927, and on
biquadrates in the Bulletin of the American Mathematical Society, May-
June, 1927,

* Prezented to the Society, April 15, 1927 received by the editors February 16, 1927,

! Mathensatische Annalen, val 66 (1909), pp. 99-101.

$ Niedere Zahlentheorie, vol. 2, 1910, pp. 477-8.

§ Mathematische Annalen, vol. 70 (1911), pp. 454-6.

|| Uber das Waringscke Probless wund einige Verallgemeinerungen, Dissertation, GSttingen, 1912,
Extract in Mathematische Annalen, vol. 72 (1912), pp. 387-399.
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If IV is prime to 6, it is shown in §7 that every integer & is represented by
622 +6y* 46224 Nw?, and that we may take wz0 if E=23:V. In §8 is
discussed the representation of all large integers by Iy*+C; when I=5.

The tables and computations in §§ 2-4, 6 and the first part of §5 were
kindly checked with great care by Lincoln La Paz.

9. Three lemmas needed for Waring's theorem. We prove the follow-
ing lemmas.

Lexwa 1. If p is 6 prime =2(mod 3) and if | is an inleger not divisible by
P, coery inleger nok divisible by p is congruent modsdo p* lo a product of a cube

byl

From the positive integers =p* we omit the p== multiples of  and
obtain ¢ =(p—1)p=* numbers a, - - -, @%. Each la? is not divisible by #
and hence is congruent to one of the a’s modulo p*. We shall prove that
no two of the la? are congruent. It will then follow that laf, - - -, lag® are
congruent to ay, - - - , 8 in some order. Since every integer not divisible
by p is congruent to a certain ¢;, it will therefore be congruent to 2 certain
la}.

If possible, let Ja? =la# (mod p*). Since ¢;=e:x(mod $*) determines an
integer z, we have x*=1. By Euler's theorem, x¢=1(mod p*). Since ¢ is
not divisible by 3, ¢=3g+r, r=1o0r 2. Hence x"=1, x=1, a;=a3(mod 2%),
contrary to hypothesis.

Leanes 2. Let P and e be given integers =0, such that P is of the form
54481, Then every inleger =P° - 223 can be represented by Py>+6(x*+3*+35%),
where 7, T, v, 5 are inlcgers and ¥ =0.

It is known that every positive integer not of the form 4'(8s+7) is a sum
of three integral squares. Hence this is true of positive integers congruent
modulo 16 to one of the following:

(1) 1,2,3,4,5,6,8,9,10,11,13,14.
If » is any integer, we shall prove that
2 n= Py + Op (mod 96)

has integral solutions v, g such that 0=y =22, and such that u is one of the
numbers (1). Then there is an integer ¢ for which

n = Py + 6p + 96g = P+ 6m,  m=p+ 16,

When 52 P* - 222, then n = Py?, m =0, whence m is a sum of three integral
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squares. Thus Lemma 2 will follow if we show that (2) has solutions of the
specified type.

We shall first treat the case e=0:
(3) w3y + Op (mod 96).

The method for (3) is such that, by multiplying it by P, P ... wecan
deduce at once the solvability of (2). With this end in view, we omit 3 and
11 from (1) and obtain the numbers

o) 1,2,4,5,6,8,9,10,13,14,

whose products by 5 (and hence by P) are congruent modulo 16 to the same
numbers (4) rearranged.

At the top of the following table we list certain values of y and below them
the least residues modulo 96 of their cubes. The body of the table shows the

residue modulo 96 of y*+6u for certain values (4) of u.

9:-1: 2 =¥ 4 8 6 ¥ 58. .9 40 1L 13 14 15 27T 1B
0!8276&29245532574083855615 17 2 88
6 T 14 33 70 35
12 13 20 39 7 41 &7 (] 95 1 27 29
24 25 32 51 88 S3 (=Y 0
30 31 38 5 99 5
36 37 4 65 4 65 91 923 23
48 30 S 5 16 T 72 80 8 40
34 55 62 81 22 83
6 61 68 87 28 19 19 21 47
S . ¢ 4 11
$4 85 92 15 52 17 43 45 1 73 3 5

In the body of the table occur 0, 1, - - -, 95 with the exception® of
(3) 2,10,18,26,34,42,50,58,66,74,82,90.

The latter give all the positive integers <96 of the form 24-8r.
But 3 and 11 are also available values of u. For

(6) v =0,2,46,8,10,
the residues modulo 96 of 4°+6 - 3 and ¥*+6 - 11 are together found to be
the numbers (5). This can be proved without computation as follows.

