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tWo currently leading theories for the origin of the
solar system—those of Kant and Laplace. According
to Kant, comets formed as part of the primeval solar
nebula, while according to Laplace they originated
independently from the solar system. Newton found
that the distribution of comets’ aphclia and inclina-
tions agrees better with the latter theory, although he
noted thar the problem was unsettled,

These calculations included considerations of the
effect of large Planetary perturbations on the distribu-
tion of cometary orbits: such studies culminated in
1891 in his most famous Paper on perturbations.
During the 1870°s and 1880 Newton accumulated
Statistical data that indicated that long period comets
could be captured by J upiter, shortening their periods,

Newton devoted the last decade of his research
to Bicla's comet and meteor shower, to fireballs, and
10 meteorites. At his death he was probably the
foremost American pioneer in the study of meteors.

Besides his scientific research, Newton was active
in teaching and educational reform. especially about
the metric system. He was a founder of the American
Metrological Society, and he persuaded many manu-
facturers of scientific instruments and publishers of
school arithmetic texts to adopt the system.

In 1368 the University of Michigan awarded Newton
an honorary LL.D. After joining the American
Association for the Advancement of Science in 1850,
he served as the vice-president of its Section A 1875,
and as president of the Association in 1885. He was a
president of the Connecticut Academy of Arts and
Sciences, a member of the American Philosophical
Socicty, and one of the original members of the
National Academy of Sciences. In 1888 the National
Academy awarded him its J. Lawrence Smith Gold
Medal in recognition of his research on metcoroids.
At his death he was the vice-president of the American
Mathematical Society and an associate editor of the
American Journal of Science.

Aside from socicties in the United States, he was
clected in 1860 corresponding member of the British
Association for the Advancement of Science, in 1872
associate of the Royal Astronomical Society of
London, in 1886 foreign honorary fellow of the Royal
Philosophical Society of Edinburgh, and in 1892
forcign member of the Royal Society of London,

Newton's association with Yale and New Haven
was long and rich. He directed the Yale mathematics
department and also the observatory, which he helped
organize in 1882, and he helped build the extensive
collection of meteorites in the Peabody Museum. He
also provided considerable assistance to poor students
who wanted to attend Yale. For a tme he was the
only Democrat on the Yale faculty and became
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alderman in the strongly Republican first ward of New
Haven,
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NEWTON, ISAAC (5. Woolsthorpe, England,
25 December 1642; d. London, England, 20 March
1727), mathematics. dynamics, celestial mechanics,
astronomy, oplics, naturgl philosophy,

Isaac Newton was born a posthumous child, his
father having been buried the preceding 6 October,
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Newton was descended from yeomen on both sides:
there is no record of any notable ancestor. He was born
prematurely, and there was considerable concern for
his survival. He later said that he could have fitted into
a quart mug at birth. He grew up in his father’s
house, which still stands in the hamlet of Woolsthorpe,
near Grantham in Lincolnshire.

Newton's mother, Hannah (née Ayscough), remar-
ried, and Icft her three-year-old son in the care of his
aged maternal grandmother. His stepfather, the
Reverend Barnabas Smith, died in 1653; and Newton’s
mother returned to Woolsthorpe with her three
younger children, 2 son and two daughters. Their
surviving children, Newton's four nephews and
four nieces, were his heirs. One niece, Catherine, kept
house for Newton in the London years and married
John Conduitt, who succeeded Newton as master of
the Mint,

Newton’s personality was no doubt influenced by his
never having known his father. That he was, moreover,
resentful of his mother's second marriage and jealous
of her second husband may be documented by at
least onc entry in a youthful catalogue of sins, writlen
in shorthand in 1662, which records “Threatning my
father and mother Smith to burne them and the house
over them,”!

In his youth Newton was interested in mechanical
contrivances. He is reported to have constructed
a model of a mill (powered by a mouse), clocks,
“lanthorns,” and fiery kites, which he sent aloft to the
fright of his neighbors, being inspired by John Bate's
Mysteries of Nature and Art.* He scratched diagrams
and an architectural drawing (now revealed and
preserved) on the walls and window edges of the
Woolsthorpe house, and made many other drawings
of birds, animals, men, ships, and plants, His early
education was in the dame schools at Skillington and
Stoke, beginning perhaps when he was five. He then
attended the King’s School in Grantham. but his
mother withdrew him from school upon her return to
Woolsthorpe, intending to make him a farmer.
He was, however, uninterested in farm chores,
and absent-minded and lackadaisical. With the encour-
agement of John Stokes, master of the Grantham
school, and William Ayscough, Newton's uncle and
rector of Burton Coggles, it was therefore decided to
prepare the youth for the university. He was admitted
a member of Trinity College, Cambridge, on 5 June
1661 as a subsizar, and became scholar in 1664 and
Bachelor of Arts in 1665.

Among the books that Newton studied while an
undergraduate was Kepler's “optics™ (presumably
the Diopirice, reprinted in London in 1653), He also
began Euchid, which he reportedly found “tnfling,”
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throwing it aside for Schooten's second Latin edition
of Descartes’s Géométrie,® Somewhat later, on the
occasion of his election as scholar, Newton was
reportedly found deficient in Euclid when examined by
Barrow.* He read Descartes’s Géométrie in a borrowed
copy of the Latin version (Amsterdam, 1659-1661)
with commentary by Frans van Schooten, in which
there were also letters and tracts by de Beaune, Hudde,
Heuraet, de Witt, and Schooten himself, Other books
that he studied at this time included Oughtred’s
Clavis, Wallis' Arithmetica infinitorum, Walter
Charleton’s compendium of Epicurus and Gassendi,
Digby's Two Essays, Descartes’s Principia philosophiac
(as well as the Latin edition of his letters), Galileo's
Dialogo  (in  Salusbury's English version)—but
not, apparently, the Discorsi—Magirus’ compen-
dium of Scholastic philosophy, Wing and Streete
on astronomy, and some writings of Henry
More (himself a native of Grantham), with
whom Newton became acquainted in Cambridge.
Somewhat later, Newton read and annotated Sprat’s
History of the Royal Society, the early Philosophical
Transactions, and Hooke’s Micrographia.

Notebooks that survive from Newton’s years at
Trinity include an early one® containing notes in
Greek on Aristotle’s Organon and Ethics, with a
supplement based on the commentarics by Daniel
Stahl, Eustachius, and Gerard Vossius. This, together
with his reading of Magirus and others, @ives evidence
of Newton's grounding in Scholastic rhetoric and
syllogistic logic. His own reading in the moderns was
organized into a collection of “Questiones quaedam
philosophicae,”*® which further indicate that he had
also read Charleton and Digby. He was familiar with
the works of Glanville and Boyle, and no doubt
studied Gassendi's epitome of Copernican astronomy,
which was then published together with Galileo's
Sidereus nuncius and Kepler's Diopirice,”

Little is known of Newton's friends during his
college days other than his roommate and onctime
amanuensis Wickins. The rooms he occupied are not
known for certain; and we have no knowledge as to
the subject of his thesis for the B.A., or where he
stood academically among the group who were
graduated with him. He himself did record what
were no doubt unusual events in his undergraduate
career: “Lost at cards twice” and “At the Taverne
twice,"”

For cighteen months, after June 1665, Newton 1s
supposed to have been in Lincolnshire. while the
University was closed because of the plague. During
this time he laid the foundations of his work in
mathematics, optics, and astronomy or celestial
mechanics. It was formerly believed that all of these



NEWTON

discoveries were made while Newton remamed in
seclusion at Woolsthorpe, with only an occasional
excursion into nearby Boothby. During these “two
plague years of 1665 & 1666, Newton later said,
"I was in the prime of my age for invention & minded
Mathematicks & Philosophy more then at any time
since.” In fact, however, Newton was back in
Cambridge on at least one visit between March and
June 1666.* He appears to have written out his
mathematical discoveries at Trinity, where he had
access to the college and University libraries, and then
1o have returned to Lincolnshire to revise and polish
these results, It is possible that even the prism
experiments on refraction and dispersion were made
in his rooms at Trinity, rather than in the country,
although while at Woolsthorpe he may have made
pendulum experiments to determine the gravitational
pull of the earth. The episode of the falling of the
apple, which Newton himself said “occasioned” the
“notion of gravitation,” must have occurred at
either Boothby or Woolsthorpe.*

Lucasian Professor. On | October 1667, some two
years after his graduation, Newton was clected minor
fellow of Trinity, and on 16 March 1668 he was
admitled major fellow. He was created M.A. on
7 July 1668 and on 29 October 1669, at the age of
twenty-six, he was appointed Lucasian professor. He
succeeded Isaac Barrow, first incumbent of the chair,
and it is generally believed that Barrow resigned his
professorship so that Newton might have i.10

University statutes required that the Lucasian
professor give at least one lecture a weck in cvery term.
He was then ordered to put in finished form his ten
(or more) annual lectures for deposit in the University
Library. During Newton’s tenure of the professorship,
he accordingly deposited manuscripts of his lectures
on optics (1670-1672), arithmetic and algebra
(1673-1683), most of book I of the Principia
(1684-1685), and “The System of the World™ (1687).
There is, however, no record of what lectures, if any,
he gave in 1686, or from 1688 until he removed to
London carly in 1696. In the 1670° Newton
attempted unsuccessfully to publish his annotations
on Kinckhuysen’s algebra and his own treatise on
fluxions. In 1672 he did succeed in publishing an
mmproved or corrected edition of Varenius® Geographia
generalis, apparently intended for the use of his
students,

During the years in which Newton was writing the
Principia, according to Humphrey Newton'’s recol-
lection,** “he seldom left his chamber except at term
time, when he read in the schools as being Lucasianus
Professor, where so few went 1o hear him, and fewer
that understood him, that ofttimes he did in 2 manner.
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for want of hearers, read to the walls.” When he
lectured he “usually staid about half an hour; when
he had no auditors, he commonly returned in a 4th
part of that tume or less.” He occasionally received
foreigners “with a great deal of freedom, candour, and
respect.” He “ate sparingly,” and often “forgot to eat
at all,” rarely dining “in the hall, except on some
public days,” when he was apt 1o appear “with shoes
down at heels, stockings untied, surplice on, and his
head scarcely combed.” He “seldom went to the
chapel,” but very often “went to St Mary’s church,
especially in the forenoon. ™12

From time to time Newton went to London, where
he attended meetings of the Royal Society (of which
he had been a fellow since 1672). He contributed
£40 toward the building of the new college library
(1676), as well as giving it various books, He corre-
sponded, both directly and indirectly (often through
Henry Oldenburg as intermediary), with scientists in
England and on the Continent, including Boyle,
Collins, Flamsteed, David Gregory, Halley, Hooke,
Huygens, Leibniz, and Wallis, He was often busy
with chemical experiments, both before and after
writing the Principia, and in the mid-1670's he
contemplated a publication on optics.’ During the
1690's, Newton was further engaged in revising the
Principia for a second edition; he then contemplated
introducing into book IN some selections from
Lucretius and references to an ancient tradition of
wisdom. A major research at this time was the effect
of solar perturbations on the motions of the moon.
He also worked on mathematical problems more or
less continually throughout these years.

Among the students with whom Newton had
friendly relations, the most significant for his lifc and
career was Charles Montague, a fellow-commoner of
Trinity and grandson of the Farl of Manchester; he
“was one of the small band of students who assisted
Newton in forming the Philosophical Society of
Cambridge™* (the attempt to create this society was
unsuccessful). Newton was 2lso on familiar terms with
Henry More, Edward Paget (whom he recommended
for a post in mathematics at Christ’s Hospital),
Francis Aston, John Ellis (later master of Caius), and
J. F. Vigani, first professor of chemistry at Cambridge,
who is said to have eventually been banished from
Newton's presence for having told him “a loose story
about a nun.” Newton was active in defending the
rights of the university when the Catholic monarch
James Il tried t0 mandate the admission of the
Benedictine monk Alban Francis. In 1689, he was
elected by the university constituency to serve as
Member of the Convention Parliament,

While in London as M.P., Newton renewed contact

h
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with Montague and with the Royal Society, and met
Huygens and others, including Locke, with whom he
thereafier corresponded on theological and biblical
questions, Richard Bentley sought Newton's advice
and assistance in preparing the inaugural Boyle
Lectures (or sermons), entitled “The Confutation
of Atheism™ and based in part on the Newtonian
system of the world.

Newton also came to know two other scientists,
each of whom wanted to prepare a second edition of
the Principia. One was David Gregory, a professor at
Edinburgh, whom Newton helped to obtain a chair
at Oxford, and who recorded his conversations with
Newton while Newton was revising the Principia
in the 1690's. The other was a refugee from
Switzerland, Nicolas Fatio de Duillier, advocate of a
mechanical explanation of gravitation which was at
onc ime viewed kindly by Newton. Fatio soon became
perhaps the most intimate of any of Newton's friends.
In the carly autumn of 1693, Newton apparently
suffered a severe attack of depression and made
fantastic accusations against Locke and Pepys and
was said to have lost his reason.'®

In the post-Principia years of the 1690's, Newton
apparently became bored with Cambridge and his
scientific professorship. He hoped to get a post that
would take him elsewhere. An attempt to make him
master of the Charterhouse “did not appeal to him™ ¢
but eventually Montague (whose star had risen with
the Whigs' return to power in Parliament) was
successful in obtaining for Newton (in March 1696)
the post of warden of the mint. Newton appointed
William Whiston as his deputy in the professorship.
He did not resign officially until 10 December 1701,
shortly afler his sccond election as M.P. for the
university.*?

Mathematics. Any summary of Newton’s contri-
butions to mathematics must take account not only
of his fundamental work in the calculus and other
aspects of analysis—including infinite series (and most
notably the general binomial expansion)—but also his
activity in algebra and number theory, classical and
analytic geometry, finite differences, the classification
of curves, mcthods of computation and approxi-
mation, and cven probability.

For three centurics, many of Newton's writings on
mathematics have lain  buried, chiefly in the
Portsmouth Collection of his manuscripts, The major
paris ar¢ now being published and scholars will
shortly be able 10 trace the evolution of Newton's
mathematics in detail.*® It will be possible here only
to indicate highlights, while maintaining a distinction
among four levels of dissemination of his work:
(1) writings printed in his lifctime, (2) writings
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circulated in manuscript, (3) writings hinted at or
summarized in corre¢spondence, and (4) writings
that were published only much later. In his own day
and afterward, Newton influenced mathematics
“following his own wish,” by “his c¢reation of the
fluxional calculus and the theory of infinite series,”
the “two strands of mathematical technique which he
bound inseparably together in  his ‘analytick’
method.”™** The following account therefore empha-
sizes these two topics.

Newton appears to have had no contact with higher
mathematics until 1664 when—at the age of twenty-
one—his dormant mathematical genius was awakened
by Schooten’s ““Miscellanies” and his edition of
Descartes’s Géométrie, and by Wallis' Arithmetica
infinitorum (and possibly others of his works).
Schooten’s edition introduced him to the mathematical
contributions of Heuraet, de Witt, Hudde, De Beaune,
and others; Newton also read in Viéte, Qughtred, and
Huygens. He had further compensated for his carly
neglect of Euclid by careful study of both the Elements
and Data in Barrow’s edition.

In recent years® scholars have come to recognize
Descartes and Wallis as the two “great formative
influences™ on Newton in the two major areas of his
mathematical achievement: the calculus, and analytic
geometry and algebra. Newton's own copy of the
Géomérrie has lately turned up in the Trinity College
Library: and his marginal comments are now seen to
be something quite different from the general
devaluation of Descartes’s book previously supposed.
Rather than the all-inclusive “Error. Error. Non est
geom.” reported by Conduitt and Brewster, Newton
merely indicated an “Error™ here and there, while the
occasional marginal entry “non geom.” was used to
note such things as that the Cartesian classification of
curves is not really geometry so much as it is algebra.
Other of Newton's youthful annotations document
what he learned from Wallis, chiefly the method of
“indivisibles,""#1

In addition to studying the works cited, Newton
encountered the concepts and methods of Fermat and
James Gregory. Although Newton was apparently
present when Barrow *“read his Lectures about
motion,” and noted™ that they “might put me upon
taking these things into consideration,” Barrow's
influence on Newton’s mathematical thought was
probably not of such importance as is often
supposed.

A major first step in Newton's creative mathe-
matical life was his discovery of the general binomial
theorem, or expansion of (a -+ b)", concerning which
he wrote, “In the beginning of the year 1665 I found
the Method of approximating series & the Rule for
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reducing any dignity [power] of any Binomial into
such a series. . . "% He further stated that:

In the winter between the years 1664 & 1665 upon
reading Dr Wallis’s Arithmetica Infinitorsm & trying
1o interpole his progressions for squanng the circle
[that is, finding the area or cvaluating of* (1 — x3)1 dy),
I found out another infinite series for squaring the
agrcle & then another infinite series for squaring the
Hyperbola, . . %

On 13 June 1676, Newton sent Oldenburg the
"Epistola prior” for transmission to Leibniz. In this
communication he wrote that fractions “are reduced
to infinite serics by division; and radical quantities
by extraction of r0o1s,” the latter

- - - much shortened by this theorem,

P+PQ*'~.P'7-;-£'AQ+£'-2;—"BQ
m-—2n m-—3n
P G0+ = TDQ + -4,

where P+ PQ signifies the qQuantity whose root or
even any power, or the root of a power, is to be found;
P significs the first term of that quantity, Q the remain.
ing terms divided by the first, and mn/n the numerical
index of the power of P + PQ, whether that power is
integral or (so to speak) fractional, whether positive
or negative.®$

A sample given by Newton is the expansion

4 2
3 & - ¥
VIET X or (¢ +X3)2 = ¢ 4 B
x* Sif Txi §
Flee T TR | gsge e
where
Pme, Q= meil; wa2 “ad
" 1
A=P = (N ~¢, p= (mjn) AQ — x32,
- — N A
C = —5=—B50 X48c3,
and 50 on.

Other examples include

al,
0O?*—a%y) 3

1
(‘.:. X ¢.(x = _‘.'.Js'
-3
(d +¢) 5.
What is perhaps the most important general statement

made by Newton in this letter is that in dealing with
infinite series all Operations are carried out “in the

46

NEWTON

symbols just as they are commonly carried out ip
decimal numbers.”

Wallis had obtained the Quadratures of certain
curves (that is, the areas under the curves), by a
technique of indivisibles yielding of* (1 — x¥)= gx
for certain positive integral values of n(0, 1, 2, 3);
in attempting to find the quadrature of a circle
of unit radius, he had sought to evaluate the

integral of* (1 — x*)# dx by interpolation. He showed
that
4 | 3-3:5-5-7.7...

T off(l~xYdx 2:4-4-6-6-8-.
Newton read Wallis and was stimulated to go con-
siderably further, frecing the upper bound and then
deriving the infinite series expressing the area of a
quadrant of a circle of radius x-

T
I T BT
In so freeing the upper bound, he was led to recognize

that the terms, identified by their powers of x, dis-
played the binomial coefficients, Thus, the factors

b4, 3% td5 . .. stand out plainly as M. @, @,
(Ds..., in the special case ¢ = 1 in the generalization

J'u pdr=x— (1) .1y (3)-3x

, 5 g.1vs, ...
(;)7)(7-{—5 g+,
where

—99—D---(g—n+1)

n!

()

In this way, according to D. T, Whiteside, Newton
could begin with the indefinite integral and, “by
differentiation in a Wallisian manner,” proceed to
a straightforward derivation of the “series-expansion
of the binomial (1 — x¥)e _ virtually in its modern
form,” with “l x* | implicitly less than unity for con-
vergence.” As a check on the validity of this general
series expansion, he “compared its particular expan-
sions with the results of algebraic division and square-
root extraction (¢ — 1).” This work, which was
done In the winter of 1664-1665, was later presented
in modified form at the beginning of Newton’s De
analysi.

He correctly summarized the stages of development
of his method in the “Epistola posterior” of
24 October 1676, which —as before—he wrote for
Oldenburg to transmit to Leibniz-
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At the beginning of my mathematical studics, when [
nad et with the works of our celebrated Wallis, on
considering the series, by the intercalation of which he
himsell exhibats the area of the circle and the hyperbola,
the fact that in the series of curves whose common base
or axis is x and the ordinates

. L] : El s 3
=2, (=20, (2%, (122, (1223, (1—a7),
etc,, if the areas of every other of them, namely

X, x—§2%, x—§2043x%, x—F+ 3037, ete.

could be interpolated, we would have the areas of the
intermediate ones, of which the first (I - x)¥ is the
circle. . . .*

The importance of changing Wallis® fixed upper

boundary to a free variable x has been called “the crux °

of Newton's breakthrough,” since the *‘various
powers of x order the numerical coefficients and reveal
for the first time the binomial character of the
sequence.™*?

In about 1665, Newton found the power series
(that 15, actually determined the sequence of the
coefficients) for

SINLX —= x4 fx3 - xS 40,

and—most important of all—the logarithmic series.
He also squared the hyperbola (1 + x) — 1, by
tabulating

J 1+ eyde

for r=0,1,2 -
polating

- in powers of x and then inter-
[Fa + )1 de
o.

From his table, he found the square of the hyperbola
in the series

-1

X X b iyl ool
Rl T S T 2
A
-——8'_9..__13_{._...‘

which is the scries for the natural logarithm of 1 + x.
Newton wrote that having “found the method of
infinite series,” in the winter of 16641665, “in summer
1665 being forced from Cambridge by the Plague
I computed the area of the Hyperbola at Boothby . . .
to two & fifty figures by the same method, ™3¢

At about the same time Newton devised “*a com-
pletely general differentiation procedure founded on
the concept of an indefinitely small and ultimately
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vanishing clement o of a variable, say, x.” He first
used the notation of a “little zero™ in September 1664,
in notes based on Descartes’s Géométrie, then extended
it to various kinds of mathematical investigations.
From the derivative of an algebraic function f(x)
conceived (“essentially”™) as

mjuu +0) — £ \

he developed general rules of differentiation.

The next year, in Lincolnshire and separated from
books, Newton developed a new theoretical basis for
his techniques of the calculus. Whiteside has sum-
marized this stage as follows.:

[Newton rejected] as his foundation the concept of
the indefinitely small, discrete increment in favor of
that of the “fluxion™ of a variable, a finite instantancous
speed defined with respect to an independent, coaven-
tional dimension of time and on the geometrical model ;
of the line-segment: in modern language, the fluxion of *
the variable » with regard to independent time-variable ¢
is the “speed" dx/dt, ™

Prior to 1691, when he introduced the more familiar
dot notation (x for dx/dt, y for dy/dt, # for dz/dr; then
X for d*x[dr®, 3 for d*yldr®, 3 for d%z/di*), Newton
generally used the letters p, g, r for the first derivatives
(Leibnizian dx/dt, dy/dt, dz|dt) of variable quantities
x, ¥, z, with respect to some independent variable 7.
In this scheme, the “little zero” o was “an
arbitrary increment of time,”** and op, oq, or were
the corresponding “moments,” or incremeats of the
variables x, y, = (later these would, of course, become
oXx, oy, 0z).** Hence, in the limit (o — zero), in the
modern Leibnizian terminology

glp = dyjdx

where “we may think of the increment o as ahsorbed
into the limit ratios.”™ When, as was often done for the
sake of simplicity, x itself was taken for the inde-
pendent time variable, since x =7, then p = x =
dxldx = 1, g = dyldx, and r = dz/dx.

In May 1665, Newton invented a “true partial-
derivative  symbolism,” and he “widely used the
notation p and p for the respective homogenized
derivatives x(dp/dx) and x*(d%p/dx?),” in particular
to cxpress the total denivative of the function

rip = dzldx,

before “breaking through . . . to the first recorded use
of a true partial-derivative symbolism.” Armed with
this tool, he constructed “the five first and second
order partial derivatives of a two-valued function™
and composed the fluxional tract of October 1666.%
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Extracts were published by James Wilson in 1761,
although the work as a whole remained in manuscript
until receatly, ** Whiteside epitomizes Newton's work
during this period as follows:

In two short years (summer 1664-October 1666)
Newton the mathematician was bom, and in a sense
the rest of his creative life was largely the working out,
in calculus as in his mathematical thought in general,
of the mass of burgeoning ideas which sprouted in his
mind on the threshold of intellectyal maturity. There
followed two mathematically dull years,2*

From 1664 to 1669, Newton advanced to “more
general considerations,” namely that the derivatives
and integrals of functions might themselves be
expressed as expansions in infinite series, specifically
power serics. But he had no general method for
determining the “limits of convergence of individual
series,” nor had he found any “valid tests for such
convergence."*® Then, in mid-1669, he came upon
Nicolaus Mercator's Logarithmotechnica, published in
September 1668, of which “Mr Collins a few months
after sent a copy . . . to Dr Barrow,” as Newton later
recorded.” Barrow, according to Newton, “replied
that the Method of Series was invented & made
general by me about two years before the publication
of " the Logarithmotechnica and “at the same time,”
July 1669, Barrow sent back 10 Collins Newton's
tract De analysi.

We may easily imagine Newton's concern for his
priority on reading Mercator's book, for here he found
in print “for all the world to read . . . his [own]
reduction of log(1 4 a) to an infinite scries by
continued division of 1 4 & into | and successive
integration of the quotient term by term,™** Mercator
had presented, among other numerical examples, that
of log(l.1) calculated to forty-four decimal places,
and he had no doubt calculated other logarithms over
which Newton had spent untold hours. Newton
might privately have been satisfied that Mercator's
exposition was “cumbrous and inadequate” when
compared to his own, but he must have been immeas-
urably anxious Jest Mercator Zeneralize a particular
case (if indeed he had not alrcady done s0) and come
upon Newlon’s discovery of “‘the extraction of roots
in such series and indeed upon his cherished binomial
expansion.”** To make matters worse, Newton may
have heard the depressing news (as Collins WTOIE to
James Gregory, on 2 February 1668/1669) that “the
Lord Brouncker asserts he can turne the square roote
Into an infinite Series.”

To protect his priority, Newton hastily set to work
o wrile up the results of his early rescarches into the
preperties of the binomial expansion and his methods
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for resolving “affected™ cquations, revising and
amplifying his results in the course of composition.
He submitted the tract, De analysi per aequationes
infinitas, to Barrow, who sent it, as previously
mentioned, to Collins.

Collins communicated Newton’s results to James
Gregory, Sluse, Bertet. Borelli, Vernon, and Strode,
among others.*® Newton was at that time unwilling
to commit the tract to print; a year later, he incor-
porated its main parts into another manuscript, the
Methodus fluxionum et serierum infinitarum, The
original Latin text of the tract was not printed until
long afterward.+ Among those who saw the manu-
script of De analysi was Leibniz, while on his second
visit to London in October 1676; he read Colling’
copy, and transcnibed portions. Whiteside concurs
with “the previously expressed opinions of the two
eminent Leibniz scholars, Gerhardt and Hofmann,”
that Leibniz did not then “annex for his own purposes
the fluxional method briefly exposed there,™ but “was
interested only in Newton's serjes cXpansions,’ ¢

The Methodus fluxionum provides a better display
of Newton's methods for the fluxional calculus in its
generality than does the De analysi. In the preface to
his English version of the Methodus fluxionum, John
Colson wrote:

The chief Principle, upon which the Method of
Fluxions is here built, is this very simple one, taken
from the Rational Mechanicks; which 5, That Mathe-
matical  Quantity, particularly Extension, may be
conceived as generated by continued local Motion;
and that all Quantitics whatever, at least by analogy
and accommodation, may bes conceived as gencrated
after a like manner, Conscquently there must be
comparative Velocities of increase and decrease,
during such scaerations, whose Relations are fixt and
determinable, and may therefore (problematically) be
proposed to be found,

Among the problems solved are the differentiation of
any algebraic function f(x); the “method of quad-
ratures,” or the integration of such a function by the
inverse process; and, more generally, the “inverse
method of tangents,” or the solution of a first-order
differential equation,

As an cxample, the “moments™ Xo and jo are
“the infinitely little accessions of the flowing
quantitics [variables] x and - that is, their increase in
“infinitely small portions of time." Hence, after
“any infinitely small interval of time™ (designated
by o), x and y become x + %o and ¥ -+ yo. If one
substitutes these for x and » in any given equation,
for instance

F—axt 4 oaxy —y* =0,

—— e
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“tivere will anse”

X 4 3xox® 4+ 3x*oox + X%
— ax? — Jaxox — axoo
axyoo
— ¥* — 3yoy* — 3y%o0y — 3%0* = 0.
The terms x* — ax? 4 axy — »* (of which “by

supposition” the sum = 0) may be cast out; the
remaining terms are divided by o, to get

+ axy | axoy | ayox |

33 4 3%%0x + xoo — 2axx — ax®o + axy
+ ayx + axyo — 3* — 3yfoy — oo = 0.

“But whereas o is suppos’d to be infinitely little, that
it may represent the moments of quantities, conse-
quently the (erms that are multiplied by it will be
nothing in respect of the rest."** These terms are
therefore “rejected,” and there remains

3x*x — 2axx  axy + ayx — 3yt = 0.
It is then casy to group by x and y to get
X(3x* — 2ax + ay) + plax —3)*) =0

which is the same result as finding dy/dx afler
differentiating

x? — ax® 4 axy — y* = 0.4
Problem II then reverses the process, with
Ixx® — 2axx + axy + ayx — 3yt = 0

being given. Newton then integrates term by term to
get x° — ax® 4 axy — 3* = 0, the validity of which
he may then test by differentiation.

In an example given, ¢ is an “infinitely small
quantity” representing an increment in  “time,”
whereas, in the carlier De analysi, o was an increment
x (although again infinitely small). In the manu-
script. as Whiteside points out, Newton canceled
“the less precise equivalent “indefinité” (indefinitely)”
in favor of “infinitely.””# Certainly the most significant
feature is Newton’s general and detailed treatment of
“the converse operations of differentiation and inte-
gration (in Newton's terminology, constructing the
‘fluxions’ of given ‘fluent’ quantities, and vice versa),”
and “the novelty of Newton's . . . reformulation of the
calculus of continuous increase,”4?
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Other illustrations given by Newton of his method
are determining maxima and minima and drawing
tangents 1o curves at any point, In dealing with
maxima and minima, as applied to the forcgoing
cquation, Newton invoked the rule (Problem I1I):

When a quantity 1s the greatest or the least that it
can be, at that moment it neither flows backwards nor
forwards: for if it flows forwards or increases it was
fess, and will presently be greater than it is; and on
the contrary if it flows backwards or decreases, then
it was greater, and will presently be less than it is.

In an example Newton sought the “greatest value
of x™ in the equation

x* — ax? + axy — y* w 0.

Having already found “the relation of the fluxions of
x and »," he set x — o. Thus, j{ax — 3y?) =0, or
3y* = ax, gives the desired result since this relation
may be used to “exterminate either x or y out of the
primary equation; and by the resulting equation you
may determine the other, and then both of them by
~3y* 4 ax = 0. Newton showed how “‘that famous
Rule of Huddenius” may be derived from his own
general method, but he did not refer to Fermat's
earlier method of maxima and minima, Newton also
found the greatest value of y in the cquation

g pegly ubPe
bl s
and then indicated that his method led to the solution
of a number of specified maximum-minimum
problems.

Newton’s shift from a “loosely justified conceptual
model of the ‘velocity’ of a *moveing body’. . ." tothe
postulation of *““a basic, uniformly ‘fluent’ variable of
‘time” as a measure of the ‘fluxions’ (instantancous
‘speeds’ of flow) of a set of dependent variables
which continuously alter their magnitude” may have
been due, in part, to Barrow.®® This concept of a
uniformly flowing time long remained a favorite of
Newton's; it was to appear again in the Principia,
in the scholium following the definitions, as
“mathematical time” (which “of itself, and from its
own nature, flows equably without relation to
anything external”), and in lemma 2, book II (sec
below), in which he introduced quantities “variable
and indetermined, and increasing or decreasing, as it
were, by a continual motion or flux.” He later
explained his position in a draft review of the
Commercium epistolicum (1712),

—xxVay +xx=0

1 consider time as flowing or increasing by continual
flux & other quantitics as increasing continually in
time & from the fluxion of ume 1 give the name of
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fluxions to the velocitys with which all other quantitics
increase. Also from the moments of time I give the name
of moments to the parts of any other quantities gen-
erated in moments of time, | expose time hy any
quantity flowing uniformly & represent its fluxion by
an unit, & the fluxions of other quantities I represent
by any other fit symbols & the fluxions of their Auxions
by other fit symbols & the fluxions of those fluxions by
others, & their moments generated by those fluxions |
represent by the symbols of the fluxions drawn into the
letter o & its powers &, &%, &c: vizt their first moments
by their first fluxions drawn into the Jetter 0, their
second moments by their second fluxions into o, & so
on. And when I am investigating a truth or the solution
of a Probleme T use all sorts of approximations &
negiect to write down the letter o, but when | am
demonstrating a Proposition | always write down the
letter 0 & proceed exactly by the rules of Geometry
without admitting any approximations, And I found
the method not upon summs & differences, but upon
the solution of this probleme: By knowing the Quantities
gencrated in time to find their fluxions. And this is done
by finding not prima momenta but primas momentorum
nascentium rationes.