In (6), ¥y=2g, £2=0, 1, 2, 3, 4, 5. Thus ¥*+18=2+8(g?+2), v*+066
=2+8(g*+8). Hence it remains only to show that the values of g*+2 and

* However lange s v we take, we cannot resch an exceptional sumber (5).  For 4*+-6uw2-4-8¢
(mod %) implies that 4 is even and hence 6u=2 (mod 8), p=3 (mod 4), p=3, 7, 11, 15 (med 16).
Eut none of these four occur in (4),
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g*-+8 are together congruent to 0, 1, - - -, 11 modulo 12. But g*=g(mod G).
Hence g*+-2 takes six values incongruent modulo 6 and therefore also modulo
12. Likewise for g*+8. But g*+2=G*+8(mod 12) would imply g=G
(mod 6), g=G, a contradiction.

Hence for every integer %, (3) has integral solutions v, g, 02y=22, &
in (1).

In 5(248r)=2+8p, p=1+5r ranges with r over a complete set of
residues modulo 12. In other words, the products of the numbers (5) by 5
are congruent modulo 96 to the same numbers (5) rearranged. The same
is truec of their products by P=5-+48I, since 2k - P=2k - 5(mod 96).
Evidently the products of 0, 1, - - - , 95 by P are congruent modulo 96 to
0,1,---,95 rearranged. Hence the products of the numbers in the above
table by P arc congruent to the same numbers modulo 96. Those numbers
are therefore the residues modulo 96 of P(y*4-6x) for 05y =22 and for u
in (4). We saw that the products Py are congruent modulo 16 to the same
numbers (4) rcarranged. Hence the residues modulo 96 of Py*+6» for
0=vy=22 and for » in (4) are the numbers in the table and hence are the
numbers 0, 1, - - - , 95 other than (5).

To complete the proof of the statement concerning (2) when ¢=1, it
remains to show that, by choice of v in (6) and for =18 or 66, Py*+t is
congruent modulo 96 to any assigned number in (5). Since the last was
proved for y*+¢, we need only show that +* and P+ take the same values
modulo 96 when v takes the values (6). Then y=2g, 2=0, 1,2, 3, 4, 5.
Thus g*=0, 1, 8, 3, 4, 5; 5z°=0, 5, 4, 3, 8, 1(mod 12}, respectively. Hence
4% and 5v* take the same values modulo 8 - 12. But the products of 5 and
P =35+48! by the same even number+® are congruent modulo 96.

The insertion of the factor P may be repeated e times. This proves the
statement concerning (2).

LEaoea 3. Given the positive numbers s and § and a number B for whick
0=B=s, 1=9%, we con find an integer s =0 suck that

) BEs—ti*<B+ 3(1s%)rs,

Denote the last member of (7) by L. If s<L, take i=0. Next, let s=L
and determine a real number 7 so that s—#&*=8. Then

tr=s=BxL—B=30t)=421, Ir=1.

We may write 7 =i+, where 057<1, and 7 is an integer =0. Since s=r,
Bws—ir*=s—ii* as desired in (7). Next,

Ss—ti = B=s—1r— )P = s trf = tw,

-
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where

w=9r —(r=f) =3 — 3 — f) < 3% < 32,
since 3r=1, f<1. Since B=0,
i Ss, = (S, s— 6t — B <3t S 3(6s7)'R.

3. Proof of Waring's theorem. We first prove that every integer s
exceeding 9 - 51 is a sum of nine integral cubes =0. For this proof we take
C=9, p=5,=1in our formulas. Since 5>Cp** there exists an integer n= 4

such that

(8) Cp*n < 5 S CpHmtn,

Write »
©) k= 3(CT) e,

Hence

(10) (s 2 k.

We separate two cases. First, let Cp*~+2k =s. Then Cp?* and Cp*~+&
are both =s. Taking them in turn for B in Lemma 3, and using (10), we
conclude that there exist integers I and J, each =0, such that

Cp* = 5 — P <Cp™+ k, '
Cp™ + k 5 5 — tJ3 < Cp* + 25.
Hence there are two distinct integral values I and J of ¢ which satisfy
(11) CPrss—*<Cp*™+ 2k, i20.

Second, let Cp*=+2k>s. Then (11) holds for i=0 and (when ¢=1) for
i=1,since the integer Cp*~is less than s and henceis =s—1.

Hence in both cases there exist two distinct integers and hence two con-
secutive integers 7 —1 and j, which are both values of  satisfying (11).