In an addendum (published only in 1969) to the
1671 Methodus fuxionum,* Newion developed an
alternative geometrical theory of “first and [last™
ratios of lines and curves. This was later partially
subsumed into the 1687 edition of the Principia,
section 1, book I, and in the introduction 1o the
Tractatus de  quadraturg curvarum (published by
Newton in 1704 as one of the two mathematical
appendixes 1o the Opricks). Newton had intended to
1ssue a version of his De quadratura with the Principia
on several occasions, both before and after the 1713
second edition, because, as he once wrote, “by the
help of this method of Quadratures 1 found the
Demonstration of Kepler's Propositions that the
Planets revolve in Ellipses describing . . . areas
proportional to the times,” and again, “By the inverse
Method of fluxions I found in the year 1677 the
demonstration of Kepler's  Astronomical Propo-
sition, , . "

Newton began De quadratura with the statement
that he did not use infinitesimals, “in this Place,”
considering “mathematical Quantities . . . not as
consisting of very small Parts; but as describ'd by a
continued Motion,"* Thus lines are gencrated “not
by the Apposition of Parts, but by the continued
Motion of Points,” areas by the motion of lines,
sehids by the motion of surfaces, angles by the rotation
of the sides, and “Portions of Time by a continual
Flux." Recognizing that there are different rates of
increase and decrease, he called the “Velocities of the
Motions or Increments Fluxions, and the generated
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Quantities Fluents,” adding that “Fluxjons are ver:
nearly as the Augments of the Fluents generated i
equal but very small Particles of Time, and, to speal
accurately, they are in the first Ratio of the nascen
Augments; but they may be expounded in any Line:
which are proportional to them.™

As an example, consider that (as in Fig. 1) area:
ABC, ABDG are described by the uniform motion of

v A g b
G D d
FIGURE 1

the ordinates BC, BD moving along the base in the
direction AB. Suppose BC to advance to any ncw
position be, complete the paraliclogram BCED, draw
the straight line VTH “touching the Curve in €, and
meeting the two lines bc and BA [produced) in T
and V. The “augments™ generated will be: Bb, by AB:
Ee, by BC; and Cc, by “the Curve Line ACe.” Hence,
“the Sides of the Triangle CET arc in the Jirst Ratio
of these Augments considered as nascent.” The
“Fluxions of AB, BC and AC™ are therefore “as the
Sides CE, ET and CT of that Triangle CET™ and “may
be expounded™ by those sides, or by the sides of the
triangle ¥BC, which is similar to the triangle CET,
Contrariwise, one can “take the Fluxions in the
ultimate Ratio of the evancscent Parts.” Draw the
straight line Ce; produce it to K. Now let bc return
to its original position BC; when “C and ¢ coalesce,™
the line CK will coincide with the tangent CH; then,
“the evanescent Triangle CEc in its ultimate Form
will become similar 1o the Triangle CET, and its
evanescent Sides CE, Fe, and Ce will be wltimately
among themselves as the sides CE, E7 and CT of the
other Triangle CET. are, and therefore the Fluxions
of the Lines AB, BC and AC are in this same Ratio.”
Newton concluded with an admonition that for the
line CK not to be “distant from the Tangent CH by
a small Distance,” it js accessary that the points ©
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and ¢ not be scparated “'by any small Distance.” If the
points C and ¢ do not “coalesce and exactly coincide,”
the lines CK and CH will not coincide, and “the
ultimate Ratios in the Lines CE, Ec, and C¢™ cannot
be found. In short, “The very smallest Errors in
mathematical Matters are not to be neglected.”**

This samc topic appears in the mathematical
introduction (section 1, book I) to the Principia,
in which Newton stated a sct of lemmas on limits of
geometrical ratios, making a distinction between the
limit of a ratio and the ratio of limits (for example,
as x — 0, lim, x*/x — 0; but lim. x®/lim. x — 0/0,
which is indelerminate).

The connection of fluxions with infinite series was
first publicly stated in a scholium to proposition 11 of
De quadratura, which Newton added for the 1704
printing, “We said formerly that there were first,
second, third, fourth, &c. Fluxions of flowing Quan-
tities. These Fluxions are as the Terms of an infinite
converging series.” As an example, he considered =~ to
“be the flowing Quantity™ and “by flowing™ to become
(z + 2)*; he then demonstrated that the successive
terms of the expansion arc the successive fluxions:
“The first Term of this Series z" will be that
flowing Quantity; the second will be the first
Increment or Difference, to which consider’d as
nascent, its first Fluxion is proportional . . . and o on
in infinitum.” This clearly exemplifies the theorem
formally stated by Brook Taylor in 1715; Newton
himself explicitly derived it in an unpublished first
version of De quadratura in 1691, It should be noted
that Newton here showed himself to be aware of the
importance of convergence as a necessary condition
for expansion in an infinite scries.

In describing his method of quadrature by “first and
last ratos,” Newton said:

Now to insutute an Analysis after this manner in
finite Quantities and investigate the prime or wltimate
Ratios of these finite Quantitics when in their nascent
or cvanescent State, is consonant to the Geometry of
the Ancients: and 1 was willing [that is, desirous) to
show that, in the Method of Fluxions, there & no
necessity of introducing Figures infinitely small into
CGeometry, ™

Newton's statement on the geometry of the ancients
1s typical of his lifelong philosophy. In mathematics
and in mathematical physics, he believed that the
results of analysis—the way in which things were
discovered—should ideally be presented synthetically,
in the form of a demonstration. Thus, in his review
of the Commercium epistolicum (published anony-
mously), he wrote of the methods he had developed
in De guadratura and other works as follows:

1
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By the help of the new Analysis Mr. Newton found
out most of the Propositions in his Principia Philo-
sophiac: but because the Ancients for making things
certain admitted nothing into Geometry before it was
demonstrated  synthetically, he demonstrated the
Propositions synthetically, that the Systeme of the
Heavens might be founded upon good Geometry. And
this makes 1t now difficult for unskilful Men to see
the Analysit by which those Propositions were found
0\“-“

As to analysis itself, David Gregory recorded that
Newton once said “Algebra is the Analysis of the
Bunglers in Mathematicks.”** No doubt! Newton did,
nevertheless, devote his main professorial lectures of
16731683 to algebra,® and thesc locturcs wore
printed 2 number of times both during his lifetime and
after.®™ This algebraical work includes, among other
things, what H. W. Turnbull has described as a
general method (given without proof) for discovering
“the rational factors, if any, of a polynomial in one
unknown and with integral coefficients”; he adds that
the “most remarkable passage in the book™ is
Newton's rule for discovering the imaginary roots of
such a polynomial.®® (There is also developed a set
of formulas for “the sums of the powers of the roots
of a polynomial equation,”)*®

Newton's preference for geometric methods over
purely analytical ones is further cvident in his
statement that “Equations are Expressions of
Arithmetical Computation and properly have no place
in Geometry.” But such assertions must not be read
out of context, as if they were pronouncements about
algebra in general, since Newton was actually
discussing various points of wview or standards
concerning what was proper to geometry. He
included the posiions of Pappus and Archimedes
on whether to admit into geometry the conchoid for
the problem of trisection and those of the “new
generation of geometers” who “welcome™  into
geometry many curves, conics among them.®

Newton's concern was with the hmits 1o be set m
geometry, and in particular he took up the question
of the legitimacy of thc conic scctions in solid
geometry (that is, as solid constructions) as opposed
to their illegitimacy in plane geometry (since they
cannot be generated in a plane by a purcly gcometric
construction). He wished to divorce synthetic geo-
metric considerations from their “analytic™ algebraic
counterparts. Synthesis would make the cllipse the
simplest of conic sections other than the circle;
analysis would award this place to the parabola.
“Simplicity in figures,” he wrote, “is dependent on the
simplicity of their genesis and conception, and it is
not its equation but its description (whether
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geometrical or mechanical) by which a figure is
generated and rendered easy to conceive. ™52

The “written record of [Newton's] first researches
in the interlocking structures of Cartesian co-
ordinate geometry and infinitesimal analysis™®
shows him to have been establishing ““the foun-
dauons of his mature work in mathematics”
and reveals “for the first time the true magnitude
of his genius."** And in fact Newton did con-
tribute significantly to analytic geometry. In his
1671 Methodis fluxionum, he devoted “Prob. 4: To
draw tangenls to curves” to a study of the different
ways in which tangents may be drawn “according to
the various relationships of curves to straight lines,”
that is, according to the “modes” or coordinate
systems in which the curve is specified. 5%

Newton proceeded “by considering the ratios of
limit-increments of the co-ordinate variables (which
are those of their fluxions),”* His “*Mode 3" consists
of using what arec now known as standard bipolar
coordinates, which Newton applied to Cartesian
ovals as follows: Let x, y be the distances from a pair
of fixed points (two “poles™): the equation
@ L (efd)x — y =0 for Descartes’s “second-order
ovals” will then yield the fluxional relation
t(efd)x — 3 = 0 (in dot notation) or +-em/d — n = 0
(in the notation of the original manuscript, in which
mi, n are used for the fluxions x, y of x, y). When
d = e, “the curve turns out to be a conic.” In
“Mode 7, Newton introduced polar coordinates for
the construction of spirals; “the equation of an
Archimedean spiral” in these coordinates becomes
(a/b)x = y, where y is the radius vector (now usually
designated » or p) and x the angle ($ or ).

Newton constructed equations for the transfor-
mation of coordinates (as, for example, from polar
to Cartesian), and found formulas in both polar and
rectangular coordinates for the curvature of & variety
of curves, including conics and spirals, On the basis
of these results Boyer has quite properly referred to
Newton as “an originator of polar coordinates."*?

Further geometrical results may be found in
Evnumeratio linearum tertii ordinis, first written in 1667
or 1668, and then redone and published, together with
De quadratura, as an appendix to the Opticks (1704), %%
Newton devoted the bulk of the tract to classifying
cubic curves into seventy-two “Classes, Genders,
or Orders, according to the Number of the Dimen-
sions of an Equation, expressing the relation between
the Ordinates and the Abscissae; or which is much at
one [that is, the same thing), according to the Number
of Points in which they may be cut by a Right Line.”

In a brief fifth section, Newton dealt with “The
Generation of Curves by Shadows,” or the theory of
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projections, by which he considered the shadows
produced “by a luminous point™ as projections “on
an infinite plane.” He showed that the “shadows”
{or projections) of conic sections are themselves conic
sections, while “those of curves of the second genus
will always be curves of the sscond genus; those of the
third genus will always be curves of the third aenus;
and so on ad infinitum.” Furthermore, “in the same
manner as the circle, projecting its shadow, generates
all the conic sections, so the five divergent parabolae,
by their shadows, generate all the other curves of the
second genus.” As C. R. M. Talbot observed, this
presentation is “substantially the same as that which
is discussed at greater length in the twenty-second
lemma [book 111, section 5] of the Principia, in which
it is proposed to ‘transmute’ any rectilinear or curvi-
linear figure into another of the same analytical order
by means of the method of projections.”*

The work ends with a brief supplement on “The
Organical Description of Curves,” leading to the
“Description of the Conick-Section by Five Given
Points” and including the clear statement, “The Use
of Curves in Geometry is, that by their Intersections
Problems may be solved” (with an cxample of an
equation of the ninth degree). Newton in this tract
laid “the foundation for the study of Higher Plane
Curves, bringing out the importance of asymptotes,
nodes, cusps,” according to Turnbull, while Boyer
has asserted that it “is the earliest instance of a work
devoted solely to graphs of higher plane curves in
algebra,” and has called attention to the systematic
use of two axes and the lack of “hesitation about
negative coordinates,”?®

Newton’s major mathematical activity had come
to a halt by 1696, when he left Cambridge for London.
The Principia, composed in the 1680's, marked the
last great exertion of his mathematical genius,
although in the early 1690°s he worked on porisms and
began a “Liber geometriae,” never completed, of
which David Gregory gave a good description of the
planned whole.™ For the most part, Newton spent the
rest of his mathematical life revising earlier works.

Newton’s other chief mathematical activity during
the Londen years lay in furthering his own position
against Leibniz in the dispute over priority and
originality in the invention of the calculus. But he did
respond elegantly to a pair of challenge problems set
by Johann [I] Bernoulli in June 1696. The first of
these problems was ‘“‘mechanico-geometrical,” to
find the curve of swiftest descent. Newton's answer was
briel: the “brachistochrone™ is a cycloid. The second
problem was to find a curve with the following
property. “that the two segments [of a right line
drawn from a given point through the curve], being



FIGURE 2. Newton's drawing of the crucial experiment
(University Library, Cambridge, MS Add, 4002, fol. 128a).
Newton himsell was a careful draftsman, but the diagrams
hiave become so corrupt in later editions as to violate the
fundamental laws of optics.

raised to any given power, and taken together, may
make everywhere the same sum.”**

Newton’s analytic solution of the curve of least
descent is of particular interest as an carly example of
what became the calculus of variations. Newton had
long been concerned with such problems, and in the
Principia had included (without proof) his findings
concerning the solid of least resistance. When David
Gregory asked him how he had found such a solid,
Newton sent him an analytic demonstration (using
dotted fluxions), of which a version was published
as an appendix to the second volume of Motte’s
English translation of the Principia.”™

Optics. The study of Newton’s work in optics has
to date generally been limited to his published letters
relating to light and color (in Philosophical Trans-
acrions, beginning in February 1672), his invention of
a reflecting telescope and “sextant,” and his published
Opricks of 1704 and later edittons (in Latin and
English). There has never been an adequate edition
or a full translation of the Lectiones apticae, Nor,
indeed, have Newton's optical manuscripts as yet
been thoroughly studied, **

Newton's optical work first came to the attention
of the Royal Society when a telescope made by him
was exhibited there. Newton was clected a fellow
shortly thereafter, on 11 January 1672, and responded
by offering the Sccicty an account of the discovery
that had led him to his invention, It was, he proudly
alleged, ““the oddest if not the most considerable detec-
tion yet made in the operations of nature™: the anal-
ysis of dispersion and the composition of white
light.

In the published account Newton related that in
1666 (“at which time | applyed myself to the grninding
of Optick glasses of other figures than Spherical™) he
procured a triangular glass prism, “to try therewith
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the celebrated Phaenomena of Colours.” Light from
a tiny hole in a shutter passed through the prism; the
multicolored image—to Newton’s purported surprise
—was of “an oblong form,” whereas “according to
the received laws of Refraction, 1 expected [it] should
have been circular.” To account for this unexpected
appearance, Newton looked into a number of possi-
bilities, among them that “the Rays, after their
trajection through the Prisme did not move in
curve lines,” and was thereby led to the famous
“experimentum  crucis.”’® In  this cxperiment
Newton used two prisms: the first was em-
ployed to produce a spectrum on an opaque board
(BC) into which a small hole had been drilled; a
beam of light could thus pass through the hole to
a second board (DE) with a similar aperture; in this
way a narrow beam of light of a single color would
be directed to a second prism, and the beam emerging
from the second prism would project an image on
another board (Fig. 2). Thus, all light reaching the final
board had been twice subjected to prismatic dispersion.,
By rotating the first prism “'to and fro slowly about its
Axis,” Newton allowed different portions of the
dispersed light to reach the second prism.

Newton found that the second prism did not
produce any further dispersion of the “homogeneal”™
light (that is, of light of about the same color); he
therefore concluded that “Light it self is a Herero-
geneous mixture of differently refrangible Rays™; and
asserted an exact correspondence between color and
“degree of Refrangibility™ (the least refrangible rays
being “disposed to exhibit a Red colour,” while those
of greatest refrangibility are a decp violet). Hence,
colors “are not Qualifications of Light, derived from
Refractions, or Refiections of natural Bodies,” as
commonly believed, but “Original and connate prop-
erties,” differing in the different sorts of rays.?
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The same experiment led Newton 10 two further
conclusions, both of real consequence. First, he gave
up any hope of “the perfection of Telescopes™ based
on combinations of lenses and turned to the principle
of the reflector; second, he held it to be no longer a
subject of dispute “whether Light be a Body.”
Observing, however, that it “is not so ecasic” to
determine specifically “what Light is," he concluded,
“I shall not mingle conjectures with certainties.”?*

Newton's letter was, as promised, read at the Royal
Society on 6 February 1672, A week later Hooke
'delivered a report in which he criticized Newton for
'asserting a conclusion that did not seem 1o Hooke to
follow necessarily from the experiments described,
which—in any event —Hooke thought too few. Hooke

- had his own theory which, he claimed, could equally
- well explain Newton's experimental results.

In the controversy that followed with Hooke,
Huygens, and others, Newton quickly discovered that
he had not produced a convincing demonstration of
the validity and significance of the conclusions he had
drawn from his experiments. The objection was made
that Newton had not explored the possibility thart
theories of color other than the one he had proposed
might explain the phenomena, He was further
criticized for having favored a corporeal hypothesis
of light, and it was even said that his experimental
results could not be reproduced.

In reply, Newton attacked the arguments about the
“hypothesis™ that he was said to have advanced
about the nature of light, since he did not consider
this issue 10 be fundamental to his interpretation of
the “experimentum crucis.” As he explained in reply
to Pardies™ he was not proposing “an hypothesis,”
but rather “properties of light” which could casily
“be proved™ and which, had he not held them to be
true, he would “rather have . . . rejected as vain and
empty speculation, than acknowledged even as an
hypothesis.” Hooke, however, persisted in  the
argument, Newton was led to statc that he had
deliberately declined all hypotheses so as “to speak
of Light in general terms, considering it abstractly, as
something or other propagated every way in straight
lines from luminous bodies, without determining what
that Thing is.” But Newton’s original communication
did assert, “These things being s0, it can be no longer
disputed, whether there be colours in the dark,
nor. .. perhaps, whether Light bea Body.” In response
1o his critics, he emphasized his use of the word
“perhaps™ as evidence that he was not committed to
one or another hypothesis on the nature of light
itself,”

One consequence of the debate, which was carried
on over a period of four years in the pages of the
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Philosophical Transactions and at meetings of the
Royal Society, was that Newton wrote out a lengthy
“Hypothesis Explaining the Properties of Light
Discoursed of in my Several Papers,”** in which he
supposed that light *“is something or other capable of
exciting vibrations in the aether,” assuming that
“there is an actherial medium much of the same
constitution with air, but far rarer, subtler. and more
strongly elastic.”™ He suggested the possibility that
“muscles arc contracted and dilated o cause animal
motion,” by the action of an “aethereal animal spirit,”
then went on to offer ether vibration as an explanation
of refraction and reflection, of transparency and
opacity, of the production of colors, and of diffraction
phenomena (including Newton's rings). Even “‘the
gravitating attraction of the earth,” he supposed,
might “be caused by the continual condensation of
some other such like acthereal spirit.” which need not
be “the main body of phlegmatic acther, but . . . some-
thing very thinly and subtilly diffused through jt,"#

The “Hypothesis” was one of two enclosures that
Newton sent to Oldenburg, in his capacity of secretary
of the Royal Society, together with a letter dated
7 December 1675, The other was a “Discourse of
Observations,” in which Newton sct out “such obser-
vations as conduce to further discoveries for com-
pleting his theory of light and colours, especially as to
the constitution of natural bodies, on which their
colours or transparency depend.” It also contained
Newton's account of his discovery of the “rings™
produced by light passing through a thin wedge or
layer of air between two pieces of glass. He had based
his experiments on earlier ones of a similar kind that
had been recorded by Hooke in his Micrographia
(observation 9). In particular Hooke had described
the phenomena occurring when the “lamina,” or space
between the two glasses, was “double concave, that is,
thinner in the middle then at the edge™; he had
observed “‘various coloured rings or lines, with
differing consecutions or orders of Colours.”

When Newton’s “Discourse” was read at the Royal
Society on 20 January 1676, it contained a paragraph
(proposition 3) in which Newton referred to Hooke
'and the Micrographia, “in which book he hath also
largely discoursed of this . . . and delivered many other
excellent things concerning the colours of thin plates,
and other natural bodies, which T have not scrupled
to make use of so far as they were for my purpose,”*?
In recasting the “*Discourse™ as parts 1, 2, and 3 of
book II of the Opricks, however, Newton omitted this
statement. It may be assumed that he had carried
these experiments so much further than Hooke,
introducing careful measurements and quantitative
analysis, that he believed them to be his own. Hooke,
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on the other hand, understandably thought that he
deserved more credit for his own contributions
—including  hypothesis-based  explanations—than
Newton was willing to allow him.** Newton ended the
resulting correspondence on a conciliatory note when
he wrote in a letter of 5 February 1676, “What
Des-Cartes did was a good step. You have added
much in several ways, and especially in taking the
colours of thin plates into philosophical consideration.
If I have seen further it is by standing on the shoulders
of Giants."®*

The opening of Newton’s original letter on optics
suggaests that he began his prism experiments in 1666,
presumably in his rooms in Trinity, but was inter-
rupted by the plague at Cambridge, returning to this
topic only two years later. Thus the famous cighteen
months supposedly spent in Lincolnshire would
mark a hiatus in his optical researches, rather than
being the period in which he made his major discov-
eries concerning light and color. As noted earlier, the
many pages of optical material in Newton's manu-
seripts®® and notebooks have not yet heen sufficiently
analyzed to provide a precise record of the devel-
opment of his experiments, concepts, and theories.

The lectures on optics that Newton gave on the
assumption of the Lucasian chair likewise remain only
incompletely studied. These exist as two complete,
but very different, treatises, each with carefully drawn
figures. One was deposited in the University Library,
as required by the statutes of his professorship, and
was almost certainly written out by his roommate,
John Wickins,*® while the other is in Newton's own
hand and remained in his possession.*” These two
versions differ notably in their textual content, and
also in their division into “lectures,” allegedly given
on specified dates. A Latin and an English version,
both based on the deposited manuscript although
differing in textual detail and completeness, were
published after Newton's death. The English version,
called Optical Lectures, was published in 1728, a year
before the Latin. The sccond part of Newton's
Latin text was not translated, since, according to the
preface, it was “imperfect” and “has since been
published in the Opticks by Sir Isaac himself with
great improvements.” The preface further states that
the final two sections of this part are composed “in a
manner purely Geometrical,” and as such they differ
markedly from the Opricks. The opening lecture
{or section 1) pays tribute 10 Barrow and mentions
lelescopes, before getting down to the hard business
of Newton's discovery “that . . . Rays [of light] in
respect to the Quantity of Refraction differ from one
another.” To show the reader that he had not set forth
“Fables instead of Truth,” Newton at once gave
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“the Reasons and Experiments on which these things
are founded.” This account, unlike the later letter in
the Philosophical Transactions, is not autobiographical;
nor docs it proceed by definitions, axioms, and
propositions (proved “by Experiment™), as does the
still later Opricks.**

R. S. Westfall has discussed the two versions of the
later of the Lectiones opricae, which were first published
in 1729:% he suggests that Newton eliminated from
the Lectiones those “parts not immediately relevant
to the central concern, the experimental demon-
stration of his theory of colors.” Mathematical
portions of the Lectiones have been analyzed by
D. T. Whiteside, in Newton’s Mathematical Papers,
while J. A. Lohne and Zev Bechler have made
major studics of Newton’s manuscripts on optics.
The formation of Newton's optical concepts and
theories has been ably presented by A. I. Sabra; an
cdition of the Opticks is presently being prepared by
Henry Guerlac.

“.Lohne finds great difficulty in repeating Newton’ a
“experimentum crucis,”* but more important, he has'’

traced the influence of Descartes, Hooke, and Boyiei

on Newton's work in optics.?” He has further found| |
that Newton used a prism in optical experiments')
much carlier than hitherto suspected—certainly before
1666, and probably before 1665—and has shown that
very early in his optical research Newton was
explaining his experiments by “‘the corpuscular
hypothesis.” In “Questiones philosophicae,™ Newton
wrote: “Blue rays are reflected more than red rays,
because they arc slower. Each colour i1s caused by
uniformly moving globuli. The uniform motion which
gives the sensation of one colour is different from the
motion which gives the scnsation of any other
colour.?*

Accordingly, Lohne shows how difficult it s to
accept the historical narrative proposed by Newton
al the beginning of the letter read to the Royal Society
on 8 February 1672 and published in the Philosophical
Transactions. He asks why Newton should have been
surprised to find the spectrum oblong, since his
“note-books represent the sunbeam as a stream of
slower and faster globules occasioning different
refrangibility of the different colours?” Newton must,
according to Lohne, have “found it opportunc to let
his theory of colours appear as a Baconian induction
from experiments, although it primarily was deduced
from speculations.”
narrative, concludes that not cven
Newton® could have heen fortunate enough to have
achieved this result in such a smooth manner.” Thus
onc of the most famous examples of the scientific
method in operation now seems to have been devised

|

Sabra, in his analysis of Newton’s
“the ‘fortunate |
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as a sort of scenario by which Newton attempted to -

convey the impression of a logical train of discovery
based on deductions from experiment. The historical

record, however, shows that Newton's great leap

forward was actually a consequence of implications
drawn from profound scientific speculation and
insight.*

In any event, Newton himself did not publish the
Lectiones opticae, nor did he produce his planned
annotated edition of at least some (and maybe all) of
his letters on light and color published in the
Philosophical Transactions.** He completed his English
Opticks, however, and after repeated requests that
he do so, allowed it to be printed in 1704, although
he withheld his name, save on the title page of one
known copy. It has often been alleged that Newton
released the Opricks for publication only after Hooke
—the last of the onginal objectors to his theory of light
and colors—had died. David Gregory, however,
recorded another reason for the publication of the
Opticks in 1704: Newton, Gregory wrote, had been
“provoked™ by the appearance, in 1703, of George
Cheyne’s Fluxionum methoda inversa “1o publish his

' [own tract on] Quadratures, and with it, his Light &

Colours, &,

In the Opticks, Newton presented his main discov-
crics and theories concerning light and color in
logical order, beginning with eight definitions and
eight axioms.*® Definition 1 of book I reads: “By the
Rays of Light T understand its least Parts, and those
as well Successive in the same Lines, as Contemporary
in several Lines.™ Eight propositions follow, the first
stating that “Lights which differ in Colour, differ also
in Degrees of Refrangibility.” In appended exper-
iments Newton discussed the appearance of a Raper
colored half red and half blue when viewed through
a prism and showed that a given lens produces red
and blue images, respectively, at different distances.
The sccond proposition incorporates a varicty of
prism experiments as proof that “The Light of
the Sun consists of Rays differently refrangible,”

The figure given with experiment 10 of this series
illustrates “two Prisms tied together in the form
of a Parallelopiped™ (Fig. 3). Under specified condi-
tions, sunlight entering a darkened room through a
small hole F in the shutter would not be refracted
by the parallciopiped and would emerge parallel to the
incident beam FM, from which it would pass by
refraction through a third prism /KH, which would
by refraction “cast the usual Colours of the Prism
upon the opposite Wall.” Turning the parallclopiped
about its axis, Newton found that the rays producing
the several colors were successively “taken out of the
transmitted Light™ by “total Reflexion™; first “the
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Rays which in the third Prism had suffered the
greatest Refraction and painted [the wall] with violet
and blew were . , . taken out of the transmitted Light,
the rest remaining,” then the rays producing green,
yellow, orange, and red were “taken out” as the
paraliclopiped was rotated yet further. Newton thus
experimentally confirmed the “experimentum crucis,”
showing that the light emerging from the two prisms
“is compounded of Rays differently Refrangible,
seeing [that] the more Refrangible Rays may be
taken out while the less Refrangible remain.” The
arrangement of prisms is the basis of the important
discovery reported in book II, part 1, observation 1.

~A%

FIGURE 3

2 proposition 6 Newton showed that, contrary
to the opinions of previous writers, the sine
law actually holds for each single color. The first part
of book I ends with Newton's remarks on the impos-
sibility of improving telescopes by the use of color-
corrected lenses and his discussion of his consequent
inveation of the reflecting telescope (Fig. 4).

In the second part of book I, Newton dealt with
colors produced by reflection and refraction (or
transmission), and with the appearance of colored
objects in relation to the color of the light illuminating
them. He discussed colored pigments and their
mixture and geometrically constructed a color wheel,
drawing an analogy between the primary colors in a
compound color and the “seven Musical Tones or
Intervals of the eight Sounds, Sol, la, fa, sol, la,
mi, fa, sol. , , "7

Proposition 9., “Prob. IV. By the discovered
Properties of Light to explain the Colours of the
Ramn-bow,™ is devoted to the theory of the rainbow.
Descartes had developed a geometrical theory, but had
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FIGURE 4. Newton’s method “To shorten Telescopes'™ ¢f represents the prism, abed the speculum, and 4 the Jens.

used a single index of refraction (250:187) in his
computation of the path of light through each
raindrop.®® Newton's discovery of the difference in
refrangibility of the different colors composing white
light, and their separation or dispersion as a conse-
quence of refraction, on the other hand, permitted
him to compute the radii of the bows for the separate
colors. He used 108:81 as the index of refraction for
red and 109:81 for violet, and further took into
consideration that the light of the sun does not
proceed from a single point. He determined the widths
of the primary and secondary bows to be 2°15" and
3740, respectively, and gave a formula for computing
the radi of bows of any order # (and hence for orders
of the rainbow greater than 2) for any given index of
refraction.® Significant as Newton’s achievement
was, however, he gave only what can be considered a
““first approximation to the solution of the problem,™
since a full explanation, particularly of the super-
numerary or spurious bows, must require the general
principle of interference and the “rigorous application
of the wave theory.”

Book 11, which constitutes approximately one third
of the Opricks, is devoted largely to what would later
be called interference effects, growing out of the topics
Newton first published in his 1675 letter to the Royal
Socicty. Newton's discoveries in this regard would
scem to have had their origin in the first experiment
that he describes (book II, part I, observation 1);
he had, he reported, compressed “two Prisms hard
together that their sides (which by chance were a very
littke convex) might somewhere touch one another™
(as in the figure provided for experiment 10 of book I,
part 1). He found “the place in which they touched™
to be “absolutely transparent,” as if there had been one
“continued piece of Glass,” even though there was
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total reficction from the rest of the surface; but “it
appeared like a black or dark spot, by reason that
little or no sensible light was reflected from thence,
as from other places.” When “looked through,™ it
seemed like “a hole in that Air which was formed into
a thin Plate, by being compress'd between the
Glasses.” Newton also found that this transparent
spot “would become much broader than otherwise™
when he pressed the two prisms “very hard together.”

Rotating the two prisms around their common axis
(observation 2) produced “many slender Arcs of
Colours™ which, the prisms being rotated further,
“were compleated into Circles or Rings.” In obser-
vation 4 Newton wrote that

To observe more nicely the order of the Colours . . .
1 took two Object-glasses, the one a Plano-convex for
a fourteen Foot Telescope, and the other a large
double Convex for one of about fifty Foot; and upon
this, laying the other with its plane side downwards,
1 pressed them slowly together, to make the Colours
successively emerge in the middie of the Circles, and
then slowly lifted the upper Glass from the lower to
make them successively vanish again in the same place.

It was thus cvident that there was a direct corre-
lation between particular colors of rings and the
thickness of the layer of the cntrapped air. In this
way, as Mach observed, “Newten acguired a complete
insight into the whole phenomenon, and at the same
time the possibility of determining the thickness of
the air gap from the known radius of curvature of the
glass, 100

Newton varied the experiment by using different
lenses, and by wetting them, so that the gap or layer
was composed of water rather than air, He also studied
the rings that were produced by light of a single color,
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separated out of a prismatic spectrum: he found that
in a darkened room the rings from a single color
extended to the very edge of the lens. Furthermore, as
he noted in observation 13, “the Circles which the
red Light made™ were “manifestly bigger than those
which were made by the blue and violet™; he found it
“very pleasant to see them gradually swell or contract
accordingly as the Colour of the Light was changed.”
He concluded that the rings visible in white light
represented a superimposition of the rings of the
several colors, and that the alternation of light and
dark rings for each color must indicate a succession
of regions of reflection and transmission of light,
produced by the thin layer of air between the two
glasses. He set down the latter conclusion in obser-
vation 15: “And from thence the orgin of these Rings
is manifest; namely that the Air between the Glasses,
according to its various thickness, is disposed in some
places to reflect, and in others to transmit the Light
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of any one Colour (as you may sec represented . . )
and in the same place to reflect that of one Colour
where it transmits that of another™ (Fig. 5).

Book II, part 2, of the Opticks has a nomogram
in which Newton summarized his measures and
computations and demonstrated the agreement of his
analysis of the ring phenomenon with his earlier
conclusions drawn from his Prism experiments—
“that whiteness is a dissimilar mixture of all Colours,
and that Light is a mixture of Rays endued with all
those Colours.™ The experiments of book 11 further
confirmed Newton's earlier findings “that every Ray
have its proper and constant degree of Refrangibility
connate with it, according to which its refraction is
ever justly and regularly perform’d,” from which he
argued that “it follows, that the colorifick Dispositions
of Rays are also connate with them, and immutable.”
The colors of the physical universe are thus derived
“only from the various Mixtures or Separations of
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FIGURE 5. Two drawings from book I, part 1, plate 1 of the 1704 edition of the Opticks, illustrating Newton's studics of what

are pow called Newtono's rings.
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Rays, by virtue of their different Refrangibility or
Reflexibility™; the study of color thus becomes
“a Speculation as truly mathematical as any other
part of Opticks.” 19!

In part 3 of book II, Newton analyzed “the
permanent Colours of natural Bodies, and the Analogy
between them and the Colours of thin transparent
Plates.,” He concluded that the smallest possible
subdivisions of matter must be transparent, and their
dimensions optically determinable. A table accom-
panying proposition 10 gives the refractive powers of
a vanety of substances “in respect of . . . Densities.”
Proposition 12 contains Newton’s conception of
“fits":

Every Ray of Light in its passage through any
refracting Surface is put into a certain transient
Constitution or State, which in the progress of the Ray
returns at equal Intervals, and disposes the Ray at
every return to be easily transmitted through the next
refracting Surface, and between the returns to be casily
reflected by it.

The succeeding definition is more specific; “The
returns of the disposition of any Ray to be reflected
I will call its Fits of easy Reflection, and those of its
disposition to be transmitted its Fits of easy Trans-
mussion, and the space it passes between every return
and the next return, the Jnrerval of its Fits.”

The “fits” of casy reflection and of casy refraction
could thus be described as a numerical sequence:
if reflection occurs at distances 0, 2, 4, 6, 8, - - -, from
some central point, then refraction (or transmission)
must occur at distances 1,3, 5,7, 9, - - -, Newton did
not attempt to explain this periodicity, stating that
“I do not here enquire™ into the question of “what
kind of action or disposition this is.” He declined to
speculate “whether it consists in a circulating or a
vibrating motion of the Ray, or of the Medium, or
something else,” contenting himself “with the bare
Discovery, that the Rays of Light are by some cause
or other alternately disposed to be reflected or
refracted for many vicissitudes.”™

Newton thus integrated the periodicity of light into
his theoretical work (it had played only a marginal
part in Hooke's theory). His work was, morcover,
based upon extraordinarily accurate measurements—
| %0 much so thal when Thomas Young devised an
explanation of Newton's rings based on the revived
wave theory of light and the new principle of inter-
ference, he used Newton's own data to compute the
wavelengths and wave numbers of the principal colors
in the visible spectrum and attained results that are
in close agreement with those generally accepted today.

In part 4 of book II, Newton addressed himself to
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“the Reflexions and Colours of thick transparent
polish’d Plates.” This book ends with an analysis of
halos around the sun and moon and the computation
of their size, based on the assumption that they are
produced by clouds of water or by hail. This led him
to the series of eleven observations that begin the
third and final book, “concerning the Inflexions of the
Rays of Light, and the Colours made thereby,” in
which Newton took up the class of optical phenomena
previously studied by Grimaldi,** in which “fringes™
are produced at the edges of the shadows of objects
illuminated by light “Ict into a dark Room through a
very small hole.” Newton discussed such fringes sur-
rounding the projected shadows of a hair, the edge
of a knife, and a narrow slit,

Newton concluded the first edition of the Opticks
(1704) with a set of sixteen queries, introduced “in
order to a further search to be made by others.” He
had at one time hoped he might carry the investi-
gations further, but was “interrupted,” and wrote that
he could not “now think of taking these things into
farther Consideration.” In the eighteenth century and
after, these queries were considered the most important
feature of the Opticks—particularly the later oncs,
which were added in two stages, in the Latin Optice
of 1706 and in the second English edition of 1717-1718.

The original sixteen queries at once go beyond mere
experiments on diffraction phenomena. In query |1,
Newton suggested that bodies act on light at a distance
to bend the rays; and in queries 2 and 3, he attempted
to link differences in refrangibility with differences in
“flexibility” and the bending that may produce color
fringes. In query 4, he inquired into a single principle
that, by “acting variously in various Circumstances,”
may produce refiection, refraction, and inflection,
suggesting that the bending (in reflection and
refraction) begins before the rays “arrive at the
Bodies.” Query 5 concerns the mutual interaction of
bodies and light, the heat of bodies being said to
consist of having “their parts [put] into a vibrating
motion™; while in query 6 Newton proposed a reason
why black bodies “conceive heat more easily from
Light than those of other Colours.” He then discussed
the action between light and “sulphureous”™ bodies,
the causes of heat in friction, percussion, putrefaction,
and so forth, and defined fire (in query 9) and flame
{in query 10), discussing various chemical operations,
In query 11, he extended his speculations on heat and
vapors to sun and stars. The last four queries (12 to [6)
of the onginal sct deal with vision, associated with
“Vibrations™ (excited by “the Rays of Light™) which
causc sight by “being propagated along the solid
Fibres of the optick Nerves into the Brain.” In query 13
specific wavelengths are associated with cach of
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several colors. In query 15 Newton discussed binocular
vision, along with other aspects of sceing, while in
query 16 he 100K up the phenomenon of persistence of
vision.

Newton has been much criticized for believing
dispersion to be independent of the material of the
prism and for positing a constant relation between
deviation and dispersion in all refractive substances,
He thus dismissed the possibility of correcting for
chromatic aberration in lenses, and directed attention
from refraction to reflecting telescopes.’®?

Newton is often considered to be the chief advocate

of the corpuscular or emission theory of light. Lohne
has shown that Newton originally did believe in a
simple corpuscular theory, an aspect of Newton's
science also forcibly brought out by Sabra. Challenged
by Hooke, Newton proposed a hypothesis of ether
waves associated with (or caused by) these corpuscles,
onc of the strongest arguments for waves probably
being his own discovery of periodicity in “Newton's
rings.” Unlike either Hooke or Huygens, who is
usually held to be the founder of the wave theory but
who denied periodicity to waves of light, Newton
postulated periodicity as a fundamental property of
waves of (or associated with) light, at the same time
that he suggested that a particular wavelength
characterizes the light producing each color. Indeed,
in the queries, he even suggested that vision might be
the result of the propagation of waves in the optic
nerves. But despite this dual theory, Newton always
preferred the corpuscle concept, whereby he might
casily explain both rectilincar propagation and
polarization, or “sides.” The corpuscle concept lent
itself further to an analysis by forces (as in section 14
of book T of the Principia), thus ecstablishing a
universal analogy between the action of gross bodies
(of the atoms or corpuscles composing such bodies),
and of light. These latter topics are discussed below
in connection with the later queries of the Opricks.

Dynamics, Astronomy, and the Birth of the
“Principia.” Newton recorded his early thoughts on
motion in various student notebooks and docu-
ments.'** While still an undergraduate, he would
certainly have studied the Aristotelian (or neo-
Aristotelian) theory of motion and he is known ta
have read Magirus' Physiologiae peripateticae libri
sex; his notes include @ “Cap:4. De Motu™ (wherein
“Motus™ is said to be the Aristotelian direddyen).
Extracts from Magirus occur in a notebook begun by
Newlon in 1661;%°% it is a repository of jottings from
his student years on a variety of physical and non-
physical topics. In it Newton recorded, among other
cxtracts, Kepler's third law, “that the mean distances
of the primary Plancts from the Sunne are in
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sesquialter proportion to the periods of their revo-
lutions in Gme."' This and other astronomical
material, including a method of finding planetary
positions by approximation, comes from Thomas
Streete’s Astronomia Carolina.

Here, 100, Newton set down a note on Horrox
observations, and an expression of concern about the
vacuum and the gravity of bodies; he recorded, from
“Galilaeus,” that “an iron ball” falls freely through
“100 braces Florentine or cubits [or 49.01 ells,
perhaps 66 yards] in 5" of an hower.” Notes of a
later date—on matter, motion, gravity, and levity—
give evidence of Newton's having read Charleton
(on Gassendi), Digby (on Galileo), Descartes, and
Henry More,

In addition to acquiring this miscellany of infor-
mation, making tables of various kinds of obser-
vations, and supplementing his reading in Streete by
Wing (and, probably, by Galileo’s Sidereus muncius
and Gassendi's cpitome of Copernican astronomy),
Newton was developing his own revisions of the
principles of motion. Here the major influence on his
thought was Descartes (especially the Principia
philosophiae and the Latin edition of the correspon-
dence, both of which Newton cited in carly writings),
and Galileo (whose Dialogue he knew in the Salusbury
version, and whose ideas he would have encountered
in works by Heary More, by Charleton and Wallis,
and in Digby’s Two Essays).

An entry in Newton’s Waste Book,'®” dated
20 January 1664, shows a quantitative approach to
problems of inclastic collision. It was not long before ,
Newton went beyond Descartes’s law of conservation, |
vorrecting it by algebraically taking into account!
direction of motion rather than numerical products
of size and speed of bodies. In a series of axioms he
declared a principle of inertia (in “Axiomes™ 1 and 2);
he then asserted a relation between ““force’ and change
of motion; and he gave a set of rules for elastic
collision.'® In “Axiome™ 22, he had begun to
approach the idea of centrifugal force by considering
the pressure exerted by a sphere rolling around the
inside surface of a cylinder. On the first page of the
Waste Book, Newton had quantitated the centrifugal
force by conceiving of a body moving along a squarc
inscribed in a circle, and then adding up the shocks
at cach “reflection.” As the number of sides were
increased, the body in the limiting case would be
“reflected by the sides of an equilateral cir-
cumscribed polygon of an infinite number of
sides (ie. by the circle it selfe).” Herivel has
pointed out the near equivalence of such results
Lo the carly proof mentioned by Newton at the end
of the scholium to proposition 4. book I, of the
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Principia. Evidently Newton leamned the Jaw of
centrifugal force almost a decade before Huygens,
who published a similar result in 1673, One early
passage of the Waste Book also contains an entry on
Newton’s theory of conical pendulums.?®?

According to Newton himself, the “notion of
gravitation” came to his mind ““as he sat in 2 contem-
plative mood,” and “was occasioned by the fall of an
apple.”**®* He postulated that, since the moon is
sixty times as far away from the center of the carth
as the apple, by an inverse-square relation it would
accordingly have an acccleration of free fall
1/(60)® = 1/3600 that of the apple. This “moon test™
proved the inverse-square law of force which Newton
said he “deduced” from combining “Kepler’s Rule
of the periodical times of the Plancts being in a
sesquialterate proportion of their distances from the
Centers of the Orbs™—that is, by Kepler’s third law,
that RYT7® — constant, combined with the law of
central (centrifugal) force. Clearly if Fec V¥R for a
force F acting on a body moving with speed Vin a
circle of radius R (with period T'), it follows simply and
at once that

-

Fc V3R = 4=*R*|T*R = 4x3|R* X (R*T?).

Since R3/T* is a constant, Fc 1R,

An account by Whiston states that Newton took
an incorrect value for the radius of the carth and so
2ot a poor agreement between theory and observation,
“which made Sir fsaac suspect that this Power was
partly that of Gravity, and partly that of Carfesius’s
Vortices,” whereupon “he threw aside the Paper of
his Calculation, and went to other Studies.”
Pemberton's narration is in agreement as to the poor
value taken for the radius of the carth, but omits the
reference to Cartesian vortices. Newton himself said
(later) only that he made the two calculations and
“found them [to] answer pretly nearly.”'™* In other
words, he calculated the falling of the moon and the
falling of a terrestrial object, and found the two to be
{only) approximately equal.

A whole tradittion has grown up (originated by
Adams and Glaisher, and most fully expounded by
Cajor1)*!* that Newton was put off not so much by
taking a poor value for the radius of the earth as by
his inability then to prove that a sphere made up of
uniform concentric shells acts gravitationally on an
external point mass as if all its mass weré con-
centrated at its center (proposition 71, book I,
book III, of the Principia). No firm evidence
has ever been found that would support Cajori's
conclusion that the lack of this thcorem was
responsible for the supposed twenty-year delay
in Newton's announcement of his “discovery”
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of the inverse-square law of gravitation. Nor is there
evidence that Newton ever attempted to compute the
attraction of a sphere until summer 1685, when he
was actually writing the Principia.

An existing document does suggest that Newton '
may have made just such calculations as Whiston and |
Pemberton described, calculations in which Newton |
appears to have used a figure for the radius of the
Farth that he found in Salusbury’s version of Galileo’s |
Dialogue, 3,500 Italian miles (milligria), in which one
mile cquals 5,000, rather than 5,280, feet.)* Here,
some time before 1669, Newton stated, to quote him
in translation, “Finally, among thc primary plancts,
since the cubes of their distances from the Sun are
reciprocally as the squared numbers of their periods
in a given time, their endcavours of recess from the
Sun will be reciprocally as the squares of their
distances from the Sun,” and he then gave numerical
examples from cach of the six primary planets.
A. R. Hall has shown that this manuscript is the paper
referred to by Newton in his letter to Halley of
20 June 1686, defending his claim to priornty of
discovery of the inverse-square law against Hooke’s
¢laims. It would have been this paper, too, that David
Gregory saw and described in 1694, when Newton let
him glance over a manuscript earlier than “the year
1669.”

This document, however important it may be in
enabling us to define Newton's values for the size of
the carth, does not ¢ontain an actual calculation of the
moon test, nor does it refer anywhere to other than
centrifugal “endeavours™ from the sun. But it docs
show that when Newton wrote it he had not found
firm and convincing grounds on which to assert what
Whiteside has called a perfect “balance between
(apparent) planetary centrifugal force and that of solar
gravity.” '

By the end of the 1660's Newton had studied the
Cartesian principles of motion and had taken a
critical stand with regard to them, His comments occur
in an essay of the 1670's or late 1660, beginning
“De gravitatione et acquipondio fluidorum,”"'® in
which he discussed extensively Descartes’s Principia
and also referred to a letter that formed part of the
correspondence with Merseane. Newton further set up
a series of definitions and axioms, then ventured “to
dispose of his [Descartes’s] fictions.” A large part of
the essay deals with space and extension; for example,
Newton criticized Descartes’s view “that extension is
not infinite but rather indefinite.” In this essay Newton
also defined force (“the causal principle of motion
and rest"™), conatus (or “endeavour™), impetus, inértia,
and gravity. Then, in the traditional manner, he
reckoned “'the quantity of these powers™ in “a double
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way: that is, according to intension or extension.”
He defined bodies, in the later medieval language of
the intension and remission of forms, as “denser when
their inertia is more intense, and rarer when it is more
remiss.”

In a final sct of “Propositions on Non-Elastic
Fluids” (in which there are two axioms and two
propositions), axiom 2, “Bodies in contact press each
other equally,” suggests that the eventual third law of
motion (Principia, axiom 3: “To every action is always
opposed an equal and opposite reaction™) may have
arisen in application to fluids as well as to the impact
of bodies. The latter topic occurs in another early
manuscript, “The Lawes of Motion,” written about
1666 and almost certainly antedating the essay on
Descartes and his Principia.'* Here Newton developed
some rules for the impact of “bodyes which are ab-
solutely hard.” and then tempered them for applica-
tion to “bodyes here amongst us,” characterized by
“a relenting sofinesse & springynesse,” which “makes
their contact be for some time in more points than
one.”

Newton’s attention to the problems of elastic and
melastic impact is manifest throughout his early
writings on dynamics. In the Principia it is demon-
strated by the emphasis he there gave the concept of
force as an “impulse,” and by a second law of motion
(Lex I1, in all editions of the Principia) in which he set
forth the proportionality of such an impulse (acting
instantancously) to the change in momeatum it
produces.?** In the scholium to the laws of motion
Newton further discussed elastic and inelastic impact,
referring to papers of the late 1660's by Wallis, Wren,
and Huygens. He meanwhile developed his concept
of a continuously acting force as the limit of a series
of impulses occurring at briefer and briefer intervals
in infinitum.**

Indeed, it was not until 1679, or some time between
. 1680 and 1684, following an exchange with Hooke,

that Newton achicved his mature grasp of dynamical
principles, recognizing the significance of Kepler's area
law, which he had apparently just encountered. Only
during the years 1684-1686, when, stimulated by
Halley, he wrote out the various versions of the tract
De motu and its successors and went on to compose
the Principia, did Newton achieve full command of
his insight into mathematical dynamics and celestial
mechanics. At that time he clarified the distinction
between mass and weight, and saw how these two
quantities were related under a variety of circum-
stances.

Newton's exchange with Hooke occurred when the
latter, newly appointed secretary of the Royal
Society, wrote to Newlon to suggest a private
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philosophical correspondence. In particular, Hooke
asked Newton for his “objections against any hypoth-
esis or opinion of mine,” particularly “that of
compounding the celestiall motions of the planetts of
a direct motion by the tangent & an attractive motion
towards the centrall body. . . . Newton received the
letter in November, somec months after the death of
his mother, and evidently did not wish to take up the
problem. He introduced, instead, “a fancy of my own
about discovering the Earth’s diurnal motion, a
spiral path that a freely falling body would follow as it
supposedly fell to Earth, moved through the Earth’s
surface into the interior without material resistance,
and eventually spiralled to (or very near to) the
Earth’s centre, after a few revolutions,”119

Hooke responded that such a path would not be a
spiral. He said that, according to “my theory of
circular motion,” in the absence of resistance, the
body would not move in a spiral but in “a kind [of]
Elleptucid,” and its path would “resemble an
Ellipse.™ This conclusion was based, said Hooke, on
“my Theory of Circular Motions [being] compounded
by a Direct [that is, tangential] motion and an
attractive one to a Centre.” Newton could not ig-
nore this direct contradiction of his own expressed
opinion. Accordingly, on 13 December 1679, he wrote
Hooke that “I agree with you that . . . if its gravity be
supposed uniform [the body would] not descend in
a spiral to the very centre but circulate with an
alternate descent & ascent.” The cause was “its
vis centrifuga & gravity alternately overballancing
onc another.” This conception was very like Borelli’s,
and Newton imagined that “the body will not describe
an Ellipsocid,” but a quite different figure. Newton
here refused to accept the notion of an ellipse produced
by gravitation decreasing as some power of the
distance—although he had long before proved that
for circular motion a combination of Kepler’s third
law and the rule for centrifugal force would yield a
law of centrifugal force in the inverse square of the
distance, There is no record of whether his reluctance
was due to the poor agreement of the earlier moon test
or to some other cause.

Fortunately for the advancement of science, Hooke
kept pressing Newton. In a letter of 6 January 1680
he wrote **. . . But my supposition is that the Attraction
always is in a duplicate proportion to the Distance
from the Centre Reciprocall, and Consequently that
the Velocity will be in a subduplicate proportion to
the Attraction, and Consequently as Kepler Supposes
Reciprocall to the Distance.” We shall see below that
this statement, often cited to support Hooke’s claim
to priority over Newton in the discovery of the
inverse-square law, actually shows that Hooke was not
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a very good mathematician. As Newton proved, the
force law here proposed contradicts the alleged
velocity relation.

Hooke also ¢laimed that this conception “doth very
Intelligibly and truly make out all the Appearances of
the Heavens,” and that “the finding out the proprietys
of a Curve made by two principles will be of great
Concerne to Mankind, because the Invention of the
Longitude by the Heavens is a necessary Consequence
of it.” After a few days, Hooke went on to challenge
Newton directly:

+ « « It now remaines to know the proprietys of a curve
Line (not circular nor concentricall) made by a ceatrall
attractive power which makex the wlocitys of Descent
from the tangent Line or equall straight motion at all
Dastances in a Duplicate proportion to the Distances
Reciprocally taken. I doubt not but that by your
excelient method you will casily find out what that
Curve must be, and its proprictys, and suggest a
physicall Reason of this proportion.'**

Newton did not reply, but he later recorded his
next steps:

I found now that whatsoever was the law of the
forces which kept the Plancts in their Orbs, the areas
described by a Radius drawn from them to the Sun
would be proportional to the times in which they weze
described. And . . . that their Orbs would be such
Ellipses as Kepler had described [when] the forces which
kept them in their Orbs about the Sun were as the
squares of their . . . distances from the Sun recip-
rocally. '

Newton's account scems to be reliable; the proof he
devised must have been that written out by him later
in his *De motu corporum in gyrum,"122

Newton’s solution 1s based on his method of limits,
and on the use of infinitesimals,’** He considered the
motion along an ellipse from one point to another
during an indefinitely small interval of time, and
cvaluated the deflection from the tangeat during that
interval, assuming the deflection to be proportional
to the inverse square of the distance from a focus,
As one of the two points on the ¢llipse approaches the
other, Newton found that the area law supplies the
essential condition in the limit.222 In short, Newton
showed that if the area law holds, then the elliptical
shape of an orbit implies that any force directed to a
focus must vary inversely as the square of the distance.

But 1t was also incumbent upon Newton (o show
the significance of the area law itself; he therefore
proved that the area law is a2 necessary and
sufficient condition that the force on a moving body
be directed to a center. Thus, for the first time, the
true significance of Kepler's first two laws of planctary
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molion was revealed: that the area condition was
equivalent to the action of a central force, and that the
occurrence of the ellipse under this condition demon-
strates that the foree is as the inverse square of the
distance. Newton further showed the law of areas to
be only another aspect of the law of inertia, since in
linear inertial motion, in the absence of external
forces, equal arcas are swept out in equal times by a
line from the moving body directed toward any point
not on the line of motion.***

Newton was thus quitc correct in comparing
Hooke’s claim and Kepler's, as he wrote to Halley on

20 June 1686:

But grant I recoived it [the hypothesis of the inveese-
square relation] afterwards [that is, after he had come
upon it by hansell, and independently of Hooke] from
Mr Hook, yet have T as great a right to it as to the
Ellipsis. For as Kepler knew the Orb to be not circular
but oval & guest it to be Elliptical, so Mr Hook without
knowing what T have found out since his letters to me,
can know no more but that the proportion was duplicate
quam proximé at great distances from the center, & only
guest it to be so accurately & gucst amiss in extending
that proportion down to the very center, whereas
Kepler guest right at the Ellipsis. And so Mr Hook
found less of the Proportion than Kepler of the
Ellipsis,**

What Newton “found out™ after his correspondence
with Hooke in 1679 was the proof that a homogeneous
sphere (or a sphere composed of homogencous
spherical shells) will gravitate as if all its mass were
concentrated at its geometric center.

Newton refrained from pointing out that Hooke's
lack of mathematical ability prevented him (and many
of those who have supported his claim) from seeing
that the “approximate” law of speed (pec1)r) 1s
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inconsistent with the true area law and does not
accord with a force law of the form S 1/r%, Newton
proved (Fig. 6. Principia, book I, proposition 16),
that the speed at any point in an elliptical orbit is
inversely proportional 1o the perpendicular dropped
from the sun (focus) to the langent drawn to the
ellipsc at that point, rather than being inversely
proportional to the simple distance as Hooke and
others had supposed; these two quantities being, of
course, the same at the apsides, In the second cdition
of the Principia (1713) Newton shifted the corollaries
to propositions | and 2, introducing a new set of
corollaries to proposition 1, with the result that a
prominent place was given to the true speed law.

Newton therefore deserves sole credit for recog-
nizing the significance of the area law, a matter of
some importance between 1679 and 1684, Followmg
the exchange with Hooke in the carlier year, however,
Newton did not at once 20 on (o complete his work
in celestial mechanics, although he did become
interested in comets, corresponding with Flamsteed
about their motion, He was converted from a belief
in the straight-line motion of comets to a belief in
parabolic paths, and thereafler attributed the motions
of comets (in conic sections) to the action of the
inverse-square law of the gravitation of the sun. He
Wwas particularly concerned with the comet of 1680,
and in book III of the Principia devoted much space
to its path.

In 1684, Halley visited Newton to ask about the
Path a planet would follow under the action of an
inverse-square force: Wren, Hooke, and he had all
been unsuccessful in satisfactorily resolving the matter,
although Hooke had asserted (vainly) that he could
do it. When Newton said to Hooke that he
himself had “calculated” the result and that it
Was  “an  Ellipsis,” Halley pressed him  ‘“for
his calculation,” but Newton could not find it
among his papers and had to send it to Halley at
a later date, in November. Halley then went back to
Cambridge, where he saw “a curious (reatise, De
Motu.” He obtained Newton’s promise to send it
“to the [Royal) Socicty to be entered upon their
Register,”" 157 and Newton, thus encouraged, wrote
out a De motu corporum, of which the first section
largely corresponds to book [ of the Principia
(together with an earnest of what was 10 become
book II), while the second represents a popular
account of what was later presented in book 111

Texts of both parts were deposited in the University
Library, as if they were Newton's professorial Jectures
for 1684, 1685, and I687; the second was published
posthumously in both Latin and English, with the
introduction of a new and misleading title of De mundi
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Systemate, or The System of the World. (This mijs-
nomer has ever since caused the second part of
De motu to be confused with book 111 of the Principia,
which is subtitled “De mundi systemate,™)

Newton composed the Principia in a surprisingly
short time.**¥ The manuscript of book | was presented
on 28 April 1686 to the Royal Society, which ordered
it to be printed, although in the event Halley paid
the costs and saw the work through the press. Halley's
job was not an easy one: when Hooke demanded
credit in print for his share in the inverse-square law,
Newton demurred and even threatened to suppress
book III. Halley fortunately dissuaded Newton from
50 mutilating his great treatise.

On I March 1687 Newton wrote to Halley that
book IT had been sent to him “by the Coach.” The
following 5 April Halley reported to Newton that he
had received book I11, “the last part of your divine
Treatise.” The printing was completed on § July 1687,
The first edition included a short preface by Newton
and an introductory ode to Newton by Halley—but
book Il ended abruptly, in the midst of a discussion
of comets, Newton had originally drafted a
“Conclusio” dealing with general aspects of natural
philosophy and the theory of matter,"** but he sup-
pressed it. The famous conclusion, the “Scholium
Generale,” was first published some twenty-six years
later, in 1713, in the second edition,

The development of Newton's views on comets
may be traced through his correspondence  with
Flamsteed!s® and with Halley, and by comparing
the first and second editions of the Principia. From
Flamstced he obtained information not only on
comets, but also on the distances and periods of the
satellites of Jupiter (which data appear in the beginning
of book III of the Principia as a primary instance of
Kepler's third law), and on the possible influence of
Jupiter on the motion of Saturn, When Newton at
first believed the great comet observed November 1680
March 1681 to be a pair of comers moving (as Kepler
proposed) in straight lines, although in opposite
directions, it was Flamsteed who convinced him that
there was only one, observed coming and going, and
that it must have turned about the sup, 33! Newton
worked out a parabolic path for the comet of 1630
that was consistent with the observations of Flamsteed
and others, the details of which occupy a great part
of book 111 of the Principia, Such a parabolic path had
been shown in book 1 to result from the inverse-square
law under certain initial conditions, differing from
those producing ellipses and hyperbolas.

In 1695, Halley postulated that the path of the
comet of 1680 was an clongated cllipse—a path not
very distinguishable from a parabola in the region of

\



NEWTON

the sun, but significantly different in that the ellipse
implies periodic returns of the comet—and worked
out the details with Newton. In the second and third
editions of the Principia, Newton gave tables for both
the parabolic and clliptical orbits; he asserted unequiv-
ocally that Halley had found “‘a remarkable comet™
appearing every seventy.five years or 20, and added
that Halley had “computed the motions of the comet
in this elliptic orbit.” Nevertheless, Newton himself
remained primarily concerned with parabolic orbits,
In the conclusion to the example following proposition
41 (on the comet of 1680), Newton said that “comets
are a sort of planets revolved in very eccentric
orbits about the sun.” Even so, the proposition itself
states (in all editions): “From three given observations
to determine the orbit of a comet moving in a
parabola.™

Mathematics in the “Principia.” The Philosophiae
naturalis principia mathematica is, as its title suggests,
an exposition of a natural philosophy conceived in
terms of new principles based on Newton’s own
innovations in mathematics. It is too often described
as a treatise in the style of Greek geometry, since
on superficial examination it appears to have been
written in a synthetic geometrical style.?*® But a close
examination shows that this external Fuclidean form
masks the true and novel mathematical character of
Newton’s treatise, which was recognized even in his
own day. (L'Hospital, for cxamplc—to Newton's
delight—observed in the preface to his 1696 Analyse
des infiniment petits, the first textbook on the
infinitesimal calculus, that Newton's “excellent
Livre intitulé Philosophiae Naturalis principia Mathe-
matica . . . cst presque tout de ce caleul.”) Indeed, the
most superficial reading of the Principia must show
that, proposition by proposition and lemma by lemma,
Newton usually proceeded by establishing geometrical
conditions and their corresponding ratios and then at
once introducing some carefully defined limiting
process. This manner of proof or “invention,” in
marked distinction to the style of the classical Greek
geometers, is based on a set of general principles of
limits, or of prime and ultimate ratios, posited by
Newton s0 as to deal with nascent or evanescent
quantities or ratios of such quantities,

The doctrine of limits occurs in the Principia in a
set of eleven lemmas that constitute section I of book 1.
These lemmas justify Newton in dealing with areas
as limits of sums of inscribed or circumscribed
rectangles (whose breadth — 0, or whose num-
ber — o), and in assuming the equality, in the
limit, of are, chord, and tangent (lkemma 7), based on
the proportionality of “homologous sides of similar
figures, whether curvilinear or rectilinear™ (lemma 3),
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whose “areas are as the squares of the homologous
sides,” Newton's mathemartical principles are founded
on a concept of limit disclosed at the very beginning
of lemma 1, “Quantitics, and the ratios of quantitics,
which in any finite time converge continually to
cquality, and before the end of that time approach
nearer to cach other than by any given difference,
become ultimately equal.”

Newton further devoted the concluding scholium of
section 1 to his concept of limit, and his method of
taking lmits, stating the guiding principle thus:
“These lemmas are premised to avoid the tediousness
of deducing involved demonstrations ad absurdum,
according to the method of the ancient geometers.”
While he could have produced shorter (“more
contracted™) demonstrations by the “method of
indivisibles,” he judged the “hypothesis of indivis-
ibles "to be “somewhat harsh™ and not geometrical:

I chose rather to reduce the demonstrations of the
following propositions to the first and last sums and
ratios of nascent and evanescentl quantities, that is, 10
the limits of those sums and ratios; and so to premise,
as short as I could, the demonstrations of those limits.
For hereby the same thing is performed as by the -
method of indivisibles; and now those principkes being
demonstrated, we may use them with greater safety.
Therefore il hereafter 1 should happen to consider
quantities as made up of particles, or should use litthe
curved lines for right ones, | would not be understood
to mean indivisibles, but cvanescent divisible quantities;
not the sums and ratios of determinate parts, but
always the limits of sums and ratios; and that the force
of such demonstrations always depends on the method
laid down in the foregoing Lemmas.

Newton was aware that his principles were open to
criticism on the ground “that there is no ultimate
proportion of cvancscent quantities; because the
proportion, before the quantities have vanished, is
not the ultimate, and when they are vanished, is none™;
and he anticipated any possible unfavorable reaction
by insisting that “the ulumate ratio of evanescent
quantities” is to be understood to mean “‘the ratio of
the quantities not before they vanish, nor afterwards,
but [that] with which they vanish.™ In a “like manner,
the first ratio of nascent quantities is that with which
they begin to be,” and ““the first or last sum is that
with which they begin and cease to be (or to be
augmented or diminished).” Comparing such ratios
and sums to velocities (for “it may be alleged, that a
body arriving at a certain place, and there stopping,
has no ultimate velocity; because the velocity, before
the body comes to the place, is not its ultimate
velocity: when it has arrived, there is none™), he
imagined the existence of “a limit which the velocity
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at the end of the motion may attain, but not exceed,”
which limit is “the ultimate velocity,” or “that velocity
with which the body arrives at its last place, and with
which the motion ceases,” By analogy, he argued,
“there is the like limit in all quantitics and proportions
that begin and cease to be,” and “such limits are
certain and definite.” Hence, “to determine the same
1s a problem strictly geometrical,” and thus may be
used legitimately “in determining and demonstrating
any other thing that is also geometrical,”

In short, Newton wished to make 2 clear distinction
between the ratios of ultimate quantities and “those
ultimate ratios with which quantities vanish,” the
latter being “limits towards which the ratios of
quantitics decreasing without limit do always con-
verge. . . .7 He pointed out that this distinction may
be seen most clearly in the case in which two quantities
become infinitely great; then their “ultimate ratio™
may be “given, namely, the ratio of equality,” even
though “it docs not from thence follow, that the
ultimate or greatest quantities themselves, whose
ratio that is, will be given."”