At least one of the integers s—(j—1)* and s—4#? is not divisible by S.
For, their difference is the product of ¢ by 372—3j+1. The double of the
latter is congruent to (j+2)*—2, modulo 5. But 2 is not congruent to a
square,

Hence there exists an integer ¢ =0 such that (11) holds when s$=a, and
such that s —fa* is not divisible by p=5. By Lemma 1, there exist integers
b and M such that

(12) s—td =040 M, 0<b <P,
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When n =4, we have

(13) Cp*n + 2k < 12p%,

For, if we insert the value (9) of k, divide all terms by p*=, and note that

1/p**=1/$* we see that (13) holds if

(14) C+ %(nc')m = 12.

When C =0, p w5, this holds if

25!
% e i 241
8.0
By (11) with i=a, (12) and (13), we get
CPp™ £ B + p°M < 1297, (C — 1)p < Cpn — b2

Hence
(C = 1)p* < M < 12p*,

Write M =N +6p*. Thus

(13) (€ = ™ < N < 6p*~,

(16) s=18 4 B b (N 67,
We seek integers ¢ and m, each =0, such that

an PN =G4 p"-6m, m=d? +d7 +dF,

for integers d;. Then will

(18) 5= 1g% 4 B + & + p(6p% 4 6m).

Writing A4 for p», we then have
3

(19) s=t+P+A+ 3 (4440 + (4 — d)2].
=l

These cubes are all 0. For, if d2 > A%, then m>A*=p* and, by (17),
PN >6p"p**, contrary to (15). Hence s is 2 sum of nine integral cubes 0.
It remains to select ¢ and m. Choose an integer ¢ so that

(20) e=0,1,2, e4+n=0 {med 3).

The condition in Lemma 2 is ¥ 35"« 223, By (13), this will be satisfied if
(C—=T7)p1=5"-223. When # 24, the minimum value of 2n—e¢ is 6. Hence
it suffices to take
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22\*
(21) Cc—-75'=23 C-72 (—;;g) = (0.88)* = 0.681472.

Thus if C = 7.682, Lemma 2 shows the existence of integers+y and ms, each =0,
cuch that N =5"y3-+0m, where m is a sum of three integral squares. By (20),
577 is the cube of an integer ¢20. Thus (17) holds when p=S5.

This completes the proof that cvery integer s exceeding 9 - 5'* is a sum
of nine integral cubes =0. The same iz true when $<40,000 by the table of
von Sterneck,® which shows also that if 8042 <5<40,000, 5 is a sum of six
integral cubes =0. To utilize the lattcr result,let 104 =5 =9 - 5* By Lemma
3 with B = 10¢, therc exists an integer %= 0 satisfying

(22 10° = ¢ < 10* 4 3(&s%)*%, g =3 =t

We have s<5'. For t<3% the radical is <35, Also, 10¢=592¢<35% Hence
a<16 - 39<43 - 5%

Apply Lemma 3 with §=1, B=10¢, and s replaced by ¢. Thus therce
exists an integer v 20 satisfying

(23) 100 S r <108+ 36%2, s=0— .

The radical is <47 -3¢ Also, 10°<4* - 5 Hencer<4* - 5% As before,
there exists an integer w=0 satisfying 2

(24) 10‘§f—w‘<10‘+37‘“=4-10‘-40,000.

Since 1 —w* is therefore 2 sum of six cubes, while s =43 +0%+r, s is 2 sum of
nine integral cubes 0. This completes the proof of Waring's theorem.

4. The first generalizations. Let C. denote the sum of the cubes of »
undetermined integers 20. Let ¢ be an integer Z0.

Leana 4. The forms fumix3+Cy represents all positive sniegers =40,000
if and only if 0 <4523,

1§ £>23 or if =0, Cs and hence f, fail to represent 23. Next, let 0 <t =23.
By von Sterneck’s table, every positive integer 40,000, except 23 and 239,
is a sum of cight integral cubes Z0. It remains only to show that f; represents
23 and 239. Takex=1. Since

0<23—8<23, 23<239—1<239,
both 23—t and 239 —¢ are represented by Cs.

* Akademic der Wissenschaften, Wies, Sitzungsberichte, vol. 112, IIa {1903}, pp- 1627-1666.

Dale's table to 12,000 was published by Jacobi, Jourssl far Mathematik, vol. 42 (1831), p. 415
Werke, vol. 6, p. 323,
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Teeorem 1. If 1=i=23, 1420, every positive inleger is represenied by
fi=tx*+C

We proceed as in §3 with =35 or p=11 according as ¢ is not divisible by
S or 11, and with n=4 or n =3, respectively. We shall find limits within
which C may be chosen. But we refrain from making a definite choice for C
initially, since we may need to decreasc C slightly to meet the difficulty
arising below (11) when £>1. Then (11) does not hold for i =1 if

(25 Cp*>s—1.
In the latter case, we employ a new constant C’, Then

C'p*=i3 = Cp*= - pC'/C > (s — )pC'/C
will be =5 if

c>S._ ¢
TP s—t

and hence if C'>3}C. Thus if C’ lies between £C and C, (8) will remain
true after C is replaced by C’. By (25), Cpir=s5—i+P, P>0. By (8),
P<t£23. Write g=P/p*™. Since n=4 or =3, according as p=5or 11, ¢
is very small. We take C'=C~gq. Then C’ lies between 3C and C, and
C'p**=s5—1t. Hence after taking C’ as a new C, we have (8) and the desired
two integral solutions s of (11) in all cases.