Section 1 of book 1 is unambiguous in its statement
that the treatise to follow is based on theorems of
which the truth and demonstration almost always
depend on the taking of limits. Of course, the
occasional analytical intrusions in book I and the
explicit use of the fluxional method in book II
(notably in section 2) show the mathematical character
of the book as a whole, as does the occasional but
characteristic introduction of the methods of
expansion in infinite series. A careful reading of
almost any proof in book I will, moreover, demon-
strate the truly limital or infinitesimal character of the
work as a whole. But nowhere in the Principia (or in
any other generally accessible manuscript) did Newton
write any of the cquations of dynamics as fluxions, as
Maclaurin did later on. This continuous form is
effectively that published by Vangnon in the Mémoires
of the Paris Academy in 1700; Newton’s second law
was written as a differential equation in J. Hermann’s
Phoronomia (1716),

The similarity of section 1, book I, to the intro-
ductory portion of the later De guadratura should
not be taken to mean that in the Principia Newton
developed his principles of natural philosophy on the
basis of first and last ratios exclusively, since in the
Principia Newton presented not one, but rather three
modes of presentation of his fluxional or infinitesimal
calculus, A second approach to the calculus occurs in
section 2, book II, notably in lemma 2, in which
Newton introduced the concept and method of
moments, This represents the first printed statement
(in the first edition of 1687) by Newton himself of
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his new mathematics, apart from its application to
physics (with which the opening discussion of limits
in section I, book I is concerned). In a scholium to
lemma 2, Newton wrote that this lemma contains the
“foundation™ of “a general method,™ one

- - which extends itself, without any troublesome
caleulation, not only to the drawing of tangents 10
any curve lines . . ., but also to the resolving other
abstruser Kinds of problems about the crookedness,
arcas, lengths, centres of gravity of curves, &c.: nor
it . . . limited to equations which are free from surd
quantities. This method T have interwoven with that
other of working in cquations, by reducing them to
infinite series,

He added that the “last words relate to a treatise
I composed on that subject in the year 1671,73% and

- that the paragraph quoted above came from a letter
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he had written to Collins on 10 December 1672,
describing ““a method of tangents.”

The lemma itself reads: “The moment of any
genitum 15 equal to the moments of cach of the
gencrating sides multiplied by the indices of the
powers of those sides, and by their cocfficients
continually.”* It may be illustrated by Newton’s
first example: Let AB be a rectangle with sides A4, B,
diminished by la, 1b, respectively, The diminished
arcais (4 — Ja)B — ib) = AB — iaB — 3bA + }ab.
Now, by a “continual flux,” let the sides be augmented
by 4a, 1b, respectively; the area (“rectangle”) will then
become (A + 2afB + 4b) = AB + %aB + 3bA + lab
(Fig. 7). Subtract one from the other, “and there will
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remain the excess aB + bA.” Newton concluded,
“Therefore with the whole increments a and b of the
sides, the increment aB 4 b4 of the rectangle is
generated.” Here @ and b are the moments of A and B,
respectively, and Newton has shown that the moment
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of AB, corresponding to the moments a and b of A
and B, respectively, 1s aB + #A4. And, for the special
case of A = B, the moment of A% is determined as 2aA.

In order to extead the result from “arca™ to
“content™ or (“bulk™), from AB 0 ABC, Newton set
AB — G and then used the prior result for AB twice,
once for AB, and again for GC, s0 as o get the
moment of ABC 10 be ¢cAB + hCA + aBC; whence,
by seting A —= B = C, the moment of A® is deter-
mined as 3a4* And, in general, the moment of A% is
shown to be na4"~* for n as a positive integer.

The result is readily extended to negative integral
powers and even to all products A™B", “whether the
indices m and n of the powers be whole numbers or
fractions, affirmative or negative.” Whiteside has
pointed out that by using the decrements 1a, ib and
the increments 1a, 1b, rather than the increments a, b,
“Newton . . . deluded himself into believing™ he had
“contrived an approach which avoids the compara-
tively messy appeal to the limit-value of (4 + a)/
(B + b) — AB as the increments @, b vanish.” The
result is what is now seen as a “‘celebrated non-
sequitur.”'®

In discussing lemma 2, Newton defined moments as
the “momentary increments or decrements” of
“variable and indetermined™ quantities, which might
be “products, quotients, roots, rectangles, squares,
cubes, square and cubic sides, and the like.” He called
these “quantitics” genitae, because he conceived them
to be “‘generated or produced in arithmetic by the
multiplication, division, or extraction of the root of
any terms whatsoever; in geometry by the finding of
contents and sides, or of the extremes and means of
proportionals,” So much is clear. But Newton warned
his readers not “to look upon finite particles as such
[moments],” for finite particles “are not moments,
but the very quantitics generated by the moments.
We are to conceive them as the just nascent principles
of finite magnitudes.” And. in fact, it is not “the
magnitude of the moments, but their first proportion
[which is to be regarded] as nascent.”

Boyer has called attention to the difficulty of
conceiving “the limit of a ratio in determining the
moment of A4B."1%* The moment of AB is not really a
product of two mdependent variables A and B,
implying a problem in partial differentiation, but
rather a product of two functions of the single inde-
pendent variable time. Newton himself said, “It will
be the same thing, if, instead of moments, we usc
cither the velocitics of the increments and decrements
(which may also be called the motions, mutations, and
fluxions of guantities), or any finite quantilics propor-
tional to those velocities.”

Newton thus shifted the conceptual base of his
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procedure from infinitely small quantitics or moments
—which are not finite, and clearly not zero—to the
“first proportion,” or ratio of moments (rather than
“the magnitede of the moments™) “as nascent.”
This nascent ratio is generally not infinitesimal but
finite, and Newton thus suggested that the ratio of
finite quantitics may be substituted for the ratio of
infinitesimals, with the same result, using in fact the
velocities of the increments or decrements instead of
the moments, or “any finite quantities proportional
to those velocities,” which are also the “fluxions of
the quantities.” Boyer summanized this succinctly:

Newton thus offered in the Principia three mexdes of
interpretation of the new analysss: that in terms of

infinitesimals (used in his De analysi . . .); that in terms
of prime and ultimate ratios or Limits (given particularly
in D¢ quadratura, and the view which he scems to have
considered most rigorous); and that in terms of fluxions
(given in his Methodus fluxionum, and one which
appears to have appealed most strongly to his imag-
ination).!*?

From the point of view of mathematics, propo-
sition 10, book II, may particularly attract our
attention. Here Newton boldly displayed his methods
of using the terms of a converging series to solve
problems and his method of second differences.
Expansions are given with respect to “the indefinite
quantity o,” but there are no references to (nor uses of)
moments, as in the preceding lemma 2, and, of course,
there is no use made of dotted or “pricked” letters.

The proposition is of particular interest for at least
two rcasons. First, its proof and exposition (or
exemplification) are highly analytic and not geometric
(or synthetic), as are most proofs in the Principia.
Second, an error in the first edition and in the original
printed pages of the second edition was discovered by
Johann [I] Bernoulli and called to Newton’s attention
by Nikolaus [I] Bernoulli, who visited England in
September or October 1712. As a result, Newton had
Cotes reprint a whole signature and an additional leaf
of the already printed text of the second edition; these
pages thus appear as cancels in every copy of this
cdition of the Principia that has been recorded. The
corrected proposition, analyzed by Whiteside, illus-
trates “the power of Newton's infinitesimal techniques
in the Principia,” and may thus confute the opinion
that “Newton did not (at least in principle, and in his
own algorithm) know how ‘to formulate and resolve
problems through the integration of differential
equations,” 1

From at least 1712 onward, Newton attempted
to impose upon the Principia 2 mode of composition
that could lend support to his position in the priority
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dispute with Leibniz: he wished to demonstrate that
he had actually composed the Principia by analysis
and had rewritten the work synthetically. He affirmed
this claim, in and after 1713, in several manuscript
versions of prefaces to planned new editions of the
Principia (both with or without De guadratura as
a supplement). It is indeed plausible to argue that
much of the Principia was based upon an infinitesimal
analysis, veiled by the traditional form of Greek
synthetic geometry, but the question remains
whether Newton drew upon working papers in which
(in extreme form) he gave solutions in dotted fluxions
to problems that he later presented geometrically.
But, additionally, there is no evidence that Newton
used an analytic method of ordinary fluxional form
to discover the propositions he presented synthetically.

All evidence indicates that Newton had actually
found the propositions in the Principia in essentially
the way in which he there presented them to his
readers. He did, however, use algebraic methods to
determine the solid of least resistance. But in this case,
he did not make the discovery by analysis and then
recast it as an example of synthesis; he simply stated
his result without proof.13*

It has alrcady been mentioned that Newton did
make explicit use of the infinitesimal calculus in
section 2, book II, of the Principia, and that in that
work he often cmployed his favored method of
infinite series.’*" But this claim is very different indeed
from such a statement of Newton's as: . . . At length
in 1685 and part of 1686 by the aid of this method
and the help of the book on Quadratures I wrote the
first two books of the mathematical Principles of
Philosophy. And therefore I have subjoined a Book
on Quadratures 10 the Book of Principles.”” 9! This
“method™ refers to fluxions, or the method of differ-
ential calculus. But it is true, as mentioned carlier,
that Newton stated in the Principia that certain
theorems depended upon the “quadrature™ (or
integration) of “certain curves”; he did need. for this
purpose, the inverse mcthod of fluxions, or the
integral calculus. And proposition 41 of book I is,
moreover, an obvious excrcise in the calculus.

Newton himself never did bring out an edition
of the Principia together with a version of De
quadratura.’** In the review that he published of the
Commercium epistolicum,*** Newton did announce in
print, although anonymously, that he had “found out
most of the Propositions in his Principia” by using
“the new Analysis,” and had then reworked the
material and had “demonstrated the Propositions
synthetically.” (This claim cannot, however, be sub-
stanuated by documentary evidence.)

Apart from questions of the priority of Newton's
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method, the Principia contains some problems of
notable mathematical interest, Sections 4 and 5 of
book 1 deal with conic sections, and section 6 with
Kepler's problem; Newton here introduced the method
of solution by successive iteration. Lemma 5§ of
book I1I treats of a locus through a given number of
points, an example of Newton's widely used method
of interpolating a function. Proposition 71, book
I, contains Newton’s important solution to
a major problem of integration, the attraction
of a sphere, called by Tumnbull “the crown of
all.”” Newton's proof that two spheres will mutually
attract each other as if the whole of their masses were
concentrated at their respective centers is posited on
the condition that, however the mass or density may
vary within each sphere as a function of that radius,
the density at any given radius is everywhere the same
(or is constant throughout any concentric shell).

The “Principia™: General Plan, Newton’s master-
work was worked up and put into its final form in an
incredibly short time. His strategy was to develop the
subject of general dynamics from a mathematical
point of view in book I, then to apply his most
important results to solving astronomical and
physical problems in book II. Book II, introduced
at some point between Newton's first conception of
the treatise and the completion of the printer’s manu-
script, is almost independent, and appears extraneous.

Book I opens with 2 series of definitions and axioms,
followed by a set of mathematical principles and
procedural rules for the use of limits; book III begins
with general precepts concerning empirical science
and a presentation of the phenomenological bases
of celestial mechanics, based on observation.

It is clear to any careful reader that Newton was,
in book I, developing mathematical principles of
motion chiefly so that he might apply them to the
physical conditions of experiment and observation
in book III, on the system of the world. Newton
maintained that even though he had, in book I, used
such apparently physical concepts as “force™ and
“attraction,” he did so in a purcly mathematical
sense, In fact, in book I (as in book 1), he tended to
follow his inspiration to whatever aspect of any topic
might prove of mathematical interest, often going
far beyond any possible physical application. Only
in an occasional scholium in books I and II did he
raisc the question of whether the mathematical
propositions might indeed be properly applied to the
physical circumstances that the use of such words as
“force” and “‘attraction™ would seem to imply.

Newton’s method of composition led to a certain
amount of repetition, since many topics are discussed
twice—in book I, with mathematical proofs, to
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illustrate the general principles of the motions of
bodies, then again mn book 111, in application to the
motions of planets and their satellites or of comets.
While this mode of presentation makes the Principia
more difficult for the reader, it does have the decided
advantage of scparating the Newtonian principles as
they apply to the physical universe from the details
of the mathematcs from which they derive.

As an example of this separation, proposition | of
book III states that the satellites of Jupiter are
“continually drawn off from rectilinear motions, and
are retained in their proper orbits™ by forces that
“tend to Jupiter's centre™ and that these forces vary
inverscly as the squarc of their distances from that
center. The proof given in this proposition is short
and direct: the centripetal force itself follows from
“Phen. I [of book III], and Prop. II or III, Book I.”
The phenomenon cited is a statement, based upon
“astronomical observations,” that a radivs drawn
from the center of Jupiter to any satellite sweeps out
areas “proportional to the times of descriptions™;
propositions 2 and 3 of book I prove by mathe-
matics that under these circumstances the force
about which such areas are described must be
centripetal and proportional to the times. The
inverse-square  property of this force is derived
from the second part of the phenomenon, which
states that the distances from Jupiter's center are
as the #th power of their periods of revolution, and
from corollary 6 to proposition 4 of book I, in which
it 1s proved that centripetal force in uniform circular
motion must be as the inverse square of the distance
from the center.

Newton’s practice of introducing a particular
instance repeatedly, with what may seem to be only
minor variations, may render the Principia difficult
for the modern reader. But the main hurdle for any
would-be student of the treatise lies elsewhere, in
the essential mathematical difficulty of the main
subject matter, celestial mechanics, however presented.
A further obstacle is that Newton’s mathematical
vocabulary became archaic soon after the Principia
was published, as dynamics in general and celestial
mechanics in particular ¢came to be written in the
language of differentials and integrals still used today.
The reader is thus required almost to translate for
himself Newton’s geometrical-limit mode of proof and
statement into the characters of the analytic algorithms
of the calculus. Even so, dynamics was taught directly
from the Principia at Cambridge until well into the
twentieth century.

In his “Mathematical Principles” Whiteside
describes the Principia as “slipshed, its Jevel of verbal
fluency none too high, its arguments unnecessarily
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diffuse and repetitive, and its content on occasion mar-
kedly irrelevant to its professed theme: the theory of
bodics moving under impressed forces.” This view 15
somewhat extreme. Nevertheless, the work might
have been easier 1o read today had Newton chosen
to rely to a greater extent on general algorithms.

The Principia 15 often described as if it were a
“synthesis,” notably of Kepler's three laws of
planctary motion and Galileo’s laws of falling bodies
and projectile motion; but in fact it denies the validity
of both these sets of basic laws unless they be modified.
For instance, Newton showed for the first time the
dynamical significance of Kepler's so-called laws of
planctary motion; but in so doing ho proved that
in the form originally stated by Kepler they apply
exactly only to the highly artificial condition of a point
mass moving about a mathematical center of force,
unaffected by any other stationary or moving masses.
In the real universe, these laws or planetary
“hypotheses™ are true only to the limits of ordinary
observation, which may very well have been the reason
that Newton called them “Hypotheses™ in the first
cdition. Later, in the second and third editions, he
referred to these relations as “Phacnomena,” by
which it may be assumed that he now meant that they
were not simply true as stated (that is, not strictly
deducible from the definitions and axioms), but were
rather valid only to the limit of (or within the limits of)
observation, or were phenomenologically true. In
other words, these statements were to be regarded as
not necessarily true, but only contingently (phenom-
cnologically) so.

In the Principia, Newton proved that Kepler's
planetary hypotheses must be modified by at least two
factors: (1) the mutual attraction of each of any pair
of bodies, and (2) the perturbation of a moving body
by any and all ncighboring bodics. He also showed
that the rate of free fall of bodies is not constant, as
Galileo had supposed, but varics with distance from
the center of the carth and with latitude along the
surface of the carth.#* In a scholium at the end of
section 2, book I, Newton further pointed out that it is
only in a limiting case, not really achieved on earth,
that projectiles (even in vacuo) move in Galilean
parabolic trajectories, as Galileo himself knew full
well. Thus, as Karl Popper has pointed out, although
“Newton’s dynamics achieved 2 unification of
Galileo’s terrestrial and Kepler's celestial physics,”
it appears that “from a logical point of view, Newton’s
theory, strictly speaking, contradicts both Galileo’s
and Kepler's.”" 143

The *“Principia”™: Definitions and Axioms. The
Principia opens with two preliminary presentations:
the “Definitions” and the “Axioms, or Laws of
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Motion,” The first two entities defined are “quantity
of matter,” or “mass,” and “quantity of motion.”
The former is said to be the measure of matter
proportional to bulk and density conjunctively.

' “Mass” is, in addition. given as being generally
known by its weight, to which it is proportional
at any given place, as shown by Newton's experiments
with pendulums, of which the results are more exact
than Galileo’s for freely falling bodies. Newton’s
“quantity of motion™ is the entity now known as
momentum; it is said to be measured by the velocity
and mass of a body, conjunctively.

Definition 3 introduces vis insita (probably best
translated as “inherent force™), a concept of which the
actual definition and explanation are both so difficult
10 understand that much scholarly debate has been
cxpended on them.'*® Newton wrote that the vis insita
may be known by “a most significant name, pis
inertiae,” But this “force™ is not like the “impressed
forces™ of definition 4, which change the state of rest
or uniform rectilinear motion of a body; the vis inerriae
merely maintains any new state acquired by a body,
and it may cause a body to “resist” any change in
state. 147

Newton then defined “centripetal force™ (vis
centripeta), a concept he had invented and named to
complement the wois centrifuga of Christiaan
Huygens. 24 In definitions 6 through 8, Newton gave
three “measures” of centripetal force, of which the
most important for the purposes of the Principia is that
one “proportional to the velocity which it generates in
a given time” (for point masses, unit masses, or for
comparing equal masses). There follows the famous
scholium on space and time, in which Newton opted
for concepts of absolute space and absolute time,
although recognizing that both are usvally reckoned
by “sensible measures™; time, especially, is usually
“relative, apparent, and common.” Newton’s belief
in absolute space led him to hold that absolute motion
1s sensible or detectable, notably in rotation, although
contemporaries as different in their outlooks as
Huygens and Berkeley demurred from this view.

The “Axioms™ or “Laws of Motion™ are three in
number: the law of inertia, a form of what is today
known as the second law, and finally the law that
“To every action there is always opposed an equal
and opposite reaction.” There is much puzzlement
over the second law, which Newton stated as
a proportionality between “change in motion”
(in momentum) and “the motive force impressed”™
(a change “made in the dircction . . ., in which
that force is impressed™): he did not specify
“per unit time” or “in some given time.” The
second law thus secems clearly to be stated for
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an impulse, but throughout the Principia (and, in
2 special case, in the antecedent definition 8), Newton
used the law for continuous forces, including gravi-
tation, taking account of time. For Newton, in fact,
the concepts of impulse and continuous force were
infinitesimally equivalent, and represented conditions
of action “‘altogether and at once” or “by degrees and
successively.”"™? There are thus two conditions of
“foree™ in the second law; accordingly., this Newtonian
law may be written in the two forms £ « d(mv) and
J o d(mp)/dt, in which both concepts of force are taken
account of by means of two different constants of
proportionality, The two forms of the law can be
considered equivalent through Newton's concept of a
uniformly flowing time, which makes dr a kind of
secondary constant, which can arbitrarily be absorbed
in the constant of proportionality.

There may be some doubt as to whether or not
Newton himself was unclear in his own mind about
these matters. His use of such expressions as “vis
impressa” shows an abiding influence of older
physics, while his continued reference to a “vis” or a
“force™ needed to maintain bodies in a state of motion
rases the question of whether such usage is one of a
number of possibly mislcading “artifacts left behind
in the historical development of his [Newton’s]
dynamics.” % It must be remembered, of course, that
throughout the seventeenth and much of the eightcenth
century the word “force™ could be used in 2 number
of ways. Most notably, it served to indicate the
concept now called “momentum,™ although it could
also even mean cnergy. In Newton’s time there were
no categories of strict formalistic logic that required
2 unilary one-to-one correspondence between names
and concepts, and neither Newton nor his contem-
poraries (or, for that matter, his SUCCESSOrs) were
always precise in making such distinctions.

The careful reader of books I-TII should not be
confused by such language, however, nor by the
preliminary intrusion of such concepts. Even the idea
of force as a measure of motion or of change of
motion (or of change per se, or rate of change)
is not troublesome in practice, once Newton's own
formulation is accepted and the infinitesimal level of
his discourse (which is not always explicatly stated)
understood. In short, Newton’s dynamical and
mathematical elaboration of the three books of the
Principia is free of the errors and ambiguitics implicit
in his less successful attempt to give a logically simple
and coherent set of definitions and axioms for
dynamics. (It is even possible that the definitions and
axioms may represent an independent later exercise,
since there are, for example, varying sets of definitions
and axioms for the same system of dynamics.) One of
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the most important consequences of Newton's
analysis is that it must be one and the same law of
force that operates in the centrally directed accel-
cration of the planctary bodies (toward the sun) and
of satellites (toward planets), and that controls the
lincar downward acceleration of freely falling bodies.
This force of universal gravitation is also shown to be
the cause of the tides, through the action of the sun
and the moon on the scas.

Book 1 of the “Principia.” Book I of the Principia
conrains the first of the two parts of De motu corporum.
It is a mathematical treatment of motion under the
action of impressed forces in free spaces—that is,
spaces devoid of resistance. (Although Newton
discussed elastic and inelastic impact in the scholium
to the laws, he did not reintroduce this topic in book 1)
For the most part, the subject of Newton's inquiries
is the motion of unit or point masses, usually having
some initial inertial motion and being acted upon by
a centripetal force. Newton thus tended 1o use the
change in velocity produced in a given time (the
“accelerative measure™) of such forces, rather than the
change in momentum produced in a given time (their
“motive” measure).’ He generally compared the
effects of different forces or conditions of force on
one¢ and the same body, rather than on different
bodies, preferring to consider a mass point or unit
mass to compuling actual magnitudes. Eventually,
however, when the properties and actions of force had
been displayed by an investigation of their
“accclerative” and “motive” measures, Newton was
able to approach the problem of their “absolute”
measure. Later in the book he considered the attraction
of spherical shells and spheres and of nonsymmetrical

Secuions 2 and 3 are devoted to aspects of motion
according to Kepler's laws. In proposition 1 Newton
proceeded by four stages, He first showed that in a
purely uniform linear (or purely inertial) motion, a
radius vector drawn from the moving body to any
point not in the line of motion sweeps out equal areas
in equal times. The reason for this is clearly shown in

FIGURE §
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Figure 8, in which in equal times the body will move
through the equal distances AB, BC,CD, DE, - - -,
If a radius vector i1s drawn from a point PS, then
triangles ABS, BCS, CDS, DES, - - - have equal bases
and a common altitude /, and their arcas are equal.
In the second stage, Newton assumed the moving
object to receive an impulsive force when it reaches
point B. A component of motion toward S is thereby
added to its motion toward C; its actual path is thus
along the diagonal Be of a parallelogram (Figure 9).

s

A B e
FIGURE 9

Newton then showed by simple geometry that the
arca of the triangle SBc is the same as the arca of the
triangle SBC, so that arca is still conserved. He
repeated the procedure in the third stage, with the
body receiving a new impetus toward S at point C,
and so on. In this way, the path is converted from a
straight line into a series of joined line segments,
traversed in cqual intervals of time, which determine
triangles of equal arcas, with S as a common vertex.

In Newton's final development of the problem, the
number of triangles is increased “‘and their breadth
diminished in infinitum™; in the limit the “ultimate
perimeter” will be a curve, the centripetal force “will
act continually,” and “any described areas™ will be
proportional 10 the times. Newton thus showed that
inertial motion of and by itself implies an arca-
conservation law, and that if a centripetal force is
directed 1o “an immovable centre” when a body has
such inertial motion initially, area is still conserved as
determined by a radius vector drawn from the moving
body to the immovable center of force. (A critical
examination of Newton's proof reveals the use of
second-order infinitesimals.)*** The most significant
aspect of this proposition (and its converse, propo-
sition 2) may be its demonstration of the hitherto
wholly unsuspected logical connection, in the case
of planctary motion, belween Descartes’s law of
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inertia and Kepler's law of areas (generalized to hold
for an arbitrary central orbit).

Combining proposition 1 and proposition 2,
Newton showed the physical significance of the law
of areas as a necessary and sufficient condition for a
central force (supposing that such forces exist; the
“reality” of accelerative and motive forces of
attraction is discussed in book ITI). In proposition 3,
Newton dealt with the case of a body moving around
a moving, rather than a stationary, ceater. Propo-
sition 4 is concerned with uniform circular motion,
in which the forces (F, f) are shown not only to he
directed to the cznters of the circles, but also to be to
cach other “as the squares of the arcs S, 5] described
in equal times divided respectively by the radii [R, )
of the circles” (F:f = S/R*:s/r}). A series of
corollarics demonstrate that F:f = V3R ; p% —
R{T? zrjt*, where V, v are the tangential velocities,
and so on; and that, universally, 7" being the period of
revolution, if T oc R, ¥ o |/R*1, then F o 1/R®=1,
and conversely. A special case of the last condition
(corollary 6) is Toc R3/2, yielding Foc 1/R?, a condition
(according to a scholium) obtaining “in the celestial
bodies,” as Wren, Hooke, and Halley “have severally
observed.” Newton further referred to Huygens'
derivation, in De horologio oscillatorio, of the
magnitude of “the centrifugal force of revolving
bodies™ and introduced his own independent method
for determining the centrifugal force in uniform
circular motion. In proposition 6 h¢ went on to a
general concept of instantancous measure of a force,
for a body revolving in any curve about a fixed center
of force. He then applied this measure, developed
as a limit in several forms, in 2 number of major
examples, among them proposition 11.

The last propositions of section 2 were altered in
successive editions. In them Newton discussed the
laws of force related to motion in a given circle and
equiangular (logarithmic) spiral. In proposition
10 Newton took up elliptical motion in which
the force tends toward the center of the cllipse.
A necessary and sufficient cause of this motion is that
“the force is as the distance.” Hence if the center is
“removed 10 an infinitc distance,” the ellipse
“degencrates into a parabola,” and the force will be
constant, yielding “Galileo’s theorem"™ concerning
projectile motion.

Section 3 of book I opens with proposition 11,
“If a body revolves 1n an ellipse; it is required to find
the law of the centripetal force tending to the focus of
the cllipse.” The law 1s: “the centripetal force is
inversely . . . as the square of the distance.” Propo-
sitions 12 and 13 show that a hyperbolic and a
parabolic orbit imply the same law of force to a
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focus. It is obvious that the converse condition,
that the centripetal force varies inversely as the square
of the distance, does not by itself specify which conic
section will constitute the orbit. Proposition 15
demonstrates that in cllipses “the periodic times are
as the 3/2th power of their greater axes” (Kepler's
third law). Hence the periodic times in all ellipses with
equal major axes are equal to onc another, and
equal to the periodic time in a circle of which the
diameter is equal to the greater axis of each ellipse.
In proposition 17, Newton supposed a centripetal
force “inversely proportional to the squares of the
distances” and exhibited the conditions for an orbit
in the shape of an ellipse, parabola, or hyperbola.
Sections 4 and 5, on conic sections, are purely mathe-
matical.

In section 6, Newton discussed Kepler’s problem,
introducing methods of approximation to find the
future position of a body on an ellipse, according to
the law of areas; it is herc that onc finds the method
of successive iteration. In section 7, Newton found
the rectilinear distance through which a body falls
freely in any given time under the action of a
“centripetal force . . . inversely proportional to the
square of the distance . . . from the centre.” Having
found the times of descent of such a body, he then
applied his results to the problem of parabolic motion
and the motion of “a body projected upwards or
downwards,” under conditions in which “the cen-
tripetal force is proportional to the .. . distance.”
Eventually, in proposition 39, Newton postulated
“a centripetal force of any kind” and found
both the velocity at any point to which any
body may ascend or descend in a straight line
and the time it would take the body to get there, In
this proposition, as in many in section 8, he added the
condition of “granting the quadratures of curvilinear
figures,” referring to his then unpublished methods of
integration (printed for the first time in the De
guadratura of 1704).

In section 8, Newton often assumed such quadra-
ture. In proposition 41 he postulated “a centripetal
force of any kind”:; that is, as he added in
proposition 42, he supposed “the centripetal force to
vary in its recess from the center according to some
law, which anyone may imagine at pleasure, but
[which] at equal distances from the centre [is taken]
to be everywhere the same,” Under these general
conditions, Newton determined both “the curves in
which bodies will move™ and “the times of their
motions in the curves found.” In other words, Newton
presented to his readers a truly general resolution of
the inverse problem of finding the orbit from a given
law of force. He extended this problem into a dynamics
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far beyond that commonly associated with the
Principia. In the ancillary proposition 20, for example,
Newton (again under the most general conditions
of force) had sought the veloaty at a point on an
orbit, finding a result that is the equivalent of an
integral, which (in E. J. Anton's words) in “modern
terms . . . expresses the invariance of the sum of the
kinetic and gravitational potential cnergies in an
orbit."1%?

In section 11, Newton reached a level of mathe-
matical analysis of celestial motions that fully
distinguishes the Principia from any of its prede-
cessors. Until this point, he there explained, he had
been “treating of the attractions of bodies towards an
immovable centre; though very probably there is no
such thing existent in nature.” He then outlined a plan
to deal with nature herself, although in a “purely
mathematical” way, “laying aside all physical
considerations”—such as the nature of the gravitating
force. “Attractions” are to be treated here as
originating in bodies and acting toward other bodies;
in a two-body system, therefore, “neither the attracted
nor the attracting body is truly at rest, but both ...
being as it were mutually attracted, revolve about a
common centre of gravity.” In general, for any system
of bodies that mutually attract one another, “their
common centre of gravity will cither be at rest,
or move uniformly” in a straight line. Under these con-
ditions, both members of a pair of mutually attractive
bodies will describe “similar figures about their
common centre of gravity, and about each other
mutually™ (proposttion 57),

By studying such systems, rather than a single body
attracted toward a point<center of force, Newton
proved that Kepler's laws (or “planctary hypotheses™)
cannot be truc within this context, and hence need
modification when applied 10 the real system of the
world. Thus, in proposition 59, Newton stated that
Kepler's third law should not be written 7,2 : 73, =
@ : a,%, as Kepler, Hooke, and everybody else had
supposed, but must be modified.

A corollary that may be drawn from the proposition
is that the law might be written as (M + m)Ty*:
(M + m)7T.%: a,” @, where my, mg are any (wo
planctary masscs and M is the mass of the sun.
(Newton’s expression of this new relation may be
reduced at once (o the more familiar form in which
we use this law today.) Clearly, it follows from
Newton's analysis and formulation that Kepler's
own third law may safely be used as an approximation
in most astronomical calculations only because my,,
m are very small in relation to M. Newton's modifica-
tion of Kepler's third law fails to take account of
any possible interplanctary perturbations, The chief
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function of proposition 59 thus appears to b2 not to
yeach the utmost peneralization of that law, but
rather to reach a result that will be useful in the
problems that follow, most notably proposition 60
(on the orbits described when each of two bodies
attracts the other with a force proportional to the
square of the distance, each body “revolving about the
common centre of gravity”).

From proposition 59 onward, Newton almost at
once advanced to various motions of mutually
attractive bodies “let fall from given places”™ (in
proposition 62), “going off from given places in given
directions with given velocities” (proposition 63), or
even when the attractive forces “increase in a simple
ratio of their [that is, the bodics’] distances from the
centres” (proposition 64). This led him to examine
Kepler's first two laws for real “bodics,” those
“whose forces decrease as the square of their distances
from their centres.” Newton demonstrated in propo-
sition 65 that in general it is not “possible that bodies
attracting each other according to the law supposed
in this proposition should move exactly in cllipses,”
because of interplanctary perturbations, and discussed
cases in astronomy in which “the orbits will
not much differ from cllipses.” He added that the
areas described will be only “very nearly proportional
to the times.”

Proposition 66 presents the restricted three-body
problem, developed in a series of twenty-two corol-
laries. Here Newton attempted to apply the law of
mutual gravitational attraction 1o @ body like the sun
to determine how it might perturb the motion of a
moonlike body around an earthlike body. Newton
examined the motion in longitude and in latitude, the
annual equation, the evection, the change of the
inclination of the orbit of the body resembling the
moon, and the motion on the line of apsides. He
considered the tides and explained, in corollary 22,
that the internal “constitution of the globe™ (of the
carth) can be known “from the motion of the nodes.”
He further demonstrated that the shape of the globe
can be derived from the precession constant
(precession being caused, in the case of the carth,
by the pull of the moon on the equatorial bulge of the
spinning earth). He thus established, for the first time,
a physical theory, elaborated in mathematical
expression, from which some of the “inequalities™ of
the motion of the moon could be deduced; and he
added somc hitherto unknown “inequalities™ that
he had found. Previous to Newton’s work, the study
of the irregularitics in the motion of the moon had
been posited on the elaboration of geometric models,
in an attempl 1o make predicted positions agree with
actual observations.*#
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Section 12 of book I contains Newton’s results on
the attractions of spheres, or of spherical shells. He
dealt first with homogeneous, then nonhomogencous
spheres, the latter being composed of uniform and
concentric spherical shells so that the density 1s the
same at any single given distance from the center.
In proposition 71 he proved that a “corpuscle™
situated outside such a nonhomogencous sphere is
“attracted towards the centre of the sphere with a
force inversely proportional to the square of jts
distance from the centre.” In proposition 75, he
reached the general conclusion that any two such
spheres will gravitationally attract one another as if
their masses were concentrated at their respective
centers—or, in other words, that the distance required
for the inverse-squarc law is measured from their
centers. A series of clegant and purely mathematical
theorems follow, including one designed to find the
force with which a corpuscle placed inside a sphere
may be “attracted toward any segment of that sphere
whatsoever.” In section 13, Newton, with a brilliant
display of mathematics (which he did not fully reveal
for the benefit of the reader) discussed the “attractive
forces™ of nonspherical solids of revolution, conclud-
ing with 2 solution in the form of an infinite series for
the attraction of a body “towards a given plane,’ss

Book I concludes with section 14, on the “motion of
very small bodies™ acted on by “centripetal forces
tending to the several parts of any very great body,”
Here Newton used the concept of “ceatripetal forces™
that act under very special conditions to produce
motions of corpuscles that simulate the phenomena
of light—including reficction and refraction (according
to the laws of Snell and Descartes), the inflection of
light (as discovered by Grimaldi), and even the action
of lenses. In a scholium, Newton noted that these
“attractions bear a great resemblance (o the reflections
and refractions of light,” and so

- - - because of the analogy there is between the propaga-
tion of the rays of light and the motion of bodics,
I thought it not amiss to add the following Propositions
for optical uses: not at all considering the nature of the
rays of light, or inquiring whether they arc bodies or
not: but only determining the curves of (the paths of]
bodies which are extremely like the curves of the rays.