For p=35, t=23, (14) bolds when C=9.03. Reduction to C =9 permits
us to avoid the difficulty mentioned before. The entire proof in §3 now
holds if p =5 and if ¢ is not divisible by 5.

Lexuma 5. Let P=11+48! ond ¢ be given integers =0. Every integer
2P" - 23% is represenicd by Pey* +6(x* 4 y2 2%, v 20.

We now omit 4, 5, and 13 from the available numbers (1) and have

(26) 2 1,2,3,6,8,9,10,11 14,

whose products by P are congruent modulo 16 to the same numbers (26)
rearranged.

The following table shows the residues modulo 96 of 43+6p for
¥y=0,1,--+,23 and for g in (26). It was computed as in §2, with also
197=43, 21*=435, 23*=71 (mod 96).

(27)
Since .
by P &
the sar
we get
(28)

Since -
b). 1’:&

(29)

This ¢
Sin
gruent

(30)
As bel:
(31)

where 4
Let

(32)
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=0 1 2 3 4 5 6 7 8
6 7 14 33 3 33 30 33
12 13 20 3 76 4
18 9 2% 45 22 4 42 73 50
% 37 44 0 B [\ 91
48 9 % 95 16 7 72 80
54 55 62 81 22 83 78 86
&) 61 o8 &7 28
66 67 ¥4 93 34 95 0 2 2
84 85 92 15 52 17 43
b | y=13 14 13 17 18 19
12 1 29
36 51 79
4 8 24
84 3 31
In the body of the table occur 0, 1, - - -, 95 with the exception of
(27) 0,32,64.

Since 32P =64, 64P=32 (mod 96), and since the products 0f 0,1, - - -, 95
by P are evidently congruent modulo 96 to the same numbers rearranged,
the same is true of the numbers in the table. Using the omitted value 4 of &,

we get

(28) 189 4-24=0, 234 24=232, 10°+ 24 = 64 (mod 96).
Since 4(P?—1)=4(112~1) =0(mod 96), 4P?*=4, and multiplication of (28)
by P2 yields

(29) 18P 424 =0, 2P 4+24=32, 10°P*+-24=064 (mod 96).

-

This completes the proof of Lemma 5 where ¢ is even.
Since P+1 is divisible by 12, the product of an even cube by P is con-
gruent to its negative, modulo 96. Hence

(30) GP=—24 2P=8, 14P=40 (mod 96).
As before, multiplication of (30) by P2* yields
(31) OGP+ 24= 0, 22°P°+ 24 = 32, 14P+ 24 =64 (mod96),

where ¢=2k+1. Thus Lemma 5 follows when ¢ is odd.
Let p=11,223,¢<15,£#11. Then (13) holds if

\ 6
(32) C+ l—l(lC’)"’ =12 fort = 135.
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When C=7.05, the left member is 11.9960. By (15), the condition in Lemma
S is satisfied if (C—7)113+211*. 233. By (20), the minimum of 2% —¢ for
n=3is 6. Hence it suffices to take

(33) (C — D118 3 232, C — 7 = 0.006868.

Hence all the conditions on C are satisfied if C = 7.01, and the reduction from
7.05 avoids the difficulty arising when (25) holds. Next,

4B —3+ 1) =G +5+1 (mod 11),

while —1is not congruent to a square. For C=7.01, the proof in §3 now shows
that every integer s exceeding C - 11* is represented by f,. It remains to
prove this also when 10¢=s=C - 11%. Consider (22) and (23). Now

(3% (C)r = 9.033, 10¢ < (0.01)11%, ¢ < (27.11)11%,
o < (9.0245)114, 10* < (0.69)11%, »<28-11¢ < 75112

In place of (24), we now have 10¢=r—27<28,000. This proves Theorem I
when $=15, 211,

S. The casc £=20. First, take p=11. The proof fails if #—3, since
(32) requires C<7. Hence n 24, and (14) holds if C=11.3. Thus every s
exceeding C - 11" js represented by fi, where C*=50. But if s<C - 1112
we obtain by (22)-(24) the condition r —w?< 152,794, which is far beyond
the limit of von Sterneck’s table.