A similar viewpoint with respect to mathematical
analyses (or models and analogies) and physical
phenomena is generally sustained throughout books 1
and II of the Principia.

Newton’s general plan in book I may thus be seen
as one in which he began with the simplest conditions
and added complexities step by step. In sections 2
and 3, for example, he dealt with a mass-point moving
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under the action of a centripetal force directed

toward a stationary or moving point, by which the

dynamical significance of cach of Kepler's three laws

of planetary motion is demonstrated. Tn section 6,
Newton developed methods to compute Keplerian

motion (along an ellipse, according to the law of
areas), which leads to “regular ascent and descent™
of bodies when the force is not uniform (as in Galilean
free fall) but varies, primarily as the inverse square of
the distance, as in Keplerian orbital motion. In
section 8 Newton considered the general case of
“orbits in which bodies will revolve, being acted upon
by any sort of centripetal force.” From stationary
orbits he went on, in section 9, to “movable orbits;
and the motion of the apsides™ and to a mathematical
treatment of two (and then three) mutoally attractive
bodies. In section 10 he dealt with motion along
surfaces of bodies acted upon by centripetal force;
in section 12, the problems of bodies that are not mere
points or point-masses and the question of the
“attractive forces of spherical bodies”; and in
section 13, “the attractive forces of bodies that are not
spherical.”

Book II of the “Principia.” Book 11, on the motion
of bodies in resisting mediums, is very different from
book L. It was an afterthought to the original treatise,
which was conceived as consisting of only two books,
of which one underwent more or less serious modifi-
cations to become book I as it exists today, while the
other, a more popular version of the “system of the
world,” was wholly transformed so as to become
what is now book II1. At first the question of motion
in resisting mediums had been relegated to some
theorems at the end of the original book I; Newton
had also dealt with this topic in a somewhat similar
manner at the end of his carlier tract De motu. The
latter parts of the published book IT were added only
at the final redaction of the Principia.

Book II is perhaps of greater mathematical than
physical interest. To the extent that Newton procecded
by setting up a sequence of mathematical conditions
and then exploring their consequences, book 11
resembles book I. But there is a world of difference
between the style of the two books. In book I Newton
made it plain that the gravitational force cxists in the
universe, varying inversely as the square of the
distance, and that this force accordingly merits our
particular attention. In book 11, however, the reader
is never certain as to which of the many conditions of
resistance that Newton considers may actually occur
in nature.16

Book I enabled Newton to display his mathematical
ingenuily and some of his new discoverics. Occa-
sionally, as in the static model that he proposed to
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explain the elasticity and compressibility of gases
according to Boyle's law, he could explore what he
believed might be actual physical reality. But he
nonetheless reminded his readers (as in the scholivm
at the end of section 1) that the condition of resistance
that he was discussing was “more a mathematical
hypothesis than a physical one.” Even in his final
argument against Cartesian vortices (section 9), he
admitted the implausibility of the proposed hypothesis
that “the resistance . . . is, other things being equal,
proportional to the velocity.” Although a scholium
10 proposition 52 states that “itis in truth probable that
the resistance is in a less ratio than that of the velocity,”
Newton in fact never explored the consequences of this
probable assumption in detail. Such a procedure is in
marked contrast to book I, in which Newton examined
a variety of conditions of attractive and centripetal
forces, but so concentrated on the inverse-square force
as to leave the reader in no doubt that this is the chief
force acting (insofar as weight is concerned) on the sun,
the planets, the satellites, the scas, and all terrestrial
objects.

Book II differs further from book I in having a
separale section devoted to each of the imagined
conditions of resistance. In section 1, resistance to the
motions of bodies is said to be as “the ratio of the
velocity™; in section 2, it is as “the square of their
velocities™; and in section 3, it is given as “partly in
the ratio of the velocities and partly as the square of
the same ratio.” Then, in section 4, Newton intro-
duced the orbital “motion of bodies in resisting
mediums,” under the mathematical condition that
“the density of a medium™ may vary inversely as the
distance from “an immovable centre™; the “centripetal
force™ is said in proposition 15 to be as the square of
the said density, but is thereafter arbitrary. In a
very short scholium, Newton added that these con-
ditions of varying density apply only to the motions
of very small bodies. He supposed the resistance of
a medium, “other things being equal,” to be propor-
tional to its “density.”

In section 5, Newton went on to discuss some
general principles of hydrostatics, including propertics
of the density and compression of fluids. Historically,
the most significant proposition of section $ is
proposition 23, in which Newton supposed “a fiuid
[to] be composed of particles fleeing from each other,”
and then showed that Boyle’s law (“the density” of a
gas varying directly as “the compression™) is a
necessary and a sufficient condition for the centrifugal
forces to “he inversely proportional to distances of
their [that is, the particles’] centers.™

Then, in the scholium to this proposition, Newton
generalized the resnlts, showing that for the com-
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pressing forces to “be as the cube roots of the power
Ex+=” where E is “the density of the compressed
fluid,” it is both a necessary and sufficient condition
that the centrifugal forces be “inversely as any power
D~ of the distance [between particles].” He made it
explicit that the “centrifugal forces™ of particles must
“terminale in those particles that are next [to] them,
or are diffused not much farther,” and drew upon the
example of magnetic bodies. Having set such a model,
however, Newton concluded that it would be *“a
physical question™ as to “whether elastic fluids [gases]
do really consist of particles so repelling cach other,”
and stated that he had limited himself to demon-
strating “mathematically the property of fluids
consisting of particles of this kind, that hence
philosophers may take occasion (0 discuss that
question.”?*?

Section 6 introduces the “motion and resistance of
pendulous bodies.” The opening proposition (24)
rclates the quantity of matter in the bob to its weight,
the length of the pendulum, and the time of oscil-
Jation in a vacuum. Because, as corollary § states,
“in general, the quantity of matter in the pendulous
body s directly as the weight and the square of the
time, and inversely as the length of the pendulum,”
a method s at hand for using pendulum experiments
to compare directly “the quantity of matter” in bodies,
and to prove that the mass of bodies is proportional
“to their weight.” Newton added that he had tested
this proposition experimentally, then further stated,
in corollary 7, that the same experiment may be used
for “comparing the weights of the same body in
difficrent places, to know the variation of its
gravity.”"*** This is the first clear recognition that
“mass” determines both weight (the amount of
gravitational action) and inertia (the measure of
resistance to acceleration) —the two properties of
which the “equivalence” can, in classical physics, be
determined only by experiment.

In section 6 Newton also considered the motion of
pendulums in resisting mediums, especially oscillations
m a cycloid, and gave metheds for finding “the
resistance of mediums by peadulums  oscillating
therein.” An account of such experiments makes up
the “General Scholium™ with which scction 6
concludes.’* Among them is an experiment Newton
described from memory. designed to confute “‘the
opinion of some that there is a certain aethereal
medium, extremely rare and subtile, which freely
pervades the pores of all bodies.”

Section 7 introduces the “motion of fluids,” and
“the resistance made to projected bodies,” and
section 8§ deals with wave motion. Proposition 42
asserts that “All motion propagated through a fluid
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diverges from a rectilinear progress into the unmoved
spaces”; while proposition 30 gives a method of
finding “the distances of the pulses,” or the wave-
length. In a scholium, Newton stated that the previous
propositions “respect the motions of light and sound”
and asserted that “since light is propagated in right
lines, it is certain that it cannot consist in action alone
(by Prop. XLI and XLII)"; there can be no doubt
that sounds are “nothing else but pulses of the air”™
which “arise from tremulous bodies.” This section
concludes with various mathematical theorems con-
cerming the velocity of waves or pulses, and their
relation to the “density and clastic force of a medium.”
In section 9, Newton showed that in wave motion
& disturbance moves forward, but the parts (partclcs)
of the medium in which the disturbance occurs only
vibrate about a fixed position; he thercby established
the relation between wavelength, frequency, and
velocity of undulations. Proposition 47 (proposition 48
m the first cdition) analyzes undulatory motion in
a fluid; Newton disclosed that the parts (or particles)
of an undulating fluid have the same oscillation as
the bob of a simple pendulum. Proposition 48
(proposition 47 in the first edition) exhibits the
proportionality of the velocity of waves to the square
root of the elastic force divided by the density of an
elastic fluid (one whose pressure is proportional to the
density). The final scholium (much rewritten for the
sccond edition) shows that Newton's propositions
yield a velocity of sound in air of 979 feet per second,
whereas experiment gives a value of 1,142 feet per
second under the same conditions. Newton offered an
ingenious explanation (including the supposition, in
the interest of simplicity, that air particles might be
rigid spheres separated from one another by a distance
of some nine times their diameter), but it remained
for Laplace to resolve the problem in 1816.190
Section 9, the last of book II, is on vortices, or
“the circular motion of fluids.” In all editions of the
Principia, this section begins with a clearly labeled
“hypothesis™ concerning the “resistance arising from
the want of lubricity in the parts of a fluid . . . other
things being equal, [being] proportional to the
velocity with which the parts of the fluid are separated
from one another.” Newton used this hypothesis as
the basis for investigating the physics of vortices and
their mathematical propertics, culminating in a
lengthy proposition 52 and eleven corollaries, followed
by a scholium in which he said that he has attempted
“lo investigate the properties of vortices” so that he
might find out “whether the celestial phenomena can
be explained by them.” The chief “phenomenon”
with which Newton was here concerned is Kepler's
third (or harmonic) law for the motion of the satellites
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of Jupiter about that planet, and for the primary
“plancts that revolve about the Sun"—although
Newton did not refer to Kepler by name. He found
“the periodic times of the parts of the vortex™ to be “as
the squares of their distances.” Hence, he concluded,
“Let philosophers then sce how that phenomenon
of the 3/2th power can be accounted for by vortices.”

Newton ended book Il with proposition 53, also
on vortices, and a scholium, in which he showed that
“it is manifest that the planets are not carried round
in corporcal vortices.” He was there dealing with\
Kepler's second or area law (although again without |
naming Kepler), in application to elliptic orbits. He /
concluded “that the hypothesis of vortices is utterly
irrcconcilable with astronomical phenomena, and
rather serves to perplex than to explain the heavenly
motions.” Newton himself noted that his demon-
stration was based on “an hypothesis,” proposed
“for the sake of demonstration . . . at the beginning
of this Section,” but went on to add that “it is in
truth probable that the resistance is in a less ratio
than that of the velocity.” Hence “the periodic times
of the parts of the vortex will be in a greater ratio than
the square of the distances from its centre.” But it
must be noted that it is in fact probable that the
resistance would be in a greater “ratio than that of
the velocity,” not a lesser, since almost all fluids give
rise to a resistance proportional to the square (or
higher powers) of the velocity, 2

Book III, “The System of the World.” In the
Newtonian system of the world, the motions of
planets and their satellites, the motions of comets,
and the phenomena of tides are all comprehended
under a single mode of explanation. Newton stated
that the force that causcs the observed celestial
motions and the tides and the force that causes weight
are onc and the same; for this reason he gave the
name “gravity” to the centripetal force of universal
attraction. In book IIT he showed that the earth
must be an oblate spheroid, and he computed the
magnitude of the equatorial bulge in relation to the
pull of the moon so as to produce the long-known
constant of precession; he also gave an explanation
of variation in weight (as shown by the change in the
period of a seconds pendulum) as a function of
latitude on such a rotating non-spherical earth. But
above all, in book III Newton stated the law of
universal gravitation. He showed that planetary
motion must be subject to interplanetary perturbation
~—most apparent in the most massive plancts, Jupiter
and Saturn, when they are in near conjunction—and
he explored the perturbing action of the sun on the
motion of the moon.

Book 11T opens with a preface in which Newton
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stated that in books I and II he had set forth principles
of mathematical philosophy, which he would now
apply to the system of the world. The preface refers
to an carlier, more popular version.'®® of which
Newton had recast the substance “into the form of
Propositions (in the mathematical way).”

A set of four “rules of reasoning in [natural]
philosophy™ follows the preface. Rule 1 is to admit
no more causes than are “true and sufficient to
explain” phenomena, while rule 2 is to “assign the
same causes” insofar as possible to “the same natural
effects.” In the first edition, rules 1 and 2 were called
“hypotheses,” and they were followed by hypothesis 3,
on the possibility of the transformation of cvery body
“into a body of any other kind,” in the course of
which it “can take on successively all the intermediate
grades of qualities.”™ This “hypothesis” was deleted
by the time of the second edition.'®®

A second group of the onginal “hypotheses™
(5 through 9) were transformed into “phenomena™
1 and 3 through 6. The first states (with phenomenolog-
ical evidence) the area law and Kepler's third law for
the system of Jupiter’s satcllites (again Kepler is not
named as the discoverer of the law). Phenomenon 2,
which was introduced in the second edition, does the
same for the satellites of Saturn (just discovered as the
Principia was being written, and not mentioned in the
first edition, where reference is made only to the first
[Huygenian] satellite discovercd). Phenomena 3
through 6 (originally hypotheses 6 through 9) assert,
within the limits of observation: the validity of the
Copernican system (phenomenon 3); the third law of
Kepler for the five primary planets and the carth—
here for the first time in the Principia mentioning
Kepler by name and thus providing the only reference
to him in relation to the laws or hypotheses of
planctary motion (phenomenon 4); the arca law for
the “primary planets,” although without significant
evidence (phenomenon 5); and the area law for the
moon, again with only weak evidence and coupled
with the statement that the law does not apply exactly
since “‘the motion of the moon is a little disturbed
by the action of the sun™ (phenomenon 6),

It has been mentioned that Newton probably called
these statements “phenomena™ because he knew that
they are valid only to the limits of observation. In this
sense, Newton had originally conceived Kepler’s
laws as planetary “hypotheses,” as he had also done
for the phenomena and laws of planetary satellites.*%¢

The first six propositions given in book 1T display
deductions from these “phenomena,” using the
mathematical results that Newton had set out in
book I. Thus, in proposition 1, the forces “by which
the circumjovial planets are continually drawn off
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from rectilincar motions, and retained in their
proper orbits™ are shown (on the basis of the area law
discussed in propositions 2 and 3, book I, and in
phenomenon 1) to be directed toward Jupiter’s
center. On the basis of Kepler’s third law (and
corollary 6, proposition 4, book [) these forces must
vary inversely as the square of the distance; propo-
sitions 2 and 3 deal similarly with the primary planets
and our moon.

By proposition 5, Newton was able to conclude (in
corollary 1) that there “is , . . a power of gravity
tending to all the planets” and that the planets
“gravitate™ toward their satellites, and the sun
“towards all the primary plancts.” This “force of
gravity™ varics (corollary 2) as the inverse square of
the distance; corollary 3 states that ““all the planets
do mutually gravitate towards one another.” Hence,
“necar their conjunction,” Jupiter and Saturn, since
their masses are so great, “sensibly disturb cach other’s
motions,” while the sun “disturbs” the motion of
the moon and together both sun and moon “disturb
our sea, as we shall hereafter explain.”

In a scholium, Newton said that the force keeping
celestial bodies in their orbits “has been hitherto
called centripetal force™; since it is now “plain™ that
it is “a gravitating force™ he will “hereafter call it
gravity.” In proposition 6 he asserted that “all bodies
gravitate towards every planet”; while at equal
distances from the center of any planet “the weight”
of any body toward that planet is proportional to its
“quantity of matter.” He provided experimental proof,
using a pair of eleven-foot pendulums, cach weighted
with a round wooden box (for equal air resistance),
into the center of which he placed seriatim equal
weights of wood and gold, having experimented as
well with silver, lead, glass, sand, common salt, water,
and wheat. According to proposition 24, corollaries 1
and 6, book II, any variation in the ratio of mass 0
weight would have appeared as a variation in the
period; Newton reported that through thesc cxper-
iments he could have discovered a difference as small
as less than one part in a thousand in this ratio, had
there been any.'*®

Newton was thus led to the law of universal
gravitation, propesition 7: “That there is a power
of gravity tending to all bodics, proportional to the
several quantities of matter which they contain.™
He had shown this power to vary inversely as the
square of the distance; it is by this law that bodies
(according to the third law of motion) act mutually
upon onc another.

From these general results, Newton turned to
practical problems of astronomy. Proposition 8 deals
with gravitating spheres and the relative masses and
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densitics of the planets (the numerical calculstions in
this proposition were much altered for the second
edition). In proposition 9, Newton ¢stimated the force
of gravity within a planct and, in proposition 10,
demonstrated the long-term stability of the solar
system. A general “Hypothesis ™ (in the second and
third editions; “Hypothesis IV in the first) holds the
“centre of the system of the world” to be
“immovable,” which center is given as the center of
gravity of the solar system in proposition [1; the sun
is in constant motion, but never “recedes” far from
that center of gravity ( proposition 12).

It is often asserted that Newton attained his
results by neglecting the interplanetary attractions,
and dealing exclusively with the mutual gravitational
attractions of the planets and our sun. But this is
not the case, since the most fully explored ¢xample
of perturbation in the Principia is indeed that of the
sun-carth-moon system. Thus Newton determined
(proposition  25) the “forces with which the
sun disturbs the motions of the moon,"” and
(proposition 26) the action of those forces in producing
an mequality (“horary increment™) of the area
described by the moon {although “in a circular orbit”).

The stated intention of proposition 29 is to “find
the variation of the moon,” the inequality thus being
sought being duc “partly to the elliptic figure of the
Moon’s orbit, partly to the inequality of the
moments of the area which the Moon by a radius
drawn to the Earth describes.” (Newton dealt with
this topic more fully in the second edition.) Then
Newton studied the “horary motion of the nodes of
the moon,” first (proposition 30) “in a circular orbit,”
and then (proposition 31) “in an clliptic orbit,” In
proposition 32, he found “the mean motion of the
nodes,” and, in proposition 33, their “truc motion.”
(In the third edition. following proposition 33, Newton
inserted 1wo propositions and a scholium on the
motion of the nodes, written by John Machin.)
Propositions 34 and 35, on the inclinztion of the orbit
of the moon 1o the ecliptic plane, are followed by a
scholium, considerably expanded and rewritten for
the second edition, in which Newton discussed yet
other “inequalities” in the motion of the moon and
developed the practical aspects of computing the
elements of that body’s motion and position.

Propositions 36 and 37 deal at length and in a
Quantitative fashion with the tide-producing forces
of the sun and of the moon, vielding, in proposition 38,
an explanation of the spheroidal shape of the moon
and the reason that (librations apart) the same face
of it is always visible. A serics of three lemmas
mtroduces the subject of precession and a fourth
lemma (transformed into hypothesis 2 in the second
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and third editions) treats the precession of a ring.
Proposition 39 represents an outstanding example
of the high level of mathematical natural science that
Newton reached in the Principia. In it he showed the
manner in which the shape of the earth, in relation
to the pull of the moon, acts on its axis of rotation so
as to produce the observed precession, a presentation
that he augmented and improved for the second
edition. Newton here employed the result he had
previously obtained (in* propositions 20 and 21,
book III) concerning the shape of the earth, and
joined it 1o both the facts and theory of precession and
yet another aspect of the perturbing force of the moon
on the motion of the earth. He thus inaugurated a
major aspect of celestial mechanics, the study of a
three-body system.

Lemma 4, book III initiates a section on comets,
proving that comets arc “higher” than the moon,
move through the solar system, and (corollary 1) shine
by reflecting sunlight; their motion shows (corollary 3)
that “the cclestial spaces are void of resistance.”
Comets move in conic sections (proposition 40) having
the sun as a focus, according to the law of areas, Those
comets that return move in clliptic orbits (corollary 1)
and follow Kepler's third law, but (corollary 2) “their
orbits will be 50 near to parabolas, that parabolas
may be used for them without sensible error.”™

Almost immediately following publication of the
Principia, Halley, in a letter of 5 July 1687, urged
Newton to go on with his work on funar theory.1ss
Newton later remarked that his head $0 ached from
studying this problem that it often “kept him awake"”
and “he would think of it no more.” But he also said
that if he lived long enough for Halley to complete
cnough additional observations, he “would have
another stroke at the moon.” In the 1690% Newton
had depended on Flamsteed for observations of the
moon, promising Flamsteed- (in a letter of
16 February 1695) not to communicate any of his
observations, “much less publish them, without your
consent,” But Newton and Flamsteed disagreed on
the value of theory, which Newton held to be useful
as “a demonstration™ of the “exactness” of obser-
vations, while Flamsteed believed that “theories do
not command observations: but are to be tried by
them,” since “theories are . . . only probable™ (even
“when they agree with exact and indubitable obser-
vations”). At about this same time Newton was
drawing up a set of propositions on the motion of the
moon for a proposed new edition of the Principia,
for which he requested from Flamsteed such planetary
observations “as tend to [be useful for) perfecting the
theory of the plancts,” (o serve Newton in the
preparation of a sccond edition of his book.
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Revision of the “Opticks” (the Later Queries);
Chemistry and Theory of Matter. Newton’s Opricks,
published in 1704, concluded with a Third Book,
consisting of eleven ““Observations” and sixteen
querncs, occupying a bare five pages of print, A Latin
translation, undertaken at Newton's behest by
Samuel Clarke, appeared in 1706, and included as its
most notable feature the expansion of the original
sixteen queries into twenty-three. The new queries 17
through 23 correspond to the final queries 25-31 of
the later editions. In 2 serics of “Errata, Corrigenda,
& Addenda,” at the beginning of the Latin volume,
lengthy additions are provided to be inserted at the
end of query 8 and of query 11; there is also a short
insertion for query 14,

In a second English edition (London, 1717)
the number of queries was increased to thirty-one.
The queries appearing for the first time are numbered
17 to 24, and they have no counterparts in the 1706
Latin version. Newton's own copy of the 1717 English
edition, in the Babson Institute Library, contains 2
number of emendations and corrections in Newton's
hand, some of which were incorporated into the third
edition (London 1721), as was a postscript to the end
of the last sentence, referring to Noah and his sons,

The queries new to the 1717 edition cover a wide
range of topics. Query 17 introduces the possibility
that waves or vibrations may be excited in the eye by
light and that vibrations of this sort may occur in the
medium in which light travels. Query 18 suggests that
radiant heat may be transmitted by vibrations of a
medium subtler than air that pervades all bodies and
expands by its elastic foroce throughout the heavenly
spaces—the same medium by which light is put into
“fits™ of “casy™ refiection and refraction, thus produc-
ing “Newton’s rings.” In queries 19 and 20, variations
in the density of this medium are given as the possible
cause of refraction and of the “inflection™ (diffraction)
of light rays. Query 21 would have the medium be rarer
within celestial bodies than in empty celestial spaces,
which may “impel Bodies from the denser parts of the
Medium towards the rarer’™; its elasticity may be
estimated by the ratio of the speed of light to the speed
of sound. Although he referred in this query (0 the
mutually repulsive  “particles” of ether as being
“exceedingly smaller than those of Air, or even those
of Light,” Newton confessed that he does “not know
what this Aether is.”

In query 22, the resistance of the ether is said to be
inconsiderable; the exhalations emitted by “clectrick™
bodics and magnetic “effluvia™ are offered as other
instances of such rareness. The subject of vision is
introduced in query 23. Here vision is again said to be
chiefly the effect of vibrations of the medium,
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propagated through the “optick Nerves”; an analogy
is made to hearing and thc other senses. Animal
motion (query 24) is considered as a result of vibrations
in the medium propagated from the brain through the
nerves to the muscles.

Queries 25 to 31 are the English recasting of querics
17 to 23 of the Latin edition. Query 25 contains a
discussion of double refraction in calcite (Iceland spar)
and a geometrical construction of both the ordinary
ray and (fallaciously) the extraordinary ray; query
26 concludes that double refraction may be caused by
the two “sides” of rays of light. Then, in query 27,
Newton attacked as erroncous all hypotheses explain-
ing optical phenomena by new modifications of rays,
since such phenomena depend upon original un-
alterable properties.

Query 28 questions “all Hypotheses™ in which light
is supposed to be a “Pression or Motion, propagated
through a fluid Medium.” Newton showed that
Huygens' wave theory of double refraction would fail
to account for the heating of bodics and the rectilinear
propagation of light, Those who would fill “the
Heavens with fluid Mediums” come under attack,
while Newton praised the ancient philosophers who
“made a Vacuwm, and Atoms, and the Gravity of
Atoms, the first Principles of their Philosophy.” He
added that “the main Business of natural Philosophy
is to argue from Phacnomena without feigning
Hypotheses™; we are to “deduce Causes from Effects,
till we come to the very first Cause, which certainly is
not mechanical,” since nature exhibits design and
purpose.

In query 29, Newton suggested that rays of light
are composed of “very small Bodies emitted from
shining Substances,” since rays could not have a
permanent virtue in two of their sides (as demonstrated
by the double refraction of Iceland spar) unless they
be bodies. This query also contains Newton’s famous
theory that rays of light could be put into “Fits of easy
Reflexion and casy Transmission” if they were “small
Bodies which by their attractive Powers, or some
other Force, stir up Vibrations in what they act upon.”
These vibrations would move more swiftly than the
rays themselves, would “overtake them successively,”
and by agitating them “so as hy turns to increase and
decrease their Velocities™ would put them into those
“fits.”" %" Newton further argued that if light were to
consist of waves in an ethereal medium, then in order
to have the fits of casy reflection and easy transmission,
a second ether would be required, in which there would
be waves (of higher velocity) to put the waves of the
first ether into the necessary fits, He had, however,
already argued in query 28 that it would be incon-
ceivable for two ethers to be “diffused through all
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Space, one of which acts upon the other, and by
consequence is re-acted upom, without retarding,
shattering, dispersing and com pounding one another's
Motions.”

In query 30, Newton discussed the convertibility
of gross bodies and light, with examples showing that
nature delights in transmutations. In illustration, he
cited Boyle’s assertion that frequent distillations had
turned water into earth. In query 31, he discussed
questions ranging from the forces that hold particles
of matter together to the impact of bodies on one
another; also causes of motion, fermentation, the
circulation of the blood and animal heat, putrefaction,
the force of inertia, and occult qualitics. He stated a
general philosophy and concluded with the pious
hope that the perfection of natural philosophy will
enlarge the “Bounds of Moral Philosophy.”

Newton's queries, particularly the later ones, thus
g0 far beyond any simple questions of physical
or geometrical optics. In them he even proposed
tentative  explanations of phenomena,  although
explanations that are perhaps not as fully worked out,
or as fully supported by experimental evidence, as he
might have wished. (Some Queries even propose what
is, by Newton's own definition, a hypothesis.) In each
case, Newton’s own position is made clear; and
especially in the queries added in the Latin version of
1706 (and presented again in the English version of
1717/1718), his supporting evidence is apt (o be a
short cssay,

One notable development of the Jater queries is the
emphasis on an “Aethereal Medium™ as an expla-
nation for phenomena. In his first papers on optics,
in the 1670s, Newton had ¢ombined his cherished
conception of corpuscular or globular light with the
possibly Cartesian notion of a space-filling ether,
¢lastic and varying in density. Although Newton had
introduced this ether to permit wave phenomena to
cxist as concomitants of the rays of light, he also
suggested other possible functions for it ~including
causing sensation and animal motion, transmitting
radiant heat, and even causing gravitation. His
speculations on the ether were mcorporated in the
“Hypothesis™ that he sent lo the Royal Society
(read at their mectings in 1675 and [676)and in a letter
to Boyle of 28 February 1679,16%

In the second English edition of the Opricks
(1717/1718) Newton made additions which “embodied
arguments for the existence of an elastic, tenuous,
actherial medium,” The new querics in the Latin
version of 1706 did not deal with an cther, however,
and by the time of the Principia, Newlon may have
“rejected the Cartesian dense acther™ as well as “his
own youthful aetherial speculations, 169
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Newton thus did not PTOpose & new version of the
ether until possibly the 1710°s; he then suggested,
in the general scholium at the conclusion of the
second edition of the Principia (1713), that a most
subtle “spiritus™ (“which pervades and lies hid in a]]
gross bodies™) might produce Just such effects as his
carlier cther (or the later ethereal medium of queries 18
through 24). In the general scholium of the Principia,
however, Newton omitted gravitation from the list of
effects that the “spiritus” may produce. There is
evidence that Newton conceived of this “spiritus™ as
clectrical, and may well have been a precursor of the
ether or ethereal medium of the I717/1718 queries 17
In 2 manuscript intended for the revised second
English edition of the Opricks,»™ Newlon wrote
the heading, “The Third Book of Opticks. Part IL
Observations concerning the Medium through which
Light passes, & the Agent which emits it,” a title
that would thus seem to link the ethereal medium with
the emission of electrical effluvia. It would further
appear that Newton used both the carlier and later
concepts of the ether to explain, however hypothet-
ically, results he had already obtained; and that the
concept of the cther was never the basis for significant
new experiments or theoretical results, In a general
scholium to book IT, Newton described from memory
an experiment that he had performed which seemed
to him to prove the nonexistence of an ether; since
Newton's original notes have never been found, this
experiment, which was presumably an important
clement in the decline of his belief in an ether, cannot
be dated.

The later queries also develop a concept of matter,
further expounded by Newton in his often reprinted
De natura acidorum (of which there appear to have
been several versions in circulation).*** Newton here,
a5 a true disciple of Boyle, began with the traditional
“mechanical philosophy™ but added “the assumption
that particles move mainly under the influence of what
he at first called sociability and later called
attraction.”** Although Newton also considered
a principle of repulsion, especially in gases, in
discussing chemical reactions he scems to have
preferred to use a concept of “sociability” (as, for
example, to explain how substances dissolve),

He was equally concerned with the “aggregation™
of particles (in queries 28 and 31 as well as at the end
of De naturg acidorum) and even suggested a
means of “diffcrentiating between reaction and
transmutation.** Another major concern was the
way in which aqua regia dissolves gold but not silver,
while aqua fortis dissolves silver but not gold, ™
a4 phenomenon Newton explained by a combination

_ of the attraction of particles and the relation between
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the size of the acid particles and the “‘pores™ between
the particles of metal. He did not, however, have a
sound operational definition of acid, but referred to
acids theoretically, in De natura acidorum, as those
substances “endued with a great Attractive Force:
in which Force their Activity consists.” He maintained
this definition in query 31, in which he further called
attention to the way in which metals may replace one
another in acid solutions and cven ““went so far as to
list the six common metals in the order in which they
would displace one another from a solution of aqua
fortis (strong nitric acd)."*?*

Alchemy, Prophecy, and Theology. Chronology and
History. Newton is often alleged to have been a
mystic. That he was highly intercsted in alchemy
has been embarrassing to many students of his life
and work, whilc others delight in finding traces of
hermeticism in the father of the “age of reason.”
The entries in the Caralogue of the Portsmouth
Collection give no idea of the extent of the documents
in Newton’s hand dealing with alchemy: these were
listed in the catalogue, but not then presented to
Cambridge University. Such information became
generally available only when the alchemical writings
were dispersed in 1936, in the Sotheby sale. The
catalogue of that sale gives the only full printed guide
to these materials, and cstimates their bulk at some
650,000 words, almost all in Newton's hand.

A major problem in assessing Newton's alchemical
“writings” is that they are not, for the most part,
original compositions, nor even critical essays on his
readings (in the sense that the early “De gravitatione
et aequipondio fluidorum™ is an essay based on his
reading in Descartes’s Principia). It would be necessary
to know the whole corpus of the alchemical literature
to be able to declare that any paper in Newton’s hand
is an original composition, rather than a series of
extracts or summanes.??

In a famous letter to Oldenburg (26 April 1676),
Newton offered an explanation of Boyle's presen-
tations of the “incalescence™ of gold and mercury
(Philosophical Transactions, 9, no. 122 [1675], 515-
533), and presented an explanation based on the size
of the particles of matter and their mechanical action.
Newton particularly commended Boyle for having
concealed some major steps, since here was possibly
“an inlet into something more noble, and not to be
communicated without immense dammage to the
world if there be any verity in the Hermetick writers.”
He also gave some cautionary advice about alchemists,
even referring to a “true Hermetic Philosopher, whose
judgment (if there be any such)” might be of interest
and highly regarded, “there being other things beside
the transmutation of metalls (if those pretenders

81

NEWTON

bragg not) which none hut they understand.” The
apparently positive declarations in Newton's letter
thus conflict with the doubts expressed in the two
parenthetical expressions.

Newton's studies of prophecy may possibly provide
a key to the method of his alchemical studics. His
major work on the subject is Observations upon the
Prophecies of Daniel, and the Apocalypse of St. John
(London, 1733). Here Newton was concerned with
“a figurative language™ used by the prophets, which
he sought Lo decipher. Newton's text is a historical
exegesis, unmarked by any mystical short-circuiting
of the rational process or direct communication from
the godhead. He assumed an “analogy between the
world natural, and an empire or kingdom con-
sidered as a world politic,” and concluded, for
example, that Daniel’s prophecy of an “image
composed of four metals™ and a stone that broke
“the four metals into picces” referred to the four
nations successively ruling the earth (“viz. the peoples
of Babylonia, the Persians, the Greeks, and the
Romans”). The four nations are represented again in
the “four beasts.™

“The folly of interpreters,” Newton wrote, has been
*to foretell times and things by this Prophecy, as if God
designed to make them Prophets.” This is, however,
far from God’s intent, for God meant the prophecics
“not to gratify men's curiositics by enabling them to
foreknow things” but rather 1o stand as witnesses (o
His providence when “after they were fulfilled, they
might be interpreted by events.” Surely, Newton
added, “the event of things predicted many ages
before, will then be a convincing argument that the
world is governed by providence.” (It may be noted
that this book also provided Newton with occasion to
refer to his favorite themes of “the corruption of
scripture”™ and the “corruption of Christianity.™)

The catalogue of the Sotheby sale states that
Newton's manuscript remains include some 1,300,000
words on biblical and theological subjects. These are
not particularly relevant to his scientific work and—
for the most part—might have been written by any
ordinary divinity student of that period, save for the
extent to which they show Newton’s convinced anti-
Trinitarian monotheism or Unitarian Arianism. (His
tract Two Notable Corruptions of Scripture, for
example, uses historical analysis to attack Trinitarian
doctrine,) “It is the temper of the hot and super-
stitious part of mankind in matters of religion,”™
Newton wrote, “cver to be fond of mysterics, and for
that reason to like best what they understand least.™?®

Typical of Newton's theological exercises is his
“Querics regarding the word homoousios.” The first
query asks “Whether Christ sent his aposties t0
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preach metaphysics to the unleirned common
people, and to their wives and children? Other
queries in this set are also historical; in the seventh
Newton marshaled his historico-philological acumen
in the matter of the Latin rendering unius substantiae,
which he considered to have been imposed on the
Western churches instcad of consubstantialis by
“Hosius (or whoever translated that [Nicene] Creed
into Latin).” Another manuscript entitled “Para-
doxical Questions™ turns out to be less a theological
inquiry than a carefully reasoned proof of what
Lord Keynes called “the dishonesty and falsification of
records for which St Athanasius [and his followers)
were responsible.™ In it Newton cited, as an cxample,
the spreading of the story that Arius died in a house
of prostitution.

In a Keynes manuscript (in King's College,
Cambridge), “The First Book Concerning  the
Language of the Prophets,” Newton explained his
method:

He that would understand a book written inastrange
langmgcmustﬁmlammelamnac....Sucha
language was that wherein the Prophets wrote, and
the want of sufficient skill in that language is the reason
why they are so little understood, John . . - Daniel . . .,
Ixiah...allwrilcinoneandlhcnmemysﬁeal
language . . . [which] so far as T can find, was as certain
and definite in its signification as is the vulgar language
of any nation. . . .

Having established this basic premise, Newton went
on: “It 1s only through want of skill therein that
Interpreters so frequently turn the Prophetic types and
phrases to signify whatever their fancies and hypo-
theses lead them to.” Then, in a manner reminiscent of
the rules at the beginning of book 11T of the Principia,
he added:

The rule | have followed has been to compare the
several mystical places of scripture where the same
prophetic phrase or type is used, and to fix such a
signification to that phrase as agrees best with all the
phccs:...andwhcnlludfoundthcnccasary
significations, to reject all others as the offspring of
luxuriant fancy, for no more significations are to be
admitted for truc ones than can be proved.

Newton's alchemical manuscripts show that he
sometimes used a similar method, drawing up
comparative tables of symbols and of symbolic names
used by alchemists, no doubt in the conviction that
a Key to their common language might be found
thereby. Hlis carcful discrimination among the
alchemical writers may be seen in two manuscripts
in the Keynes Collection, one a three-page classified
list of alchemical writers and the other a two-page
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selecuon of “authores optimi,” by whom Newton
perhaps meant authoritics who described processes
that might be repeated and verified. The Babson
Collection of Newtoniana contains a two-page
autograph manuscript listing 113 writers on alchemy
arranged by nationalitics and another seven-page
manuscript of “chemical authors and their writings"
in which Newton commented on the more important
ones. At least two other such bibliographical works by
Newton arec known. An “Index Chemicus,” an
¢laborate subject index to the literature of alchemy
with page references to a number of different works
(described as containing more than 20,000 words on
113 pages), is one of at least five such indexes, all in
autograph manuscripts.7?

It must be emphasized that Newton’s study of
alchemy was not a wholly rational pursuit, guided by a
strict code of linguistic and historical investigative
procedures, To so consider it would be to put it on the
same plane as his chronological inquiries.®*® The
chronological studies are, to a considerable degree, the
result of the application of sound principles of astro-
nomical dating to poor historical evidence—for which
his Chronology of Ancient Kingdoms Amended was quite
properly criticized by the French antiquarians of his
day-—while his alchemical works show that he drew
upon esoterical and even mystical authors, far beyond
the confines of an ordinary rational science.

It is difficult to determine whether to consider
Newton’s alkchemy as an irrational vagary of an
otherwise rational mind, or whether to give his
hermeticism a significant role as a developmental force
1n his rational science. It is tempting, furthermore, to
link his concern for alchemy with his belief in a secret
tradition of ancient learning. He believed that he had
traced this prisca sapientia to the ancient Greeks
(notably Pythagoras) and to the Chaldean philos-
ophers or magicians; he concluded that these ancients
had known even the inverse-square law of gravitation.
Cohen, McGuire, and Rattansi have shown that in the
1690’s, when Newton was preparing a revised edition
of the Principia, he thought of including references to
such an ancient tradition in a series of new scholia for
the propositions at the beginning of book III of the
Principia. along with a considerable selection of verses
from Lucretius’ De narura rerum. All of this was to be
an addendum 10 an already created Principia, which
Newton was revising for a new edition.

There is not a shred of real cvidence, however, that
Newton ever had such concerns primarily in mind
in those earlicr years when he was writing the Principia
or initially developing the principles of dynamics and
of mathematics on which the Principia was ulumately
to be based. In Newton's record of alchemical
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experiments (University Library, Cambridge, MS
Add. 3973), the experiments dated 23 May [1684)
are immediately followed by an entry dated 26 April
1686. The former e¢nds in the middle of a page, and
the latter starts on the very next line; there is no
lacuna, and no possibility that a page—which
chronologically might concern experiments made
while the Principia was being written—might be
missing from the notebook.'®?

The overtones of alchemy are on occasion discern-
ible in Newton's purely scientific writings. In query 30
of the Opticks (first published in the Latin version,
then in the second English edition), Newton said that
“Nature . . . seems delighted with Transmutations,”
although he was not referring specifically to changing
metals from one to another. (It must be remembered in
fact that “transmutation™ would not necessarily hold
an exclusively chemical or alchemical meaning for
Newton; it might, rather, signify not only transforma-
tions in general, but also particular transformations
of a purely mathematical sort, as in lemma 22 of
book I of the Principia.) This is a far cry, indeed,
from Newton's extracts from the mystical Count
Michael Maier and kindred authors. P. M. Rarttansi
particularly calls attention to the alchemist's “universal
spirit,” and observes: "It is difficult to understand
how, without a conviction of deep and hidden
truths concealed in alchemy, Newton should have
attached much significance to such ideas,”***

Notable instances of the conflation of alchemical
inspiration and science occur in Newton’s letter to
Boyle (1679) and in the hypothesis he presented to
explain those propertics of light of which he wrote
in his papers in the Philosophical Transactions. While
it i3 not difficult to discover akchemical images in
Newton's presentation, and to find even specific
alchemical doctrines in undisguised form and lan-
guage, the problem of evaluating the influence of
alchemy on Newton's true science is only thereby
compounded, since there 1s no firm indication of the
role of such speculations in the development of
Newton's physical science. The result is, at best, onc
mystery explained by another, like the alchemist’s
confusing doctrine of ignorum per ignotius. Rattansi
further suggests that alchemy may have served as a
guiding principle in the formulation of Newton’s
views on fermentation and the nounshment of the
vegetation of the earth by fluids attracted from the
tails of comets. He would even have us believe that
alchemical influences may have influenced “the revival
of actherical notions in the last period of Newton's
life.””*®* This may be so: but what, if any, creative
effect such “actherical notions™ then had on Newton's
thought would seem to be a matter of pure hypothesis.
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Scholars do not agree whether Newton’s association
with some “Hermetic tradition™ may have been a
creative force in his science, or whether 1t 1s legitimate
to separate his alleged hermeticism from his positive
science. Apart from the level of general inspiration,
it muslt be concluded that, excluding some aspects
of the theory of matter and chemistry, notably
fermentation, and possibly the ether hypotheses, the
real creative influence of alchemy or hermeticism on
Newton's mathematics and his work in optics,
dynamics, and astronomy (save for the role of the
tails of comets in the economy of naturc) must today
be evaluated in terms of the Scottish verdict, “not
proven.” Investigations of this topic may provide
valuable insights into the whole man, Newton, and
into the complexities of his scientific inspiration.
His concern for alchemy and theology should not be
cast aside as irrelevant aberrations of senility or the
product of a mental breakdown. Yet it remains a fact
beyond dispute that such early manuscripts as the
Waste Book—in which Newton worked out and
recorded his purely scientific discoveries and 1nno-
vations—are free from the tinges of alchemy and
hermeticism.

The London Years: the Mint, the Royal Society,
Quarrels with Flamsteed and with Leibniz. On
19 March 1696, Newton received a letter from Charles
Montagu informing him that he had been appointed
warden of the mint. He set up William Whiston as
his deputy in the Lucasian professorship, to receive
*“the full profits of the place.” On 10 December 1701
he resigned his professorship, and soon afterward his
fellowship. He was designated an associé étranger of
the Paris Académic des Sciences in February 1699,
chosen a member of the Council of the Royal Society
on the following 30 November, and on 30 November
1703 was made president of the Royal Society, an
office he held until his death. He was elected M.P. for
Cambridge University, for the sccond time, on
26 November 1701, Parliament being prorogued on
25 May 1702. Queen Anne knighted Newton at
Trinity College on 16 April 1705; on the following
17 May he was defeated in his third contest for
the university’s seat in Parliament.

AL the munt, Newton applied his Knowledge of
chemistry and of laboratory technique to assaying,
but he apparently did not introduce any innovations
in the art of coinage. His role was administrative and
his duties were largely the supervision of the recoinage
and (curious to contemplate) the capture, inter-
rogation, and prosecution of counterfeiters, Newton
used the patronage of the mint to benefit fellow
scientists. Hallcy cntered the service in 1696 as
comptroller of the Chester mint, and in 1707 David
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Gregory was appointed (at a fec of £250) as general
supervisor of the conversion of the Scottish coinage
to British,

Newton ruled over the Royal Society with an iron
hand. When Whiston was proposed as a fellow in
1720, Newton said that if Whiston were chosen, he
“would not be president.” At Newton's urging, the
council brought the society from the verge of bank-
ruptey (o solvency by obtaining regular contributions
from fcllows. When a dispute arose between
Woodward and Sloane, Newton had Woodward
ejected from the council. Of Newton's chairmanship
of meetings, Stukeley reported, “Everything was
transacted with great attention and solemnity and
dignity,” for “his presence created a natural awe in the
assembly”; there was never a sign of “levity or
indecorum.” As England’s foremost scientist, president
of the Royal Society, and civil servant, Newton
appeared before Parliament in Spring 1714, to give
advice about a prize for a method of finding longitude.

When Newton moved from Cambridge to London
in the 1690’ to take up the wardenship of the mint,
he continued to work on the motion of the moon. He
became impatient for Flamsteed’s latest observations
and they soon had a falling-out. no doubt aggravated
by the strong enmity which had grown up between
Halley and Flamsteed, Newton fanned the flames by
the growing arrogance of his letters: “I want not your
calculations but your observations only.” And when
in 1699 Flamsteed let it be known that Newton was
working to perfect lunar theory, Newton sent
Flamsteed a letter insisting that on this occasion
he not “be brought upon the stage,” since “I do not
love to be printed upon every occasion much less 1o be
dunned & teczed by foreigners about Mathematical
things or to be thought by our own people to be trifling
away my time about them when I should be about the
King's business.” Newton and Halley published
Flamsteed's observations in an unauthorized printing
in 1712, probably in the conviction that his work had
been supported by the government and was therefore
public property. Flamsteed had the bitter joy of
burning most of the spurious edition; and he then
started printing his own Historia coelestis Brittanica.

A more intense quarrcl arose with Leibniz. This
100K two forms: a disagreement over philosophy or
theology in relation to science (carried out through
Samuel Clarke as intermediary), and an attempl on
Newton’s part to prove that Leibniz had no claim 1o
originality in the calculus. The initial charge of
plagiarism against Leibniz came from Fatio de
Duillier, but before long Keill and other Newtonians
were mvolved and Leibniz began to rally his own
supporters. Newton held that not only had Leibniz
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stolen the calculus from him, but that he had also
composed three tracts for publication in the Aeta
eruditorum claiming some of the main truths of the
Principia as independent discoverics, with the sole
original addition of some mistakes. Today it appears
that Newton was wrong; no doubt Leibaiz had (as he
said) seen the “epitome” or lengthy review of the
Principia in the Acta eruditorum of June 1688, and not
the book, when (to use his own words) “Newton’s
work stimulated me” to writc out some earlier
thoughts on “the causes of the motions of the
heavenly bodies” as well as on the “resistance of a
medium™ and motion in a medium. ¢ Newton stated,
however, that even if Leibniz “had not seen the
book itsclf, he ought nevertheless to have secen it
before he published his own thoughts concerning these
matters,’ 15>

That Newton should have connived at declaring
Leibniz a plagiarist gives witness to his intense
possessiveness concerning his discoveries or inven-
tions; hence his conseguent feeling of violation or
robbery when Leibniz seemed to be publishing them,
Newton was also aware that Leibniz must have seen
on¢ or more of his manuscript tracts then in circu-
lation; and Leibniz had actually done so on one of his
visits, when, however, he copied out some material
on series cxpansions, not on fluxions !#

No one today seriously questions Leibniz’ originality
and true mathematical genius, nor his independence—
to the degree that any two creative mathematicians
living in the same world of mathematical thought
can be independent—in the formulation of the
calculus. Moreover, the algorithm in general use
nowadays is the Leibnizian rather than the Newtonian.
But by any normal standards, the behavior of both
men was astonishing. When Leibniz appealed to the
Royal Society for a fair hearing, Newton appointed
a committee of good Newtonians. It has only recently
become known that Newton himself wrote the
committee’s report, the famous Commercium epis-
tolicurn,®* which he presented as if it were a set of
impartial findings in his own favor.

Newton was not, however, content to stop there;
following publication of the report there appeared
an anonymous review, or summary, of it in the
Philosophical Transactions. This, 100, was Newton's
work. When the Commercium epistolicum  was
reprinted, this review was included, in Latin trans-
lation, as a kind of introduction, together with an
anonymous new preface “To the Reader.” which
was also written by Newton. This episode must
be an incomparable display of thoroughness
in destroying an enemy, and Whiston reported
that he had heard directly that Newton had “once
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pleasantly” said to Samuel Clarke that “He had
broke Leibnitz’s Heart with his Reply 10 him.™

Newton's later London years were marked by
creative scientific efforts. During this time he
published the Opricks, with the two mathematical
tracts, and added new quenes for its later editions.
He also produced, with Roger Cotes’s aid, a second
edition of the Principia, including the noteworthy
general scholium, and, with assistance from Henry
Pemberton, a third edition. In the last, however,
Newton altered the scholium to Jemma 2, book Il
to prevent its being read as if Leibniz were entitled
to a share of credit for the calculus—although Leibniz
had been dead for nearly twelve years.

Newton dicd on Monday, 20 March 1727258 at the
age of eighty-five, having been ill with gout and
inflamed lungs for some time. He was buried in
Westminster Abbey.

Newton’s Philosophy: The Rules of Philosophizing,
the General Scholium, the Querics of the “Opticks.”
Like others of his day, Newton believed that the
study of natural philosophy would provide evidence
for the existence of God the Creator in the regularities
of the solar system. In the general scholium at the ¢nd
of book Il of the Principia, he said “it is not to be
concecived that mere mechanical causes could give
birth to so many rcgular motions,” then concluded
his discussion with obscrvations about God, *“to
discourse of whom from phenomena docs certainly
belong to Natural Philosophy™ (**Experimental Philos-
ophy™ in the second edition). He then went on to point
out that he had “explained the phenomena of the
heavens and of our sca, by the power of Gravity”
but had not yet “assigned the cause of this power,”
alleging that “it is enough that Gravity does really
exist, and act according 10 the Jaws which we have
cxplained” and that its action “abundantly serves to
account for all the motons of the celestial bodies, and
of our sea.” The reader was thus to accept the facts of
the Principia, even though Newton had not “been able
to discover the cause of those propertics of gravily
from phenomena.” Newton here stated his philos-
ophy, “*Hypotheses non fingo.” ' **

Clearly, Newton was referrng here only to
“feigning” a hypothesis about the cause of gravitation,
and never intended that his statement should be
applied on all levels of scientific discourse, or to all
meanings of the word “hypothesis.” Indeed, in cach
of the three editions of the Principia, there is a
“hypothesis” stated in book II. In the second and
third cditions there are a “Hypothesis 1”7 and a
“Hypothesis 11" in book III. The “'phacnomena™ at
the beginning of boek 111, in the sccond and third
editions, were largely the “hypotheses™ of the first
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edition. It may be that Newton used these two
designations to imply that these particular statements
concerning planetary motions are not mathematically
true (as he proved), but could be only approximately
“true,” on the level of (or to the limits of ) phenomena.

Newton believed that his science was based upon a
philosophy of induction. In the third edition of the
Principia, he introduced rule 4, so that *“the argument
of induction may not be evaded by hypotheses.”
Here he said that onc may look upon the results of
“general induction from phenomena as accurately
or very nearly true,” cven though many contrary
hypotheses might be imagined, until such time as the
inductive result may “either be made more accurate
or liable to exceptions” hy new phenomena. In rule 3,
in the second and third cditions, he stated his
philosophical basis for establishing general properties
of matter by means of phenomena.

Newton's philosophical ideas are even more fully
developed in query 31, the final query of the later
editions of the Opticks, in which he argued for both
the philosophy of induction and the method of analysis
and composition (or synthesis). In both mathematics
and natural philosophy, he said, the “Investigation of
difficult Things by the method of Analysis, ought ever
to precede the Method of Composition.” Such
“Analysis consists in making Experiments and
Observations, and in drawing general Conclusions
from them by Induction, and admitting of no
Objections against the Conclusions, but such as are
taken from Experiments, or other certain Truths.”

In both the Principia and the Opticks, Newton
tried to maintain a distinction among his speculations,
his experimental results (and the inductions based
upon them), and his mathematical derivations from
certain assumed conditions. In the Principia in
particular, he was always careful to scparate any
mathematical hypotheses or assumed conditions from
those results that were “derived” in some way from
experiments and obscrvations. Often, too, when he
suggested, as in various scholiums, the applicability
of mathematical or hypothetical conditions to
physical nature, he stated that he had not proved
whether his result really so applies. His treatment of
the motion of small corpuscles, in book 1, section 14,
and his static model of a gas composed of mutually
repulsive particles, in book II, proposition 23,
cxemplify Newton's use of mathematical models of
physical reality for which he lacked experimental
evidence sufficient for an unequivocal statement.

Perhaps the best expression of Newton's general
philosophy of nature occurs in a letter to Cotes
(28 March 1713), written during the preparation of the
second edition of the Principia, in which he referred
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to the laws of motion as “the first Principles or
Axiomes™ and said that they “are deduced from
Phaenomena & made general by Induction™; this
“1s the highest evidence that a Proposition can have
in this philosophy.” Declaring that “the mutual &
mutually equal attraction of bodies is a branch of the
third Law of motion,” Newton pointed out to Cotes
“how this branch is deduced from Phaenomena,”
referning him to the “end of the Corollaries of the
Laws of Motion.” Shortly thereafter, in a manuscript
bearing upon the Leibniz controversy, he¢ wrote,
“To make an exception upon a mere Hypothesis is to

feign an exception. It is to reject the argument from
Induction, & turn Philosophy inte a heap of
Hypotheses, which are no other than a chimerical
Romance.”* That is a statement with which few
would disagree.

NOTES

I. See R. S, Westfall, “Short-writing and the State of
Newton's Conscience, 1662, in Notes and Records,
Royal Society of Lowdon, 18 (1963), 10-16. L. T. More,
in Isaac Newron (New York, 1934), p. 16, drew attention
to the necessary “mental suffering™ of 2 boy of Newton's
physical weakness, living in a lonely “farmhouse situsted
m a countryside only slowly recovering from the terrors of
a protracted and bitter cvil war,” with “no protection
from the frights of his imagination except that of his
grandmother and such unreliable kbourers as could be
hired”

F.E. Manucl, in A Portrait of Isaac Newton (Cambridge,
Mass,, 1968). has suhjected Newton's life to a kind of
psychoanalytic scrutiny. He draws the conclusion (pp.
54-59) that the “‘scrupulosity, punitiveness, austerity,
distipline, industriousncss, and fear associated with a
repressive morality™ were apparent mn Newton’s character
at an carly age, and finds that notchooks bear witness
to “the fear, anxiety, distrust, sadness, withdrawal, self-
belittlement, and gencrally depressive state of the young
Newton.”

For an examination of Manuel's portrait of Newtan,
sec ), E. MeGuire, “Newton and the Demonic Furies: Some
ggcot Problems and Approaches in the History of

ence,” m History of Science, 11 (1973), 36-46; ses also
the review in Times Literary Supplement {1 June 1973),
615616, with letters by Manued (8 June 1973), 644-645;
D.T. Whiteside (15 June 1973), 692, and (6 July 1973), 779;
and G. S, Rousscau (29 June 1973), 749.

. See E, N. da C. Andrade, “Newton's Farly Notebook,™
in Naswre, 138 (1935), 360; and G, L. Huxley, “Two
Newtonian Studies: L Newton's Boyhood Interests,”
in Harvard Libeary Bulletin, 13 (1939), 348-354, in which
Andrade has first called attention to the importance of
Bate’s collection, an argument amplificd by Huxley.

3. Newton apparently came to realize that he had been
hasty in discarding Euclid, since Pamberton later heard him
“even ccmsure himself for not following them [that is.
“the ancients” in their ‘taste, and form of demonstration’]
yet more clasely than he did: and speak with regret of his
mistake at the beginning of his mathematical studics, in
applying himself to the works of Des Cartes and other
algebraic writers, before e had considered the clements
of Euclide with that attention, which so excellent a writer
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deserves” (View of Sir Isaae Newton's Philosophy [Loadon,
1728], preface).

4. Newton's college tutor was not (and indeed by statute
could not have been) the Lucasian professor, Barrow,
but was Benjamin Pulleyn.

5. University Library, Cambridge, MS Add. 3996, discussed
by A. R. Hall in “Sir Isaac Newton's Notebook, 1661
1665," in Cambwidge Historical Jowurnal, 9 {1948), 239-250.

6. Ibid; also partially analyzed by R. S, Westfall, in “The
Foundations of Newtons Philosophy of Nature,” in
British Jourmal for the History of Sctence, 1(1962), 171-182.
Westfall has attempted a recoastruction of Newton's
philosophly of nature, and his growing allegiance to the
“mechanical philosophy,” in ¢h. 7 of his Force in
Newron's Physics (London, 1971).

7. On Newton's cotrance into the domains of mathematics
higher than arithmetic, sec the account by A. De Moivre
(i the Newton MSS presented by the late J. H. Schafiper
to the Universily of Chicago) and the recollections of
Newton assembled by Jobn Conduitt, now mainly in the
Keynes Collection, King's College, Cambridge.

8. See D, T, Whiteside, “Newton's Marvellous Year, 1666
and All That,” in Notes and Records. Royal Society of
London, 21 (1966), 37-38.

9. See A. H. White, od., William Stukeley, Memoirs of Sir
Isaac Newtor's Life (London, 1936). Writlen in 1752, this
records a conversation with Newton about his discovery
of universal gravitation (the apple story), pp. 19-20.

10. In November 1669 John Collins wrote to James Gregory

- that “Mr Barrow hath resigned his Lecturers place to
oocMeronofOlmbﬁdgc“(inlthoyalSoday
od. of Newton's Correspondence, 1, 15), Newton himself
may have bzea referring to Barrow in an autobiographical
note (ca. 1716) that stated, “Upon account of my progress
in these matters be procured for me a fadlowship . . . in
the year 1667 & the Mathematick Professorship two years
later"—sec University Libeary, Cambridge, MS Add.
3968, 41, fol. 117, and I. B, Cohen, Imtroduction fo
Newton's Principia, supp. 111, p. 303, n. 14,

1. Amoog the biographical memoirs assembled by Coaduitt
(Keynes  Collection,  King's  College, Cambridge).
Humphrey Newton's memoir is in L. T. More, Isaae
Newton, pp. 246, 381, and 389,

I2. According to J. Edleston (p. xbv in his ed. of Correspondence
of Sir Isaac Newton and Profersor Cotes . ..; see alo
pp. xlix-1), in 1675 (or March 1674, 08), “Newton
obtained a Royal Patent allowing the Professor to remain
Fellow of a College without being obliged to go into
orders.” See also L, T, More, Isaac Newton, p. 169.

13. This work might have been an early version of the Lectiones
opticae, his professorzal lectures of 1670-1672; or perhaps
an annotated version of his Jellers and communications 10
Oldenburg, which were read at the Royal Socicty and
published in major part in its Philosophical Transections
from 1672 onward,

14. Quoted in L. T. More, fsaac Newrow, p. 217.

15. 1t has been erroneously thought that Newtons “break-
down™ may in part have been caused by the death of his
mother, But her death occurred in 1679, and she was
buried on 4 June. “Her will was proved 11 June 1679
by Isaac Newton, the executor, who was the residuary
kegatee™; see Correspondence, 11, 303. n. 2. David Brewster,
n Memoirs . ., 11, 123, sugpested that Newton's “ailment
may have arisen from the disappointment be experienced
in the application of his friende for a permanent situation
for him."™ On these events and on contemporaneous
discussion and gossip about Newtea's state of mind,
see L. T. More, Isoue Newtor, pp, 387-388, and F. E,
Manuel, A Portrait of Isaac Newson, pp. 220-223. Newton
himself, m a Jetter to Locke of 5 October 1693, blamed his
“distemper™ and insomaz on “sleeping 00 often by my
ﬁm"
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L. T. More, sauc Newton, p. 368.

Sec J. Edkston, ed., Correspondence . . . Newfon and
. . . Cores, pp. Xxxvi, csp. n. 142,

18. Maskematical Papers of Isaac Newton, D. T. Whiteside,

15,

27,
28.
29.

30.
31
32.

ed., in progress, 10 be completed in 8 vols. (Cambridge,
1967~ ); these will contain edited versions of Newton's
mathematical writings with translanoas and explanatory
potes, as well as introductions and commentaries that
constitute a guide to Newton's mathematics and scientific
life, and to the main currents in the mathematics of the
seventeenth century. Five volumes have beea published
(1973).

See D. T. Whiteside, “Newtoa's Discovery of the General
Binomial Theorem,” in Mathematical Gazette. 45 (1961),
175.

. Especially because of Whitesade's rescarches.
. Whiteside, ed., Mathematical Papers, 1, 1-142. Whate-

side concludes: "By and large Newton took has anth-
metical symbolisms from Oughtred and his algebraical
from Descartes, and onto them . . . he grafted now modi-
ficanons of his own™ (1, 11).

. Ca, 1714; see University Library, Cambridge, MS Add.

3968, fol. 21. On this often debated point, se¢ D. T.
Whiteside, “Issac Newton: Burth of a Mathematician,”
in Notes and Recovds. Royal Society of Londonr, 19 (1964),
n. 25; but compare n. 48, below.

. University Library, Cambridge, MS Add. 3965, 41, fol. 85.

This sentence oocurs in 3 passage canceled by Newton,

. Ibid., fol. 72. This accords with De Moivre's later state-

ment (in the Newton manuscripts recently bequeathed the
University of Chicago by J. H. Schafiner) that after
reading Wallis' book, Newton “on the ooccasion of a
certain mnterpotation for the quadrature of the drcle,
found that admirable theorem for raming a Bmomial to
a power given."”

. Transkated from the Latin in the Royal Socety ed. of the

Correspondence, 11, 20 . and 32 fI.; sce the comments by
Whiteside in Mathematical Papers, 1V, 666 {I. 1n the second
term, A stands for P™" (the first term), while in the third
term 8 stands for (m/n) AQ (the second term), and so on,
This letter and its sequel came into Wallis® hands and he
twice published summaries of them, the sacond Lime with
Newton's own emendations and grudging approval.
Newton listed some results of senss expansion—coupled
with quadratures as needed—for = = r sin™? [x/r] and the
mverse x = r sin[z/r]; the versed sine n{l — cos[z/r]); and
x = ¢ — L theinverscof 2 = b log(l + x), the Mercator
serics (sce Whiteside, od., Mathematical Papers, 1V,
668).

. Translated from the Latin in the Royal Society edl. of the

“orrespondence, 11, 110 {1, 130 fi.; see the comments by
Whiteside in Mathematical Papers, 1V, 672 1.
See Whiteside, Mathematical Papers, 1, 106,
Ibid., I, 112 and n. 81.
The Boothby referred to may be presumed 10 be Boothby
Pagnell (about three miles northeast of Woolsthorpe),
whose rector, H, Habington, was senior fellow of Trinity
and had a good library. S further Whiteside, Martke-
matical Papers, !, 8, n. 21; and n. 8, above.

The Mathemarical Works of Isaac Newton, 1, x.
Ihidd,, 1, X1
Here the “little zero™ o is not, as formerly, the “indel-
nitely small” increment in the variable s, which “ulti-
mately vanishes.” In the Principia, bk. 11, sec. 2, Newton
used an alternative system of notation in which e, b, ¢, -~
are the “moments of any quantitiess A, B, €, &c.,” in-
creasing by a continual flux or “the velocities of the
mutations which arc proportional”™ to thosc moments,
that is, their fluxions.

. See Whitesade, Mathematical Works, 1, X
. Sec A. R. and M. B. Hall, &ds., Unpehlished Scientific

Papers of Isaac Newson (Cambridge, 1962).
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35. Mathemarical Works, 1, xi.

36. Ibid., xii.

37. University Library, Cambeidge, MS Add. 396841,
fol. 86, v.

38, Whiteside, Mathematical Papers, 11, 1606,

39. Ibid., 166167,

0. Tbid., 1, 11, n. 27, where Whiteside lists those “Known 10
have seen substantial portions of Newton's mathematscal
pepers during his lifetime™ as mcludmg Collins, Jobn
Craig, Fatio de Duilkicr, Raphson, Halley, De Moivre,
David Gregory, and William Joaes, “but not, significsatly,
John Wallis,” who did, however, soc the “Epistola prior”™
and “Fpistola posterior”™ (see n. 25, above); and 11, 168,
Isaac Barrow “probably saw only the De amaiys.™

41. The Methodus fluxionwm also contained an amplified
version of the tract of October 1666; it was published in
Fnglish in 1736, translated by John Colson, but was not
properly printed in its original Latin until 1779, when
Horsley brought out Analyxix per guantitatum series,
Sfluxiones, ac differentias, incorporating William Jooes's
transcript, which he collated with an autograph manuscript
by Newton. Various MS copics of the Methodus flucionsm
had, however, been in circulation many years before 1693,
when David Gregory wrote out an abodged version,
Buffon transkated it inte French (1740) and Castillon
uscd Colson's English version &s the basis of a retranslation
into Latin (Opuscwla markemarica, 1, 295 1), In all xse
versions, Newlon's equivalent notation was transcribed
into dotted letters, Hoesley (Opera, 1) entitled his version
Artis analyticor speciming ool geometria analytica. The
full text was first printed by Whitsside in Mathemarical
FPaperz, vol. 111,

42, Muathematical Papers, 11, 170,

. P, xi; and see n_ 41, above.