A better result is obtained by taking =17, #=3. Lemma 2 holds also
when P=17+48l. For, by multiplying (3) by this P, we see that every
integer is congruent modulo 96 to Py*+46Pu. But 6P=6 (mod 96). Ii
3j*—3j+1=0 (mod 17), multiplication by 6 gives (j+8)*=7, whereas 7 is a
quadratic non-residue of 17. The two conditions on C are both satisfied if
C*=50. Then (22)-(24) yicld r—2*<65,500. A still lower limit will be
found by employing

LeuMa 6. Given the positive numbers s and {, and & number B for whick
0=B<=s,229%, we can find an integer i 20 such that

BSs— i <B+U(3r=3r+1), r=(s— Bl

The proof consists in the following modification of the last part of the
proof of Lemma 3. The condition for w <3r2—3r+1 is

A=Al =-30+N+1454+7]>0.

Since 0=f<1, this is evidently satisfied when r 2 1+4f. In the contrary case,
#=0, r=f, and the quantity in brackets is (1 -7)*>0.

1928
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By (21) with 5 replaced by 17, C—7 =0.0004411. This and condition (13)
are both satisfied if C=7.00045. It remains to treat integers s<C - 17%
By Lemma 4 we may take $>40,000. By Lemma 6 with i=20, B=8043,
there exists an integer %20 such that

3043 < o < 5043 + 20(3r% = 3r+ 1), @ =35 — 20s%,
where 3= 5/20 slightly exceeds the initial 7. Then
logr = 3.3393787, r; = 11,988,200, r = 3462, ¢ — 8043 < 719,089, 700.
Apply Lemma 6 with {=1, B=8043, s replaced by o. Hence there exists an
integer » 20 such that
S043 5 r <S043+ 3R? — 3R+ 1, r=0c—12, R =o¢— 8043,
log R = 2,9522610, R* = 802,642.2, R = 895.9, r — 8043 < 2,405,240,
By Lemma 6 with £= 1, there exists an integer w =0 such that

8043 < r— 10° < 8043 + 3p* — 3p+ 1, p* =1 — 8043,
log p = 2.1270528, o* =17,951.7, p =134, r— w® <61,497.

Hence Theorem I would hold also for £=20 provided an extension of von
Sterneck’s table would show that every integer between 8043 and 61,497 is
a sum of six cubes.

To prove Waring’s theorem by means of p =17, n=3, and the same C,
we find by three applications of Lemma 3 with t=1, B=8043, that r—w*,
<42,846.7. This limit is reduced by using Lemma 6.

6. The second generalizations. We employ two lemmas.

Lesua 7. Fy=ly'+Cs represenis oll positive integers £40,000 if and only
if 1=2-6, 9-15. F; rcpresents all =40,000 except 22. Fy represenis ol
except 23, 239, and 428.

By the tables of Dahse and von Sterneck, C; represents every positive
integer =40,000 except

(35) 15,22,23,50,114,167,175,186, 212, 231,238,239, 303,364, 420,428, 454.

Thus Fy315. Also F,=C.>23. If I>15, evidently F,»15. Hence let
221215, The successive differences of the numbers (35) are

(36) 7,1,27,64,53,8,11,26,19,7,1,64,61,56,8,26.

Hence every positive difference of two numbers (35), not necessaxily con-
secutive,is 1,7, 8, 11, oris >13.
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First, let 1547, 8, 11. If » and m (n>>m) arc any two numbers (35), then
n—mwl. Since n—I is therefore not one of the numbers (33), it is repre-
sented by C;. Hence » is represented by F, with y=1.

A Iike result holds also if I=11. By (36) the only pair of numbers (35)
with the difference 11 is the pair 186, 175. But 18611 - 2 =98 is not in (35)
and hence is represented by C;. Hence Fy =186 for y=2,

For I=7, it remains to consider #=22 and 238, which zlone exceed
predecessors by 7, as scen from (36). But 238 —7 - 2°=182 is not in (35) and
hence is represented by Cs.

Finally, for [=8, (36) shows that only m =23, 175, 239, and 428 exceed
smaller numbers in (35) by 8. Since Fj is a sum of eight cubes, it does not
represent 23 or 239. Next, 175—8 - 2*=111is not in (35). But 428 —8§ =420,
428 ~8 - 2*=3064, and 428—-8 3*=212 arc all in (35), while 428 <8 - 4¢,
Hence F +#~428.

Lexua 8. Fiywkx®+ly>+Cr represents all positive integers =40,000
when 1=2-6, 9-15, ond k is orbitrary; when I=T if and only if 15k=522;
when 1=8 if and only if 1 =k =23; but not if both k and I exceed 15.