44. The reader may observe the confusion inherent in using
both “indefinitely small portions of time™ and “infinitely
little"™ in relation to o; the use of index notatioa for powers
(3, ¥%, 0%) together with the doubling of fetters (o0) n the
same equation occurs in the original. These quotations
are from the anonymous English versioa of 1737, re-
produced in facsimile in Whiteside, od., Mathemartical
Works, See n. 46,

45. In ths example, 1 have (following the tradition of more
than two centuries) mtroduced x and » where Newloa in
his MS used m and a. In his notation, too, r stood for the
later 2,

46. Mathemarical Papers, 111, 80, n. 96. Ia the anonymous
English version of 1737, as in Colson’s translation of
1736, the word “indefinitely™ appears; Castillon followed
these (see n. 41). Horsley first introduced “infinizé”

47. 1bid., pp. 16-17,

48, See Whiteside, ibid., p. 17; on Barrow's influence, see

further pp. 71-74, notes 81, 82, 84,

1hid., pp. 328-352. On p. 329, n. 1, Whiteside agress with a

brief note by Alexander Witting (1911), in which the

“source of the celebrated ‘fluxional’ Lemma II of the

second Book of Newton's Principia™ was accurately

found i the first theorem of this addendum; see also

p. 331, n. 11, and p. 334, n, 16

50. On this topic, zee the collection of statements by Newton
assembled m supp. | to L B. Cohken, Infroducrion fo
Newron's Principia.

31. This and the following quotations of the De guadraturs ar¢
from Joha Stewart's translation of 1745.

32, As C, B, Boyer points out, in Conceprs of the Calculus,
p. 201, Newton was thus showing that one shoukd not
reach the conclusion “by simply neglecting infinitely small
terms, but by finding the uitimate ratio as these terms
become evancseeat,” Newlon uafortunately compounded
the confusion, however, by not wholly abjuring infinitesi-
mals theseafier: in bk, 11, lemma 2, of the Principia be
warned the reader that his “moments” were not finite
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quantiixs. In the cightcenth ceotury, many English
mathematicians, according to Boyer, “began to associate
fluxions with the infinitely small differentials of Leibniz."
University Library, Cambridge, MS Add. 3960, fol. 177,
Newton, however, was not the fisst mathematician to
anticipate the Taylor scrics.

. Introduction to De quadratura, in John Stewart, trans.,

I'wo Treatises of the Quadrature of Curves, and Analyzis by
Equations of an Infinite Number of Terms . . . (London,
17435), p. 4.

Philosophical Transactions, no. 342 (1715), 206.
Attributed to Newton, May 1708, in W, G. Hiscock, cd.,
David Gregory, Isaac Newton and Their Circle (Oxford,
1937), p. 42.

Heary Pemberton recorded, in his preface to his View of . . .
Newton's Philosophy (London, 1728), that “I have often
heard him censure the handling [of] geometrical subjects by
algebraic cakculations; and his book of Algebra he called
by the name of Univeral Arithmetic, in apposition o the
injudicious title of Geometry, which Des Cartes had given
10 the treatise wherein ho shows, how the geometer may
assst his invenlion by such kind of computations,”™

. There were five Latin ods. between 1707 and 1761, of which

one was supervised by Newton, and three English eds.
between 1720 and 1769,

. For details, see Tumbull, The Mathematical Discoverics

of Newton, pp. 49.50.

See C. B. Boyer, History of Mathemarics, p. 450.
Aritkmetica  universalis, English ed. (London, 1728),
P 287: see Whateside, Markemarical Papers, V, 428-429,
470-471.

Arithmetiva universalis, in Whiteside's translation, Mazke-
matical Papers, ¥, 477.

Published by Whiteside, Mathematical Papers, 1, pp. 145 .
See especially ibid., pp. 298 T, pt. 2, see. 5. “The Cakulus
Becomes an Algorithm,”

Ibid., 111, pp. 120 ff.

Thid.

In “Newton as an Originator of Polar Codrdinates,” in
American Markematical Monzkly, 56 (1949), 73-78,

Made available in Fnglish translation (perhaps super-
vised by Newton himse!f) in John Harris, Lexicon fechni-
cum, vol. T (London, 1710); repeinted in facsimile {New

* York, 1966). The essay entitied “Curves™ is reprinted in

R

73.

Whiteside, Mashemarical Papers, 11.

- COR. M. Talbot, el and trans., Emumerarion of Lines

of the Third Order (Loadon, 1860), p. 72.

On other aspects of Newton's mathematics see Whiteside,
Mathematical  Papers, specifically 11I, 50-52, on the
development of infinite serics; 1, 218-232, on an iterative
procedure for finding approximate solutions 10 equations;
amdd 1, 519, and V, 360, on “Newton's identities” for
finding the sums of the powers of the roots in any poly-
nomial equation. See, additionally, for Newton's contri-
butions in porisms, solid loci, number theory, LrZONOM-
ctry, and mterpolation, among other topics, Whateside,
Mathematical Papers, passim, and Tumbull, Mathemartical
Discoveries,

Sce Whiteside, Markemarical Works, 1, XV, and Boyer,
History of Marthemasics, p. 448, Drafts of the “Liber
geometria™ are University Library, Cambridge, MS
Add. 3963 pasyim and MS Add. 4004, fols. 129-159.
Gregorys comprehensive statement of Newton's plans
as of summer 169 is in Edinburgh Univessity Library,
David Gregory MS C42. an English version in Newton's
Correspondence, 111, 384-386, i not entirely satisfactoey.
Newton's luconic statement of his solution, published
anonvmously m  Philosophical Tramsactions, no, 224
(1697), p. 384, elicited from Bernoulli the reply “Ex ungue,
Leonem™ (the claw was sufficient 10 reveal the lion); see
Histoire dey onvrages des savans (1697), 454-455.

See I. B. Coben, “lsaac Newton, John Craig, and the
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Design of Ships,"” in Baston Studies for the Philozophy of
Science (in press).

Even the variants in the ads. of the Opricks have pever
been fully documented in print (although Horsey's od.
gives such information for the Queries), nor have the
differences between the Latin and English versions been
fully analyzed. Zev Bechler is in the process of publishing
four studics based on a perceptive and extensive cxamins-
tion of Newton's optical MSS. Heary Guerlac s presently
engaged in preparing & new ed, of the Opricks itself.
The expression “experimentum crocis™ is often attributed
to Bacon, hut Newton in fact encountered it in Hooke's
account of his optical experiments as given in Miero-
graphia (observation 9), where Hooke referred to an
experiment that “will prove such a one as our thrice
excellens Verwlam [that is, Praocis Bacon] calls Experi-
mentum cruciz.” While many investigators before Newtos —
Dictrich von Freiberg, Muci.Dewann,andemldx, i
among them —hud obscrved the oval dapersion of a
circular beam of light passing through 2 prism, they all
tended 10 assign the cawse of the phenomenon to the
consideraton that the light source was pot a point, but 2
physical object, 50 that light from opposite limbs of the
sun would differ in angle of inclination by as much as
half 2 degree. Newtons measurements led him from this
initial supposition to the conclusion that the efect—r
spectrum some five times Jonger than its width—was too
zreat for the given cause, and therefore the prism must
refract some rays to a considerable degree more than
others.

This account of the experiment is greatly simplified, as
wias Newton's own account, presented in his letter 10
Oldenburg and published in Philosophical Transactions.
Ses J. A. Lohne, “Experimentum Crucis,” in Noes and
Records, Royal Society of London, 23 (1968), 169-199:
Lohine has traced the varistions introduced into both the
later diagrams and descriptions of the experiment.
Newtoa's doctrine of the separation of white light into
its companent colors, each corresponding 10 2 unique and
fixed index of refraction, had been anticipated by Johannes
Marcus Marci de Kroaland in his Thoumantios, liber de
arcu coelessi (Prague, 1648), An important analysis of
Newton's experiment is in A. L. Sabea, Theories of Ligkt.
See R. S. Westfall, “The Dewclopment of Newton's
Theory of Color,” in fsis, 53 (1962), 339-358: and A. R.
Hall, “Newton's Notcbook,™ pp. 245-250.

Dated 13 April 1672, in Philosophica! Transactions, no. $4.

. See R. S, Westfall, “Newton’s Reply 10 Hooke and the

Theory of Colors,”™ in Isis, 54 (1963), 82-96; an edited text
of the “Hypothesis™ is in Correspondence, 1, 362-386.
Published in Birch's History of the Royal Society and in
I. B. Cohen, ed., Newton's Popers and Letters,

R. S. Westfall has further sketched Newton's changing
views in relation to corpuscles and the ether, and, in “lssac
Newton's Coloured Circles Twixt Two Contigoous
Glasses,” in Arokive for History of Exacr Sciences, 2 (1965),
190, has concluded that “When Newton composed the
Opricks, e ad ceased to believe in an aether; the pulses
of carler years became “fits of easy reflection and trans-
mession,” offered as obscrved phenomena without expla-
nation,” Westfall discusses Newton's abandonment of the
¢ther m “Uneasify Fitful Reflections on Fits of Easy
Transmission [and of Easy Reflection),” in Robert
Palter, ed., The Ammus Mirabilis of Sir Isage Newlon
1666 1966, pp. 88-104; he emphasizes the pendulum
cxperiment that Newton reported from memory in the
Principia (bk. 11, scholium at the end of sec. 7, in the first
&, or of sec. 6, in the 20d and 3rd eds.). Henry Guertac
has discussed Newton's return to a modified concept of
the ether in a series of studics (see Bibliography, sec, 8).

. Birch, History of the Royal Society, 111, 299; the carly

text of the “Discourse™ 15 [11, 247-305, but Newlon had
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already published i1, with major revisions, as book Il of
the Opricks. Both the “Hypothesis™ and the “Discourse™
are reprinted in Newton's Papers amd Letters, 177-235.
Newton's original notes on  Hookes Microyraphia
have been published by A. R. and M. B. Hall, Un-
published Scientific  Popers of lsaac Ncwmn, &001!'..
especially sec. 48, in which he refers 10 “coloured nnas
of “8 or 9 such creuits™ in thss “order (white perhaps i in
the midst) blew, purple, scarlet, yellow, greene, blew, .

. Newton's notes on Hooke were first published by Geoﬁ'ne)

Keynes m Bitliography of Roberr Hooke (Oxford. 1960).
pp. 97-108. Hooke claimed in particular that Newtoa's
“Hypothesis™ was largely taken from the Micragrapiia;
see Newton's Jetters o Oidenburg, 21 December 1675
and 10 January 1676, in Correspondence, 1, 4M fi. Hooke
then wrote to Newton in a more Kindly vein on 20

January 1676, provoking Newton's famous reply.

84. In this preseatation, atiention has been directed only to

85,

S6.
87

38,

89.

S0,

91.

certain gross dilferences that exst between the texts of
Newton's “Discourse of Observations™ of 1675 and bk. 11
of the Opricks. The cluboration of Newlon's view may be
traced through certain metebooks and an early essay “On
Colours™ to his optical lectures and communications to
the Royal Society, In particular, R. S. Westfall has
explored certain relations between the essay and the later
Opticks, See also his discussion on Newton's experiments
cited in n. 81, above.

Chicfly in University Libeary, Cambridge, MS Add.
3970; but se¢ n. 76,

University Library, Cambridge, MS Dd. 9.67.

Now part of the Portsmouth Collection, University
Library, Cambridge, MS Add. 4002, This MS has been
reproduced in facsmile, with an introduction by Whitesede,
as The Unpublished First Version of Isaac Newron's
Cambridge Lectures on Optics (Cambridge, 1973).

The development of the Opticks can be taced o some
degree through a study of Newton's correspondence,
notebooks, and optical MSS, chicfly University Library,
Cambridge, MS Add. 3970, of which the first 233 pages
contain the autograph MS used for prioting the 1704
ed., although the final query 16 s kacking. An carly
draft, without the preliminary definstions and axioms,
begins on fol. 304; the first version of prop, 1, book 1, here
reads, “The light of one natural body is more refrangible
than that of another.” There are many drafts and versions
of the later quernics, and a number of miscellancous items,
including the cxplanation of animal motion and sensation
by the action of an “clectric™ and “elastic” spirit and the
atribution of an “electric force™ to all living bodies. A
draft of a d “fourth Book™ contains, on fol.
336, a “Conclusion™ altered to “Hypoth, 1. The particles
of bodies have certain spheres of activity with in which
they attract or shun one another . . .7 in & subscquent
version, 4 form of this is inserted between props. 16and 17,
while a later prop, I8 s converted inmto “Hypoth. 2"
which is followed shortly by hypotheses 3 10 5. It may
thus be seen that Newton did not, in the 1690°s, fully
disdain speculative hypotheses. On fol. 409 there begins
a tract, written before the Opricks, entitled “Fundamentum
Opticae,”™ which s similar to the Opticks in form and
content, The three major notcbooks in which Newton
entered notes on his optical reading and his eardy thoughts
and experiments on light, color, vision, the rainbow, and
astropomnecal refraction are MSS Add, 3975, 3996, and
4000.

In “Newton's Reply to Hooke and the Theory of Coloes,™
m Jus, S4 (1963), 82-96; an analysis of the two versions of
Newton's lectures on optxs 18 given in 1. B. Cohen,
Introduction to Newton's *Principia,” sopp. 1L

See “Experimentum Crucis,” in Notes and Records. Royal
Soctety of London, 23 (1968), 169-199.

Sce, notably, “lsaac Newton: The Rise of a Scwatist
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93,

95,

98.

100,

101.

102,
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1661-1671," in Notes and Records. Royal Society of
London, 20 (1965), 125-135.

Umniversily Library, Cambridge, MS Add. 3996,

See Sabra, Theories of Light, also Westfall, *“The Develop-
ment of Newtons Theory of Color,”™ in [fxiy, 53 (1962),
339-358. A major source for the development of Newton's
optical concepts is, of course, the series of articks by
Lohne, esp. those cated in oo, 90 and 91.

The surviving pages of this abortive ed, are reproduced in
1. B. Cohen, “Versions of Isaac Newton's First Published
Paper, With Remarks on the Question of Whether Newton
Planned to Publish an Edition of His Early Papers on Light
and Color,” in Archives imermatiomales d'histoire des
sciences, 11 (1958), 357-375, 8 plates. Sec also A, R, Hall,

“Newtons First Book,” In  Archivez imrermariomales
d'kiztoire der sciences, 13 (1960), 39-61.

In W. C. Hiscock, ed., David Gregory, p. 13. The preface
10 the first ed. of the Opricks is signed “LN."

. See the ““Anmalytical Table of Contents™ prepared by

Duane H, D, Roller for the Dover ed. of the Opticks (New
York, 1952) for the contents of the entire work.

. Opticks, book 1, part 2, proposition 6. Newton's first

statement of a musical analogy to color occurs in his
“Hypothesis™ of 1675; for an analyss of Newton's musical
theory, see Carrespondence, 1, 388, n. 14, which includes a
significant contribution by J. E, Bullard.

As Bover has pointed out, “In the Cartesian

theary [of the rainbow] it matters Little what light is, or
M:(nuansmmed.solonaaspropagmonsmcnlmr
and the laws of reBection and refraction are samsfied™;
sce The Rainbow from Myth to Mathematics (New Yo:k.
1959), ¢h. 9.

. Although Newtoa had worked out the formula at the

time of his optical lectures of 1665-1671, he published no
statement of it until the Opricks. lnmcmnnumelhllcy
and Johann (I} Bornoulli had reached this formula inde-
pendently and had published it; see Boyer, The Rainbow,
pp. 24T . In the Opricks, Newton offered the formula
without proof, observing merely that “The Truth of all
this Mathematicsans will easily examine.”” His analysis &,
however, given in detail in the Lecriones opricae, part 1,
section 4, propositions 35 and 36, 35 a note informs the
reader of the 1730 ed. of the Opticks.

For a detaided analysis of the topic, see Whiteside,
Maihematical Papers, 111, 500-509.
Emst Mach, The Principles of Physical Optics, John S.
Anderson and A. F. A. Young, trans, (London, 1926),
139,
This final seoteoce of book 11, part 2, is a variant of a
senliment expressed a few paragraphs earlier: “Now
as all these things follow from properties of Light by a
maathensatical way of reasoning, so the truth of them may
be manifested by Experiments.”™
The word “diffraction™ appears to have been introduced
into optcal discoarse by Grimaldi, in his Physico-mathesis
de fumine, coloribuz, f iride (Bologna, 16035), in which the
opening proposition reads: *Lumen propagatur seu diffun-
ditur noa solum Dircesé, Refracté, ac Reflexd, sed etiam
alio quodam Quarto modo, DIFFRACTE.” Although
Newton mentioned Grimaldi by name (calling him
“Grimaldo™) and referred 1o his experiments, he did not
use the term “diffraction,” but rather “'inflexion,” a wsiage
the more curtous in that it had been introduced into optics
by nooe other than Hooke (Micrographia, “Obs. LVIIL
OFf 2 new Property in the Air and several other transparent
Mediums nam'd Infleceion . . ). Newton may thus have
been making a public acknowledgment of his debt to
Hooke; e n. 83,
Newton's alleged denial of the possibility of coerecting
chromatic aberration has been greatly misunderstood.
See the analysis of Newton's essay “OF Refractions™ in
Whiteside, Mathematical Papers, 1, 549-550 and 559576,
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csp. the notes on the theory of compound lemses, pp.
375-576, and notes 60 and 61. This topic has also been
stuxhied by Zov Bochler; see ™ “A Less Agrecabie Matter™—
Newton and Achromatic Refraction™ (in press).

Many of these arc available in two collections: AL R. and
M. B. Hall, eds., Unpublished Sciemtific Papers; and John
Herived, The Background 1o Newron's Principia. Sce also the
Royal Society's ed. of the Correspondence.

University Library, Cambridge, MS Add, 3996, first
analyzed by A. R. Hall in 1948.

Ihid., fol. 29. See also R, S. Westfall, Force i Newron's
Physics. Newton's entry concerning the third law was
first published by Whiteside in 1964; sce n. 114,
University Library, Cambridge, MS Add. 4004; Herivel
als0 gives the dynamial portions, with commenlarics.
Def. 4; see Herivel, Background, p. 137,

Ibid., p. 141.

Sce William Stukcley, Memolrs of Sir Isage Newron's
Life, p. 20; sec abo Douglas McKic and G. R, d¢ Beer,
“Newton's Apple,” in Notes and Records, Royal Sociery
of Lomdon, 9 (1932), 46-54, 333-335.

. Various nearly contemporary accounts are given by W. W,

Rouse Ball, An Essay om Newton's “Principia,” ¢h. 1.

. See F. Cajori, “Newton’s Twenty Years' Delay in An-

nouncing the Law of Gravitaton,” m F. E. Brasch, ed.,
Sir Isage Newton, pp, 127-188,

. This document, a tract oo “‘circular motion,” University

Libeary, Cambridge, MS Add, 39585, fol, 87, was in
major part published for the first time by A. R. Hall in
1957, It has since been republished, with translation, in
Correspondence, 1, 297-300, and by Herivel in Background,
pp. 192 fF,

In “Newton's Early Thoughts on Planetary Motson:
A Fresh Look,” in Britisk Journal for the History of
Science, 2 (1964), 120, n. 13.

In A. R. and M. B. Hall, Unpublished Papers, pp. $9 ff.
Umnsveraty Library, Cambridge, MS Add. 3958, fols. 81-83;
also in Turnbull, Correspondence, 111, 60-64,

Newton's concept of foree has been traced, in its historical
context, by Westfzll, Forer in Newion's Physics; sec also
Herivel, Backgrownd, and see 1. B. Coben, “Newton’s
Second Law and the Concept of Force in the Principia,” in
R. Palter, ed., Amnie Mirabilis, pp. 143-185.

In the scholium to the Laws of Motion, Newton mentioned
that Wrea, Wallis, and Huygens at “about the same time™
communicated their “discoveries to the Royal Socicty™;
they agreed “exactly among themseives™ as 1o “ihe ruks
of the congress amd refiexion of hard bodies."”

Almost all discussions of Newton's spiral are based on a
poor verswon of Newlon's diagram, se¢ J, A, Lohne, “The
Increasing Corruption of Newton's Diagrams,™ in History
of Science, 6 (1967), 69-89, csp. pp. 72-76.

Whiteside, “‘Newton's Early Thoughts,™ p. 135, has para-
phrused Hooke's challenge as “Does the central force
which, directed to a focus, defiects a body uniformly
travelling in & straight line into an clliptical path vary as
the inverse-square of its instantancous distance from that
focus 7™

University Library, Cambridge, MS Add. 396841, fol.
85r, first printed in Caralogue of the Porrsmouth Collection,
P Xvidi, it is i fagt part of a deaflt of a letter to Des
Maizeaux, written in summer 1718, when Des Mameaux
was composing his Recwedl. In a famous MS memorandum
(University Libeary, Cambridge, MS Add. 3968, fol. 101),
Newton recalled the occasion of his corvespoadence with
Hooke concerning his use of Kepler's area law in relstion
to elliptic orbats; see 1. B. Cohen, Introduction fo Newton's
Principia, sepp. |, sec, 2,

University Library, Cambridge, MS Add. 3965.7, fols
$5r-62(bus)r: printed versions appear it A, R and M, B.
Hall, Unpublished Papers; J. Herivel, Backgrownd; and
W. W, Rouse Ball, Essay,
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See Whiteside, “Newton’s Early Thoughts,” pp. 135-136;
and see 1. B. Cohen, “Newton’s Second Law and the
Concept of Force in the Principia,” in R. Palter, od.,
Annuz Mivabilis, pp. 143-185,

Analysis shows that great care is necessary in dealing with
the lamit process in even the simplest of Newton's examples,
as in his early derivation of the Huygensan rule for centri-
fugal force (in the Waste Book, and referred to in the
scholinm to prop, 4, bk, 1, in the Prircipic), or in the prool
(props. 1-2, bk. 1) that the law of areas is a necessary and
sufficient condition for a central force. Whiteside has
analyzed these and other propositions in *‘Newtonian
Dynamics,”™ pp. 109-111, and “Mathematical Prnciples,™
pp. 11 ff,, and has shown the logical pitfalls that await the
credulous reader, most notably the inplied wse by Newton
of infinitesimals of an order higher than onc (chicfly those
of the second, 2nd occasionally those of the third, order).
Scc the Principia, props. 1-3, bk. I, and the various versions
of De mosre printed by A, R. and M. B. Hall, J. Hevivel,
and W. W. Rousc Ball.

In Correspondence, 11, 436-437. This ketter unambiguousty
shows that Newtoa did not have the solution to the pro-
blem of the attraction of & sphere until considerably later
than 1679, and declaredly not “until last summer [1685].™
There is considerable uncertainty about what “‘curious
treatise, De More' Halley saw; see 1. B. Cohen, Introdue-
tion, ch. 3, sec, 2,

Ihid., sec. 6.

First published by A. R. and M. B. Hall, Unpwublished
Papers.

Newton at first corresponded with Flamsteed indirectly,
beginning in Deocamber 1680, through the agey of
Jamess Crompton,

In 1681, Newton still thought that the “comets™ saanin
November and December 1680 were “two different ones™
(Newton to Crompton for Flamsteed, 28 February 1681, in
Correspondence, 11, 342); in a Jetter 10 Flamsteed of 16
April 1681 (ihid., p. 364), Newton restated his doubts that
“the Comets of November & December [were] but one.™
In & letter of 5 January 1685 (ibid., p. 408), Flamsteed
hazarded a “goess™ at Newtoa's “designe’: to define the
curve that the comet of 1680 “described in the acther™
from a general “Theory of mation,™ while oa 19 September
1685 (ibid., p. 419), Newton at last admitted to Flamstead
that “it scems very probable that those of November &
Docember were the same comet."” Flamsteed noted in the
margin of the last letter that Newton “woald not grant it
before,” adding, “'see his letter of 1681, In the Arithmetica
universalis of 1707, Newton, in problem 52, explored the
“uniform rectilinear motion™ of a comet, “supposing the
“Copernican hypothesis' ™, sec Whikside, Marhemarical
Papers, V, 299, n. 400, and csp. pp. 324 ff,

As far as actual Greek geometry goes, Newton barely
makes use of Archunedes, Apollonius, or even Pappus
(mentioned in passing in the preface to the 1st ed. of the
Principia);, see Whiteside, “Mathematical Principles,™
P-7.

This is the tract “De methodis sericrum ¢t flidonum,™
printed with translation in Whiteside, ed., Mathematical
Fapers, 111, 3211,

Motte has standardized the wse of the neuter genitum in
his Englsh translation, although Newton actually wrote!
“Momentum Genitae aequatur . . " and then saxd
“CGenitam voco quantitatem omnem quae . . ., where
guantifas gemita (or “generated quantity™) is, of course,
feminine,

Whiteside, Marhemarical Papers, IV, 523, note 6.
Concepts, p. 200.

Ibid.; on Newton’s use of infinitesimals in the Principia,
see also A, De Morgan, “On the Early History of Infini-
tesimals in England,” in Philosophical Magazine, 4 (1852),
321-330, in which be potes especially some changex
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Newton's usage from the 1687 to the 1713 eds. See further
E. Cajori, A History of the Conceprions of Limits, pp. 2-32.
Whitcside, “Mathematical Principles.” pp. 2011,
Newtons method, contained in University  Labrary,
Cambridge, MS Add. 3965.10, fols. 107v and 134v, will
be published for the first time in Whiteside, Marhematical
Paperz, V1.

Halley refers to this specifically in the first paragraph of
his review of the Principia, in Philosopkical Transactions
of the Royal Society, no. 186 (1687), p. 291.

Tramslated from University Library, Cambridge, MS Add.
3968, fol. 112,

De quadratura was printed, together with the other tracts
m the collection publsbed by W, Jones in 1711, as a supp.
to the second repeint of the 2nd &, of the Principie (1723).
In Philosaphical Transactions of the Royal Society (1715),
p. 206,

Newton was aware that g shift in latitude causes a variation
in rotational spesd, since v = 2nT x cosy, where ¢
is the lincar tangential speed at latitude 95 r, 7 being the
average values of the radius of the carth and the period of
rotation. The distance from the center of the earth is also
afliected by latitude, sinoe the earth &5 an oblate spheroid.
These two factors appear in the varation with latitude
in the length of a scconds pendulum.

“The Aim of Science,” in Ratio, 1 (1957), 24-35; repe.
i:; lg;l Popper, Objective Knowledge {Oxford, 1
191-205.

Ses, for cxample, R. S, Westfall, Force in Newron's
Physics. See also Alan Gabbey, “Force and Incrtia in
1 Tth-ceatury ics,” in Stwdics in History amd Philo-
sophy of Science, 2 (1971), 1-67; Gabbey contests Westfall's
pointo‘vimrcomemingﬂunirhﬁm,hsm. 176
(1972), 157-159.

This would no longer even be called a force: some present
wranslations, wmong them F, Cajori’s versson of Motte,
anachroaistically render Newton’s uis imerfiae a3 simple
“inertia.”

University Library, Cambridge, MS Add. 3968, fol
415; published in A. Koyré and [, B. Coben, “Newton and
e Leibpiz-Clarke Correspondence,” in Archives inter
mationales d'histoire des scsences, 15 (1962), 122-123.

See 1. B. Cohen, “Newton's Second Law and the Coocept
of Foree in the Principia)’ in R, Palter, ed., Amnuz
Mirabilis, pp. 143-185.

R. S. Westfall, Force, p. 450, It is with this point of view
in particular that Gabbey lakes issue; see n. 146,
See further E. J. Aiton, “The Concept of Foree,” in A, C,
Crombee and M, A. Hoskin, eds., Histary of Sciemce,
X (Cambridge, 1971), 88-102.

In prop. 7, bk. Il (referring to prop. 69, bk, 1, and ils
corollarics), Newton argued from “acoclerative’” measures
of forces to "absolute™ forees, in specific cases of attraction,
See D. T. Whiteside, in History of Sciemce. V (Camboidge,
1966), 110,

E. J. Aiton, *The Inverse Problem of Central Foress,” in
Anmals of Science, 20 (1964), §2.

This position of the Principia was greatly altered between
the Ist and 2nd ods.; Newton's miermediate resulls were
summarized in a set of procedural rules for making up
lusar tables and were publisbad in a Latin werswa in
David Gregory's treatise on astronomy (1702). Several
separate English versions were later published; these are
reprinted in facsimile in 1. B. Cohen, Newtar's Theory
of the Moon (London, 1974).

W. W, Rouse Ball gives = usefi] paraphrase m Ezsay, p. 92.
See the analyses by Clifford Truesdel), listed in the bibliog-
raphy to this article.

In his review of the Principia, in Philosopkical Tramiacrions
(1687), p. 295, Halley referred specifically Lo this proposis
tion, “which being rather a Physxal than Mathematcal
Inquiry, our Author forbears to discuss.™
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Thisproblemhadnincdpmminmwmmmhdwhdo-
pendcntdisooverybyﬂalleyandkicbetmauhelmgthof
a pendulum clock must be adjusted for changes in latitude,
This “Geoeral Scholium” should not be confused with
Unmeralscholiummmmdsmcrmww:a. It was
revised and expanded for the 20d ed., where it appears at
the end of sec. 6: in the Ist ed. it appears at the end of
sec. 7.

160. In Meécanigue céleste, ¥V, bk, XII, ch. 3, sec. 7. Newtoa

161.

failed to take into account the changes in elasticity due to
lbe“batofcumpxusimandoddofmchcdo_n_’_‘;
Laplace corrected Newtea's formula (v = kv'pld),
mplacmghwithhisown(n-k\/l.&lp!d.wb«episdn
air pressure and d the deasity of the air).

who had first published his own results in
1816, later said that Newton's studies on the velocity of
sound in the atmosphere were the most important applica-
tion yet made of the equations of motion in ekxstic fluids:
“gx théone, quoique i ite, €5t un monument de son
pénic” (Méchamigue céleste, V, bk, XII, ch. 1, pp. 95-96).
Lord Rayleigh pointed out that Newton’s investigations
“esrablished that the velocity of sound should be inde-
peo&auoftbeamplimdcoﬂbevibradon.and:hoohhe
[ildl."
The coafutation of Descartes’s vortex theory was thought
bymof&wm‘smmwbeomofm:miocaims
of bk. IL. Huysens, for one, accepted Newton's conclusion
lhaube(}mmianmmmbccanomofphﬁia.
and wrote to Leibaiz 1o find out whether he would be able
to coatinue 10 believe in them after reading the Principia.
In “my view,” Huygens wrote, “these vortices are supes-
fluous if one acoepes the system of Mr. Newtoa.”

162. On the carlier tract in relation 1o bk, I of the Principia,

163,

164,

165.

166.

see the preface 1o the repr. (London, 1969) and 1. B.
Cohen, Introducrion, supp. VL

AL one time, according to @ manuscript note, Newton was
uncquivocal that hypothesss 3 the belicf of
Aristotle. Descartes, and uaspecified “otbers.” It was
o«igimuyfonmdbyahwoumisl.wlichin the 2nd
and 3rd cds. was moved to a kater part of bk. 1II. For
details, se¢ 1. B, Cohen, “Hypotheses in Newton's Plalos-
ophy,” in Physis, 8 (1966), 163184,

See De moru m A, R. and M. B, Hall, Unpueblished Papers,
and J. Herivel, Background.

Newton apparently never made the experiment  of
comparing mass and weight of different quantities of the
same material.
Thachasbwnliulemeard:onlhepwalsubjectof
Newion's lunar theory; evea the methods he used to obtxin
the resalts given in 4 short scholium to prop. 35, bk, 1,
in the 1st ed., are not known. W. W, Rouse Ball, in Fssay,
p. 109, discusses Newton's formula for “the mean hourly
motion of the moon’s apoges,” and suys, “The in-
vestigation on this point is nol entirely satisfactory, and
from the alterations made in the MS. Newton evideotly
felt doubts about the correctness of the coeflicient ' which
oocurs in this formula. From this, however, be deduces
quite carrectly that the mean annual motion of the apogee
resulting would amount to 38°51°51, whereas the annual
motion™ is known 1o be 40°41°30°, His discussion i based
upon the statement, presumsably by J. C. Adams, in (he
preface to the Casalogue of the Porrsmoutkh Collection
(Cambridge, 1888), pp. xii-xii. Newtoa's MSS on the
motion of the moon—chiclly University Library,
Cumbridge, MS Add. 3966—are one of the major un-
analyzed collections of his work, For further documenis
concerning this topss, and a scholarly analysis by A. R.
Hall of some aspects of Newton's researches on the motion
of the moon, sce Correspondence, V (in press), and L B.
Cohen, intro. to a facsimile repr, of Newton's pamphlet
on the motioa of the mooa (London, in peess).
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Although Newwnhadsmpecﬂcdtbeassoduionorcolor
with wavelength of vibration as carly as his “Hypothesis™
of 1675, be did 101 g0 on from his experiments oa rings,
which suggested a periodicity in optical phenomena, to a
true wave theory—no doubl because, as A, |, Sabra has
suggested, his a priori “conception of the rays & discretc
entities or corpasches™ effectively “prevented him from
envisaging the possibility of an undulatory interpretation
in which the ray, as something  distinguished  from
mcymm would be redundant™ (Theories of Lighs,
p- 341).