In the final case, F»£15. The first case follows from Lemma 7. Next, let
I=7. Iik=1,Fis 79*+Cs, which represents all integers <40,000 by Lemma
4. If k>22, F=22 requires x=0, whereas 7y°+C;»22 by Lemma 7. It
remains to consider the case /=7, 1<k=22. By Lemma 7, we have oaly to
verify that F=22 has intcgral solutions. When k=7, take x=y=1, since
C; represents 8. When k37, take z=1, y=0, uncc C; represents 22 £,
whichis 20, <22, and #15.

* Finally, let [=8. If k=1, apply Lemma 4. If k>23, F=23 implies
z=0, whereas 8y*+C;#23 by Lemma 7. Hence let 1 <£<23. By Lemma
7, we bave only to verify that F represents 23, 239, 428. If k#=8, takex=1,
3=0; then F=k+C; represents 23, since C; represents 23 —k»15, 22, 23;
F=239, since 239—k is not 231 and is in the interval from 216 to 237 and
hence is represented by C;; F=428, since 428k is not 420 and is in the
interval from 405 to 426 and hence is represented by C:. If k=8, take
z=y=1 and note that C; represents 7, 223, and 413.

Tueorex IL fz3+4-ly3+C; represents ol positive integers if 1=2, 15134,
=10, 15, 20, 25, 30, end if I =3, 1 =£ =9, £5. .

Let neither ¢ nor I be divisible by the prime p=2(mod 3). By §§ 3, 4,
there exists an integer 220 such that (11) holds when i=¢ and such that
§—1la* is not divisible by p. By Lemma 1, there exist integers b and M such
that
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(37 s—l=W+pM, 0<b<pn.

We shall presently choose C and ¢ so that (13) is satisfied. Using also (11)
with i =a, we have
Cp= S I + p*M < 12p*, (C—Dp*"< Cps — I3,
Hence
(C—Dp*~ < M < 12p%.
Write 3 = N46p*. Then
(38) (€ — 1= 6)p™ < N <642, 5=iad+ 10"+ pn(N + 6p™).

(I) Let $=5. As in (21), the condition N=5-22% in Lemma 2 is
satisfied if C—i—620.68148. Since #x1, (13) fails if n=3. Hence n=4.

First, let /=2 and take C=8.68148. Condition (14) gives ¢=35.076.
Hence 34 is the maximum f. It remains to consider integers s satisfying
108<s<C - 5% Since?<5?, C*<5? the radical in (22) is <5'°, and ¢ <16 - 5%
By Lemma 3 with B=10¢, £=2, and s replaced by o, there exists an integer
220 such that

(39) 10¢ = 7 < 10* 4 3(20%)'7%, v =0 -2,

Since 20°<4¢ . 51 we have (24). This proves Theorem II for I=2, 1534,
¢ prime to 5.

Second, let I=3 and take C =9.68148. By (14), #=9.6186. Hence ¢<9.
Since #C?<10%, (22) gives o <31 . 5*<7 - 5. By Lemma 3 with B=10%,
t=3, and s replaced by @,

100 2 » <1040 4 33NV, 7=0c— 3%

Since 307<4%. 5!, (24) holds. This proves Theorem II for I=3, {359,
15,

Finally, if 124, then C210.682, and (14) fails if £z2. But if t=1, we
have the form treated in §4.

(IT) Let p=11. Whether n=3 or n=4, the condition in Lemma 5 is
satisfied if C ! —6=0.006868, as in (33).

First, let #>3. IfI>3 and £ 5, (32) fails. Hence lét I=2, C=8.006363.
Then C?=64.11 and (32) requires that t<6. But (32) holds if #=5 since
(5C?)"17 < 6.844. The only new case is {=5. It remains to consider intcgers
s satisfying 100 =s=C - 11%. We employ (22), (39), and (24): ;

10* < (0.006)11%, o < (20.538)11%, (263)'3 < (9.45)11%,
T<30- 114w 330 113 < 73- 113, 73 < 6000, 7 — w® < 28,000. .
This proves Theorem I1 for ¢=5,[=2.

I R
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Second, let n=4, i=2. Using the same C, we find that (14) holds when
¢=8145. But the proof of Theorem II fails for the first new case =10
when s<C - 11"*. We employ (22), (39), and (24) with the refinement of
replacing 10¢ by 8042. We obtain

o < (25.8682)115, = < (73.576)115, 7 — w* < 163,969,

where the final number is beyond the limit 40,000 of von Sterneck’s table.
7. Generalization of Lemmas 2 and 5. These lemmas can be general-
ized as follows.

Turorem IXXI. If N is ¢ positive inleger divisible by neither 2 nor 3, every
inleger® 223N is represenied by Nyd+6(x*+y2+357), where v, x, ¥, = are in-
tegers andy =0.

As in the proof of Lemma 2 this will follow from

Leusa 9. Every inleger n is congruent module 96 lo Noy*+6p for 0 <y =23,
wilk p in the set (1).

Proof was given in §5 when N=17 (mod 48). It is true by the proof in
Lemma 2 when N =5, 5%, 58=29, 5=1 (mod 48).

If N=41+48], N=5* (mod 16). We saw that the products of the
numbers (4) by 5 are congruent modulo 16 to the same numbers (4) re-
arranged. Hence the same is truc of their products by N. Also 3N =3 - 9=1],
11N =3 (mod 16). Hence the products of all the numbers (1) by N are
congruent modulo 16 to the same numbers (1) rearranged. Multiplication of
(3) by N proves Lemma 9.

For N =37+4-48!, we proceed as in the last part of the proof of Lemma 2.
In 37(248r)=2+8p, p=9+3ir ranges with r over a complete set of
residues modulo 12. Finally, 37g*=g* (mod 12). The lemma follows also for
N=37*=13 (mod 48).

By Lemma 5, the lemma holds when N=11 or 11?=35 (mod 48).

Let N=19448{. The products of the numbers (26) by 3 and hence by
N are congruent modulo 16 to the same numbers rearranged. Since N =1
(mod 3), 32N=32, 64N =64 (mod 96). Since N+5 is divisible by 12, the
product of an even cube by N is congruent to its product by —35 modulo 96.
Hence

N.-6==5-24==24 N -22=(-5)(—8)=40,
N - 143=(—5)(—40)=8 (mod 96).

* Except for ¥N=11, 19, 35, 43 (mod 48), we may replace 23 by 22. But when N =1, S0832
is between 21° and 22° and i not represented by v+ 6(z*+y*+3%). For, that requires 17=S=4,

+=4 (mod 6). But no one of (1/6)(S=4) =4+ 307, (1/6)(5=10F) =16 - 92, (1/6)(S—16") =41 - 239
s & sum of three squares,
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Adding 24 to cach, we get 0, 64, 32, respectively. The lemma follows also
for ¥ = 19:=43 (mod 48).
Let N=23-+48l. Then N=7 (mod 16). Omitting 1, 4, 9 from (1), we get

(40) 2,3,5,6,8,10,11,13, 14,

whose products by 7 are congruent modulo 16 to the same numbers permuted.
For g in (40), the residues modulo 96 of ¥*+Gu are shown in the following
table having the values of i at the top:

o1 2 3 4 S 6 7 § 9 10 1 13 14 15 17 182
1213 20 30 76 41 & 1 29

18 19 26 45 82 47 42 1B S0 85 33

0 31 38 57 % 5 62 70

36 37 44 63 4 €S 91 23 51

4§ © 56 75 16 W T2 T %0 8 35 8 24 40
6 61 68 § 28 8 7

6 67 74 95 34 95 W 25 2 27 10 S S 81 83

s 8 9 46 11 6 14 2

5 85 92 15 52 17 43 n 3

In the body of the table occur 0,1, --,95 with the exception of
0, 32, 64. But 32N =64, 64N =32 (mod 96). We proceed as in the proof of
Lemma 5. Since N +1 is divisible by 12, the product of an even cube by N
is congruent to its negative modulo 96. Hence

6N ==24 22N=8, 18N=40 {mod 96).

Adding 24, we get 0, 32, 64, respectively. The same proof holds for
N =47-+48!. !

For N=7 or 31 (mod 48), the preceding proof is to be modified as for
N=19-+48..

This completes the proof of Theorem III.

If 0<% <23°N in Lemma 9, write I'=y—96. Then

(41) #n= NI+ 6 (mod96), == NIS.

Ii n is negative, write I'=y—96w, and choose a positive integer w so that
n= NI If 5>23°N, take I'=v. In every case, (41) holds. As in the proof

of Lemma 2, this implies

Tuzorex IV. If N is any inleger prime (o 6, every inleger is represented
by NT*+6(xt 4y 4-37), where the integer T may be negative.

8. Representation of all large numbers. We prove the following

theorem,
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Tueorem V. Forl=1,2, 3,4, or 5, Fi=1y*+C; represents all sufficiently
large integers.®

Let 7 be the real ninth root of 12/(6.9+1). Then r>1. The number of
primes =2 (mod 3) which exceed x and are Zrx is known to increase in-
definitely with x. Choose as z the first radical in (42). Hence for 2ll suf-
ficiently large integers n, there exist at least ten primes p such that

B\ P e
s < — :
42) (12 o (6.9+1) » P S

The product of the ten primes exceeds (2/12)1%/% and hence exceeds n if
n>12". Hence not all ten are divisors of n. Henceforth, let  be a prime
>1 not dividing » and satisfying (42). By Lemma 1 there exist integers &
and 3 satisfying

n= 5 (mod p¥), n—IF =pPM, 0<35<p
By (42), (6.9+1)p?=n <12p°. Hence
6.9FDP - Sn—I8=pPM, PMInI2P
Cancellation of factors p? gives
6.9p% < M < 12p°.

Write M =N-+6p%. Then 0.9p'<N<6p%. Let p=11. Then N>22%. By
Lemma 2 with e=0, NV can be represented by y*4-6(d# +d# +d7) withy=0.
If any |d:|= #% then N =G, contrary to the above. Hence in

5 = I+ M = I8 4 6p° + p* + 64°(d7 + 8F + dF)
7
=B+ )P+ X [+ d) + (3 — 4%,

cach cube is 0. This proves Theorem V.
The following second proof applies to numbers exceeding a much smaller
limit. For n sufficiently large, there exist seven primes P satisfying
(43) (#/12)V8 < P < (5/O)", P=2 (mod3), C<12.
The earlier discussion applies when #* is replaced by P* and gives
n=B 4P, M=N+G6P, (C—=1—06)P<N<GP.

* Fori=1, the case of § cubes, see Landau, Mathematische Annalen, vol. 66 (1909), pp. 102-5;
¥ erteilung der Primsahlen, vol. 1, 1909, pp. 555-9. For i=2, Dickwn, Bullclin of the American
Mathematical Socicty, vol. 33 (1927), p. 299.
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Thus N223*Pii
23\?
(44) l+6+(—1-;) =C <12,

which holds if C=I1+6.9. Then by Theorem III, N is represented by
Py +6(d? +df +d2) withy=0. Hence

w4 (P + D [P 49+ (22— ),
=l

where each cube is =0, since each |di| <P=.

We may now readily verify that all integers of a wide range are sums of
eight cubes. For P>1150, (44) is satisfied if C=7.00001. Take n=Cm?.
Then (43) gives

m<PSm, rw(C/ADV, logr = 1.9609862.

Start with m=1500. Then rm=1371.1. The ten primes =2 (mod 3)
between 1371 and 1500 are

1373,1409,1427,1433,1439, 1451, 1481, 1487, 1493, 1499,

Equating the fourth to rm’, we get m’—1567.7. Hence the last seven primes
serve for every m from 1500 to m’. Repeating with m' in place of m, we get
as further P’s 1511, 1523, 1553, 1559. Hence 1487, 1493, 1499, and these
four serve for every m from m’ to 1626.7. We advance similarly to 1705.5,
1751.4, and M =1771.2. But the four primes between 3 and the seventh
prime 1733 serving for the third interval are all =1 (mod 3). We may
employ 41 and the last six of the seven primes, since their product by 41
exceeds the # corresponding to M, since (43) holds when P =412, and since
Lemma 1 holds when p is replaced by any product P of primes each =2
(mod 3). Hence we advance from M to 1637/r=1790.9, and thence to
1823.7 (again using 41%), 1856.5, p~1869.6. Lacking new primes m2
(mod 3), we use P=11 - 167 and note that the product of 11 and the last
six of the seven primes exceeds the » corresponding to p. We therefore
advance to 1882.7. The next 13 steps proceed to 3307.1 by means of primes
only, the number of available new primes being 2,1, 5,7,7,6,4,9,8,7, 11,
12, 10 respectively.

We may also proceed from 1500 to smaller values of m. Without new
device, we reach 1163, For the next step we have available only five primes
1091, 1097, 1103, 1109, 1151, and P =5 - 227, 11 - 101, 23 - 47. The advance
to 1061,/7 = 1160.7 requires the verification that the integers » in the interval
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which are divisible by the five primes and one of the factors of each of the
three P’s are actually sums of 8 cubes. With occasionally a like verification,
we may advance in 26 steps to 821, The next step would involve serious
additional verifications, since there are available only 761, 773, 797, 809,
11 - 71, 17 - 47 as values of P.

The n corresponding to the final m=3821 is 10*7(21,436). Employing
technical theory of primes, Baer® proved that every integer >23 - 10" is a
sum of cight cubes. The interest of our work lies in its very elementary
character.

By two applications of Lemma 6 with #=1, B =8043, we find that every
integer between 8043 and 227, 297, 300 is a sum of eight cubes. This limit
is nearly 49, larger than that obtained by Lemma 3.

* Beitrage sum Waringschen Prodem, Dissertation, Gottingen, 1913,
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