Both printed in facsimile in I B. Cohen, ed., Isaac Newion's
Papers and Letters om Natural Philosophy. They were
published and studied in the eighteenth century and had a
significant j on the development of the concept
of electric fluid (or fluids) and caloric, This topic is ex-
plored in some detail in 1. B. Cohen, Franklin and Newton
(Philadelphia, 1956; Cambridge, 1966; rev. ed, in press),

Heary Guerlae has studied the development of the queries
themselves, and in particular the decline of Newton's use
of the ether until its reappearance in a new form in the
quenes of the 2nd English ed. He has also noted that the
concept of the etlyer is conspicuously absent from the Latin
ed. of 1706, Sce especially his “Newton’s Optical Acther,”
0 Notes and Records. Royal Society of London, 22
(1967), 45-57. See, further, Joan L. Hawes, “Newton's
Revival of the Acther Hypothess . . " ibid, 23 (1968),

200-212.
A. R and M. B. Hall have found evidence that Newtoa
thought of this “spiritus™ s electrical in nature; see
Unpublished Papers, pp. 231 T, 348 I. Guerlac has shown
that Newton i
experiments and by certain cxperiments of [Desapuliers:
sec bibliography for this series of articles,

Library, Cambridge, MS Add. 3970, sec. 9,
fols. 623 (.

These works, especially queries 28 and 31, bave been
studied in conjunction with Newton's MSS (particularly
his notcbooks) by A. R. and M, B. Hall, D. McKie,
J. R. Partingron, R. Kargon, J. E. McGuire, A. Thackray,
and athers, in their elucidations of a Newtonian docirine
of chemistry or theory of matter. De masura acidorum has
been printed from an autograph MS, with notes by
Pucaime and transcripts by David Gregory, in Correspon-
dence, T, 205-214. The first printing, in both Latin and
English, 15 reproduced in 1. B, Cohen, ¢d., Newron's
Papers and Letrees, pp. 255258,

According to M. B. Hall, “Newton's Chemical Papers,™
in Newton's Papers and Letters, p. 244,

Ibid., p, 245.

Discussed by T. S. Kuhn, “Newton's “31st Query” and the
Degradation of Gold,"” in Zais, 42 (1951), 206-298,

M. B. Hall, “Newton’s Chemical Papers,” p, 245: she
continues that there we may find & “forerunner of the
tables of aflinity” developed in the cightecath century, by
means of which “chemists ried to predict the course of 3
reacton."”

“Newtoas  Chemical Experiments,” in  Archives
internationates d'kistoire des sciences, 11 (1958), 113-152
2 study of Newton's chemical notes and papers—A, R,
and M. B. Hall have tried 10 show that Newton's primary
concern m these matters was the chemistry of metals, and
Ut the writings of alchemists were a major source of
information on every aspect of metals, Humphrey Newton
WrOte up 2 confusing account of Newton's akchemical
experiments, in which he said that Newton's guide was
the De re metallica of Agricola: this work, however, is
fargely frec of akchemical overtomes and concentrates on
muning and metaliurgy.

R. S. Westfall, in Science and Religion in Seventeenth-
Centwry England, ch. 8, draws upon such expressions by
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Newton to prove that “Newton was a religious rationalist

who remained blind to the mysix’s spirituz] communion

with the divine,”

These MSS are described in the Sotheby sak catalog and

by F. Sherwood Taylor, in “An Alchemical Work of Sir

Isaac Newton,™ in Ambix, § (1956), 5984,

These have been msubjeaofaconsidmblesmdyby
Newton, Historian (Cambridge,

Frank E. Manuel, Iseac

Mass., 1964). b :
Ncwton’sim::mstma.ldumymimrsallmc

aspects of that subject, ranging from the manipulative
chcmislryofmcﬂls.mincm]adds,andnlls,low
and symbolic (often sexual) ilustrations and mysticism
ofardiziousorphilmophimlkhd.ﬂisinmhakhuny
pmismdthronghhisdmatdlenim.ahhomhmisoo
indication that he at that time still seriously belicved that
pummchllicgoidmishbepro&med(mmblsumh-
iﬁindeed.behadcvusobdicved.lkamofhism
on his reading indicate the seriousness of Newton's
interest in the geoeral subject, but it is impassible to
mwmldngmc.u’any.msalcban}moanwm
may have influcnced his science, beyord his vague and
general commitment to “transmutations™ as a mode for
lheopemﬁoosotmm&ucvmlhixbeﬂdumldm
inply 1 commitment to the entire hermetic tradition, and
i(bmnmarytoso&auni(ydthcdiminmu
and intellectual concerns in a mind as complex as

P. M. Rattansi, “Newton's Alchemical Studies,™ in Allen
Debus, od., Sc&mv..edkawmd&c&tyhcl&
Remaissance, 1T (New York, 1972), 174,

The first suggestion that Newton’s concept of the ether
mismbclimedtohknkhmﬁmomwasmdeby
Tayler; see n. 179, above.

Leibniz, Tenwamen | - - ("An Essay on the Causc of the
Mosicas of the Heavenly Bodies™), in Acra eruditorum
(Feb. 16%9), 82-96, English traps. by E. J. Collins.
Leibniz' marked copy of the Ist ed. of the Principia,
presumably the one sent to him by Fatio de Duillier at
Newton's direction, is now in the possession of E. A
Fellmann of Basel, who has discussed Letbniz’ annotations
in “Die Marginalnoten von Leibniz in Newtons Principia
Mathematica 1687," in Humanismus und Tecknik, 2 (1972),
110-129; Fellmana's critical ed_, G, W. Leibniz, Marginralia
in Newtoni Principia Mathematica 1687 (Paris, 1973),
includes facsimiles of the annotated pages.

Transkated from some MS comments on Leibniz™ essay,
first printed in Edleston, Correspondence, pp. 307-314.
Leibniz” excepts from Newton's De analysi, made in 1676
from & transcript by John Collins, have been published
from the Hannover MS by Whiteside, in Mathematical
Papers, 11, 245-258. Whileside thus demonstrates that
Leibniz was “‘clearly interested only in itz algebraic
portions: fluxional sections are ignored "

Several MS versions in his hand survive in University
Libeary, Cambridge, MS Add. 3968,

At thispuiodthcynrinpnglandoﬂ‘\chllybosanon
Lady Day, 25 March. Hence Newton died on 20 March
1726 ald style, or in 1726)7 (to use the form then current
for dates in January, February, and the first part of
March).

In the 2-vol. ed. of the Principia with variant readings
cdited by A. Koyré, L. B, Cohea, and Anne Whitman:
Koyré has shown that in the English Opticks Newton used
the word “feagn™ in relation to hypotheses, in the senve of
“fingo™ in the slogan, a usage conflirmed by example in
Newton's MSS. Motte renders 1he phrase as “I frame no
hypothess.” Newton himself in MSS used both “feign™
and “frame™ in relation to hypotheses in this regard;
see L. B, Cohen, “The First English Version of Newton's
Hypotheses non fingo,” in Isis, 53 (1962), 379388,
University Libeary, Cambridge, MS Add. 3968, fol. 437.

‘
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BIBILIOGRAPHY

This bibliography is divided into four major sections.
The last, by A. P. Youschkevitch, is concerned with Sovict
studies on Newton and is independent of the text.

Osranar Wosks (numbered 1-1Y): Newton’s major
writings, together with collected works and editions,
bibliographics, manuscript collections, and catalogucs,

SEcONDARY LITERATURE (numbered V-VI): including
general works and specific writings about Newton and his
life.

Sources (numbered 1-11): the chief works used in the
preparation of this biography; the subdivisions of this
section are correlated to the subdivisions of the biography
itself,

Sovier LITERATURE: a special section devoted to
Newtonian scholarship in the Soviet Union.

The first three sections of the bibliography contain &
number of cross-references; a parenthetical number refers
the reader to the section of the bibliography in which a
complete citation may be found.

ORIGINAL WORKS

I. Masor Works., Newton’s first publications were on
optics and appeared in the Philosophical Transactions of
the Royal Sociery (1672-1676); repr. in facs., with intro. by
T. S. Kuhn, in 1. B. Cohen, ¢d., saac Newton's Papers &
Letters on Natural Philosophy (Cambridge, Mass., 1958,
2nd ed., in press), His Opricks (London, 1704; enl, versions
in Latin [London, 1706}, and m English [London, 1717 or
1718]) contained two supps.: his Enumeratio lincarum
rertii ordinis and Tracrarus de quadratura cuwrcarum, his
first pubhished works in pure mathematcs. The 1704 ed.
has been repr. in facs, (Brussels, 1966) and (optical part
only) in type (London, 1931); also repr. with an analytical
table of contents prepared by D. H. D, Rolier (New York,
1952). French trans. are by P. Coste (Amsterdam, 1720,
rev. ed. 1722; facs. repr., with intro. by M. Solovine,
Paris, 1955); a German ed. is W, Abendroth, 2 vols.
(Leipzig, 1898); and a Rumanian trans. s Victor Marnan
(Bucharest, 1970). A new ed. is currently being prepared
by Henry Guerlac.

The Philosophiae naturalis principia mathemarica (Lon-
don, 1687; rev. eds,, Cambndge, 1713 [repr. Amsterdam,
1714, 1723}, and London, 1726) is available in an ed, with
variant readings (based on the three printed eds., the MS
for the Ist ed. and Newton's annotations in his own copics
of the Ist and 2nd eds.) prepared by A. Koyré, 1. B. Cohen,
and Anne Whitman: Isaac Newion's Philesophiae naturalis
principia mathematica, the Third Edition (1726) With
Variant Readings, 2 vols. (Cambridge, Mass—Cambridge,
England, 1972). Translations and excerpis have appeared
in Dutch, English, French, German, Italian, Japanese,
Rumanian, Russzan, and Swedish, and are listed in
app. VIIL, vol. 11, of the Koyré, Cohen, and Whitman ed.,
together with an account of reprs. of the whole treause.
The 1st ed. has been printed twice in facs. (London,
1954[7]; Brussels, 1963).

William Jones published Newton's De aralysi in his ed.
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of Analysis per quantitatum series, fluxiones, ac differen-
tias . . . (London, 1711), repr. in the Royal Society’s
Commercium epistolicum D. Johannis Collins, er aliorum de
analysi promota . . . (London, 1712-1713; enl. version,
1722; “variorum™ ed. by J.-B. Biot and F. Lefort, Paris,
1856), and as an appendix to the 1723 Amsterdam printing
of the Principia. Newton's Arithmetica universalis was
published from the MS of Newtons lectures by W. Whiston
(Cambridge, 1707); an amended ed. followed, supervised
by Newton himself (London, 1722). For bibliographical
notes on these and some other mathematical writings (and
indications of other eds, and translations), see the introduc-
tions by D, T. Whiteside to the facs. repr. of The Mathe-
matical Works of Isaac Newton, 2 vols. (New York-
London, 1964-1967). Newton's Arithmetica universalis was
translated into Russian with notes and commentaries by
A. P. Youschkevitch (Moscow, 1948); English eds. were
published in London in 1720, 1728, and 1769.

After Newton's death the carly version of what became
bk. Il of the Principia was published in English as
A Treatise of the System of the World (London, 1728; rev.
London, 1731, facs, repr., with intro. by I. B. Cohen,
London, 1969) and in Latin as De mundl systemate liber
(London, 1728). An Italian trans. is by Marcella Renzom
(Turin, 1959; 1969). The first part of the Lecriones opticae
was translated and published as Optical Lectures (London,
1728) before the full Latin ed. was printed (1729); both
are imperfect and incomplete. The only modern ¢d. is in
Russian, Lekisii po optike (Leningrad, 1946), with com-
mentary by S. I. Vavilov.

For Newton’s nonscientific works (theology, biblical
studies, chronology), and for other scientific writings, se¢
the various sections below.

1I. Correcrep WoORKS Ok Epimions, The only attempt
ever made to produce a gencral ed. of Newton was
S. Horsley, Isaaci Newtoni opera quae cxstant ommia, S volis.
(London, 1779-1785; photo repr. Stuttgart-Bad Cannstatt,
1964), which barely takes account of Newton's available
MS writings bat has the virtue of including (vol. 1) the
published mathematical tracts; (vols, -III) the Principia
and De mundi systemate, Theoria lunae, and Lectiones
apticac; (vol. 1V) letters from the Philosophical Transac-
tions on light and color, the letter to Boyle on the ether,
De problematis Bernoullianis, the Jetters to Bentley, and
the Conunercium epistolicum; (vol. V) the Chronology, the
Prophecies, and the Corruptions of Seripture. An carlier
and more modest collection was the 3-vol. Opuycula
mathematice, philosophica, et philologica, Giovanni
Francesco Salvemini (known as Johann Castillon), ed.
(Lausanne-Geneva, 1744); it contains only works then
n print,

A major collection of letters and documents, edited in
the most exemplary manner, is Edleston (1); Rigaud's
Essay (5) is also valuable. S. P. Rigaud’s Correspondence of
Scientific Men of the Seventeenth Century . . . in the
collection of . . . the Earl of Macclesfield, 2 vols. (Oxford,
1841; rev., with table of contents and index, 1862) is of
special importance because the Macclesfield collection is
not at present open to scholars.
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Four vols. of the Royal Society's ed. of Newton's
Correspordence (Cambridge, 1959 ) have (as of 1974)
been published, vols. I-1I edited by H, W. Turnbull,
vol. IV by J. F. Scott; A, R. Hall has been appointed
editor of the succeeding volumes, The Correspondence is
not limited to letters but contains scientific documents of
primary importance, A recent major collection is A, R,
and M. B. Hall, eds., Unpublished Scientific Papers of
Isaac Newton, a Selection From the Portsmowth Collection
in the University Library, Cambridge (Cambridge, 1964).
Other presentations of MSS are given in the ed. of the
Principia with variant readings (1972, cited above),
Herivel's Background (5), and in D. T. Whiteside's ed. of
Newton's Marthematical Papers (3).

III. BisLsoararines, There are three bibliographies of
Newton's writings, none complete or free of major crror.
One is George J. Gray, A Bibliography of the Works of
Sir Isaac Newtor, Together With a List of Books Wustrating
His Works, 2nd ed., rev. and enl. (Cambridge, 1907: repr.
London, 1966); H. Zeitlinger, “A Newton Bibliography,”
pp. 148-170 of the volume ed. by W. J. Greenstreet (VI);
and A Descriprive Catalogue of the Grace K. Babson
Collection of the Works of Sir Isaac Newton . . . (New
York, 1950), plus A Supplement . . . compiled by Henry P.
Macomber (Babson Park, Mass., 1955), which lists some
secondary materials from journals as well as books.

IV. Manuscrirr CoLLrcTIONs AND CATALOGUES, The
Portsmouth Collection (University Library, Cambridge)
was roughly catalogued by a syndicate conmsisting of
H.R. Luard, G. G. Stokes, J. C, Adams, and G. D. Liveing,
who produced A Catalogue of the Portsmouth Collection of
Books and Papers Written by or Belonging fo Sir Isaac
Newton . . . (Cambridge, 1888); the bare descriptions do
not always identify the major MSS or give the catalogue
numbers (e.g., the Waste Book, U.L.C. MS Add. 4004, the
major repository of Newton's early work in dynamics and
in mathematics, appears as “A common-place book,
written onginally by B. Smith, D.D., with calculations by
Newton written in the blank spaces. This contains Newton's
first idea of Fluxions™). There is no adeguate catalogue or
printed guide to the Newton MSS in the libraries of
Trinity College (Cambridge), the Royal Society of London,
or the British Museum. The Kewnes Collection (in the
fibrary of King's College, Cambridge) is almost entirely
based on the Sotheby sale and i3 inventoried in the form of
a marked copy of the sale catalogue, available in the
library; see A. N. L. Munby, “The Keynes Collection of
the Works of Sir Isnac Newton at King's College, Cam-
bridge,” in Notes and Records. Royal Society of London,
10 (1952), 40-50. The “scientific portion™ of the Porls-
mouth Collection was given to Cambridge University in
the 1870%s; the remainder was dispersed at public auction
in 1936. See Sotheby's Catalogue of the Newton Papers,
Sold by Order of the Viscount Lymington, to Whom They
Have Descended From Catherine Conduirt, Viscountess
Lymington, Great-nicce of Sir Isaac Newron (London,
1936). No catalogue has ever been made available of the
Macclesficld Collection (rich in Newton MSS), based
originally on the papers of John Collins and William Jones,

94

NEWTON

for which sec S, P. Rigaud's 2-vol. Correspondence . , . (I).
Further information concerning MS sources is given in
Whiteside, Mathematical Papers, 1, xxiv-xxxiii (3).
Many books from Newton's library are in the Trinity
College Library (Cambridge); others are in public and
private collections all over the world. R. de Villamil,
Newton: The Man (London, 1931[?]; repr., with intro. by
I. B. Cohen, New York, 1972), contains a catalogue
(imperfect and incomplete) of books in Newton's library
at the time of his death; an inventory with present locations
of Newton’s books is gredtly to be desired, See P. E.
Spargo, “Newton's Library,” in Endeavour, 31 (1972),
29-33, with short but valuable list of references. See alkso
Library of Sir Isaac Newton. Presentation by the Pilgrim
Trust to Trinity College Cambridge 30 October 1943
(Cambridge, 1944), Jdesaribed on pp. 5-7 of Thirtcenth
Annual Report of the Pilgrim Trust (Harlech, 1943).

SECONDARY LITERATURE

V. Guwns 1O THE SecoNpary LITERATURE, For guides
to the literature concerning Newton, see . . . Catalogue . . .
Babson Colleerion . . . (II); and scholarly eds., such as
Mathematical Papers (3), Principia (1), and Correspondence
(II). A most valuable year-by-year list of articles and books
has been prepared and published by Clelia Pighetti:
“Cinquant’anni di studi newtoniani (1908-1959),” in
Rivista critica di storia della filosofia, 20 (1960), 181-203,
295-318. See also Magda Whitrow, ed., ISIS Cumulative
Bibliography . . . 1913-65, TI (London, 1971), 221-232.
Two fairly reccnt surveys of the literature are I. B, Cohen,
“Newton in the Light of Recent Scholarship,” in fsis, 51
(1960), 489-514; and D. T. Whiteside, “The Expanding
World of Newtonian Research,” in History of Science, 1
(1962), 16-29.

VL. GENERAL WORKS. Biographics (e.g., by Stukeley,
Brewster, More, Manucl) are listed below (1). Some major
mterpretative works and collections of studies on Newton
are Ferd, Rosenberger, fsaae Newton wnd seinc physi-
Kalischen Principien (Leipzig, 1893); Léon Bloch, La
philosophie de Newton (Paris, 1908); S. L. Vavilov, fsawuk
Nyuton; nauchnaya biografia [ stari, 3rd ed. (Moscow,
1961), German trans, by Josef Grin as fsaac Newton
(Vieana, 1948), 2nd ed., rev., German trans, by Franz
Boncourt (Berlin, 1951); Alexandre Koyré, Newtonian
Studies (London-Cambridge, Mass., 1965) which, post-
humously published, contains a number of errors—a more
correct version is the French trans., Erudes newtoniennes
(Paris, 1968), with an avertissement by Yvon Belaval; and
Alberte Pala, Isaae Newton,scienza ¢ fosofia (Turin, 1969).

Major collections of Newtonian studies include W. J.
Greenstreet, ed., Isaae Newtor 16¢42-1727 (London, 1927);
F. E. Brasch, ed., Sir Isaac Newton 1727-1927 (Baltimore,
1028); S. L. Vavilov, cd., Issak Nywton 1643[n.s5.1-1727.
a symposium in Russian {Moscow-Leningrad, 1943);
Roval Society, Newton Tercentenary Celebrations, 15-19
July I946 (Cambridge, 1947); and Robert Palter, ed.,
The Annus Mirabilis of Sir Isaac Newton 1666-1966
(Cambridge, Mass., 1970), based on an carlier version in
The Texas Quarterly, 10, no. 3 (autumn 1967).
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On Newton’s reputation and influence (notably in the
cighteenth century), see HéRne Metzger, Newron, Stakl,
Boerhaave et la doctrine chimique (Pans, 1930), and
Attraction wniverselle et religion natwurclle chez quelques
commentatewrs anglais de Newton (Paris, 1938); Picrre
Brunet, L'introduction des théories de Newton en France au
XVIII® siécle, 1, Avant 1738 (Paris, 1931); Marjoric Hope
Nicolson, Newron Demands the Muse, Newton's Opiicks
and the Eighteenth Century Poets (Princeton, 1946); 1. B.
Cohen, Franklin and Newton, an Inquiry Into Speculative
Newtonian Experimental Science . . . (Philadelphia, 1956;
Cambridge, Mass., 1966, rev. repr. 1974); Heary Guerlac,
“Where the Statue Stood: Divergent Loyalties to Newton
in the Eighteenth Century,” in Earl R. Wasserman, ed.,
Aspecis of the Eighteerth Cerntury (Baltimore, 1965),
pp. 317-334; R, E, Schofield, Mechanism and Materialism,
British Natural Philosophy in an Age of Reason (Princeton,
1970); Paolo Casini, L'universo-macching, origini della
Sfilosofia newtoniana (Bari, 1969); and Arnold Thackray,
Atoms and Powers, an Essay in Newtonian Matter-Theory
and the Development of Chemistry (Cambridge, Mass.,
1970). Still of valuce today are three major cighteenth-
century expositions of the Newtonian natural philosophy,
by Henry Pemberton, Voltaire, and Colin Maclaurin.

Whoever studies any of Newton's mathemaucal or
scieatific writings would be well advised to consult J. A
Lohne, “The Increasing Corruption of Newton’s Dia-
grams,” in History of Science, 6 (1967), 69-89.

Newton’s MSS comprise some 20-25 million words;
most of them have never been studied fully, and some are
currently “lost,” having been dispersed at the Sotheby
sale in 1936. Among the arcas in which there is a great
need for editing of MSS and research are Newton's studies
of lunar motions (chiefly U.L.C. MS Add. 3965); his work
in optics (chiefly U.L.C. MS Add. 3970; plus other MSS
such as notebooks, etc.); and the technical innovations he
proposed for the Principia in the 1690's (chicfly U.L.C. MS
Add. 39635); sce (4), (7). It would be further valuable to
have full annotated editions of his early notebooks and
of some major alchemical notes and writings.

Some recent Newtonian publications include Valentin
Boss, Newton and Russia, the Early Influence 1698-1796
(Cambridge, Mass., 1972); Klaus-Dietwardt Buchholtz,
Isaac Newton als Theologe (Wittenburg, 1965); Mary S.
Churchill, *“The Seven Chapters With Explanatory Notes,”
in Chymia, 12 (1967), 27-57, the first publication of on¢ of
Newton's complete akchemical MS; J. E. Hofmann, “Neue
Newtoniana,” in Srudia Leibritiana, 2 (1970), 140-145, a
review of recent literature; D. Kubrin, “Newton and the
Cyclical Cosmos,” in Jowrnal of the History of ldeas, 28
(1967), 325-346; J. E. McGuire, “The Origin of Newton’s
Doctrine of Essential Qualities,” in Centaurus, 12 (1968),
233-260; and L. Trengrove. *““Newton's Theological
Views,” in Annals of Science, 22 (1966), 277-204.

SOURCES

1. Early Life and Education. The major biographics of
Newton are David Brewster, Memoirs of the Life, Writings,
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and Discoveries of Isaac Newton, 2 vols. (Edinburgh,
1855; 2nd od., 1860; repr. New York, 1965), the best biog-
raphy of Newton, despite its stuffiness; for a corrective, see
Augustus De Morgan, Essays on the Life and Work of
Newton (Chicago-London, 1914); Louis Trenchard More,
Isaac Newtor (New York-London, 1934; repr. New York,
1962); and Frank E. Manuel, A Portrait of Isaac Newlon
(Cambridge, Mass., 1968), Of the greatest value is the
“synoptical view” of Newton's life, pp. xxi-boxxi, with
supplementary documents, in J. Edleston, ed., Corre-
spondence of Sir Isaac Newton and Professor Cotes . . .
(London, 1850, repr. London, 1969). Supplementary
information concerning Newton’s youthful studies is given
in D, T. Whiteside, “Isaac Newton: Birth of a Mathe-
matician,” in Noses and Records. Royal Society of Londor,
19 (1964), 53-62, and “Newton's Marvellous Year: 1666
and All That," ibid., 21 (1966), 32-41.

John Conduitt assembled recollections of Newton by
Humphrey Newton, William Stukeley, William Derham,
A. De Moivre, and others, which are now mainly in the
Keynes Collection, King’s College, Cambridge. Many of
these documents have been printed in Edmund Turnor,
Collections for the History of the Town and Soke of
Grantham (London, 1806). William Stukeley's Memvirs
of Sir Isaac Newton's Life (1752) was odited by A. Hastings
White (London, 1936).

On Newton’s family and origins, see C. W. Foster, “Sir
Isaac Newton's Family,” in Reports and Papers of the
Architectural Societies of the County of Lirncoln, County of
York, Archdeaconries of Northampton and Oakham, and
County of Leicester, 39 (1928-1929), 1-62. Newton's carly
notebooks are in Cambridge in the Umversity Library,
the Fitzwilliam Muscum, and Trinity College Library; and
in New York City in the Morgan Library. For the latter,
see David Eugene Smuth, *Two Unpublished Documents
of Sir Isnac Newton,” in W. J. Greenstreet, ed., Isaac
Newron 1642-1727 (London, 1927), pp. 16 ff. Also, E, N.
da C. Andrade, “Newton’s Early Notcbook,” in Narure,
135 (1935), 360; George L. Huxley: “Two Newtonian
Studics: I. Newton's Boyhood Interests,” in Harvard
Library Bulletin, 13 (1959), 348-354; and A. R. Hall, “Sir
Isaac Newton’s Notebook, 1661-1665," in Cambridye
Historical Journal, 9 (1948), 239-250. Elsewhere, Andrade
has shown that Newton did not write the poem, attributed
to him, concerning Charles II, a conclusion supported by
William Stukeley’s 1752 Memwoirs of Sir Isaac Newtorn's
Life, A. Hastings White, ed. (London, 1936).

On Newtons carly diagrams and his sundial, see
Charles Turnor, “An Account of the Newtonian Dial
Presented to the Royal Society,” in Proceedings of the
Royal Sociery, 5 (1851), 513 (13 June 1844); and H. W.
Robinson, “Note on Some Recently Discovered Geo-
metrical Drawings in the Stonework of Woolsthorpe
Manor House,” in Neres and Records. Royal Society of
London, S (1947), 35-36. For Newton's cataloguc of
“sins,” see R. S. Westfall, “Short-writing and the State of
Newton's Conscience, 1662, in Notes and Records. Royal
Society of London, 18 (1963), 10-16.

On Newton's carly reading, see R. S. Westfall, “The
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Foundations of Newton's Philosophy of Narture,” Britich
Journal for the History of Science, 1 (1962), 171-182,
which is repr, in somewhat ampliGed form in his Force in
Newtor's Physics. On Newton's reading, see further 1. B.
Cohen, Introduction to Newton's Principia (T) and vol. 1
of Whiteside's ed. of Newton’s Mathematical Papers (3),
And, of course, a major source of biographical information
is the Royal Society’s edition of Newton's Correspondence
(1)

2, Lucasian Professor. For the MAjJor sources concerning
this period of Newton's life, see (1) above, notably
Brewster, Cohen ({ntroduction), Edleston, Manuel, More,
Whiteside { Matkematical Papers), and Correspondence.

Edleston (pp, XCi-XCviii) gives a “Table of Newton's
Lectures as Lucasian Professor,” with the dates and
corresponding pages of the deposited MSS and the
published ed. for the lectures on optcs (U.L.C, MS Dd.
9.67, deposited 1674; printed London, 1729); lectures on
arithmetic and algebra (U.L.C. MS Dd. 9.68; first pub-
lished by Whiston, Cambridge, 1707); lectures De motu
corporum (U.L.C. MS Dd, 9.46), corresponding grosso
modo 10 bk. T of the Principia through prop, 54: and finally
De motu corporum liber secundus (U.L.C. MS Dd. 9.67):
of which a more complete version was printed as De mundi
systemate liber (London, 1728)—see below,

Except for the last two, the deposited lectures are final
copics, complete with numbered illustrations, as if ready
for the press or for any reader who might have access to
these MSS, The Lecriones opricae exist in two MS versions,
an carhier one, which Newton kept (UL.C. MS Add. 4002,
in Newton’s hand), having a division by dates quite
different from that of the deposited lectures; this has been
printed in facs, with an intro, by D. T. Whitcside as
The Unpublished First Version of Isaac Newton's ., ambridgye
Lectares on Optics 16701672 (Cambridge, 1973). Sec . B,
Cohen, Introduction, supp. III, “Newton’s Professorial
Lectures,” esp, pp. 303-306.

The deposited MS De mor corporum consists of leaves
corresponding to different states of composition of bk. |
of the Principia; the second state (in the hand of Humphrey
Newton, with additions and emendatons by Isaac
Newton) is all but the equivalent of the corresponding
part of the MS of the Principia sent to the printer, but the
earlier stale is notably diffcrent and more primitive, See
I, B. Cohen, Introduction, supp. IV, pp. 310-321.

Edleston did not list the deposited copy of the lectures
for 1687, a Fair copy of only the first portion of De motu
corporum  liber  secundus (corresponding to the first
27 sections, roughly half of Newton's own copy of the
whole work, U.L.C. MS Add. 3990); he referred to a copy
of the deposited lectures made by Cotes (Trinity College
Library, MS R.19.39). in which the remainder of the text
was added from a copy of the whole MS belonging to
Charles Morgan. See 1. B, Cohen, Introduction, supp, 111,
pp. 306-308, and supp. VI, PP. 327-335. This MS, an
early version of what was to be rewritten as Liber tertiug:
De mundi systemate of the Principia, was published in
English (London, 1728) and in Latin (London, 1728); see
L. B. Cohen, “Newton's System of the World,” in Physis,
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11 (1969), 152-166; and intro. to repr. of the English
System of the World (London, 1969).

The statutes of the Lucasian professorship (dated 19 Dec.
1663) are printed in the appendix to William Whiston's
An Account of . . . [His] Prosecution at, and Baniskment
From, the University of Cambridye (London, 17 18) and are
printed again by D. T, Whiteside in Newton's Marhemat-
ical Papers, 111, xx-xxvii.

It is often supposed, probably mistakenly, that Newton
actuauymdtbcle:tumtlmhcdeposiwd,ordmthe
ckpositedlecmmmcvidaweorthesnlcofhis
or his formulation of a given subjectaxtlnti:mofp’vhu
aparﬁcuhrleeune,bem:setbedcnodwd MSS may be
divided into dated lectures; but the statutes required that
ﬂtelectumbercwriummzrtbcyhadbemmd.-

The MSS of Humphrey Newton's memoranda are in
the Keynes Collection, King's College, Cambridge (K. MS
135) and are printed in David Brewster, Memoirs, 11,
91-98, and again in L. T. More, /saac Newron, pp, 246-251.

TbcevidmforNcMon‘splantopublishaned‘ofhis
carly optical papers, including the letters in the Philo-
sophical Transactions, is in a2 set of printed pages (possibly

Cohen, “Versions of Isasc Newton's First Published
PapchimRemarksorn...aaniﬁonoins&rly
Papers on Light and Color,” in Archives internationales
d’histoire des sciences, 11 (1958), 357-375; D.J. de S. Price,
“Newton in a Church Tower: The Discovery of an
Unknown Book by Isaac Newton,” in Yale University
Library Gazette, 34 (1960), 124-126; A. R. Hall, “Newton's
First Book,” in Archives imternationales dhistoire des
sciences, 13 (1960), 39-61. On Mar. 1677, Collins wrote
to Newton that David Loggan “informs me that he hath
drawn your effigics in order to [produce] a sculpture
thereof to be prefixed 10 3 book of Light [&] Colours [&]
Dioptricks which you intend to publish.”

The most recent and detailed analysis of the Newton-
Fatio relationship is given in Frank E. Manuel, A Portrait
of Isaac Newton, ch, 9, “The Ape of Newton: Fatio de
Duillier,” and ch, 10, “The Black Year 1693.” For factual
details, see Newton, Correspondence, 111, The late Charles
A. Domson completed a doctoral dissertation, “Nicolas
Fatio de Duillier and the Prophets of London: An Essay
in the Historical Interaction of Natural Philosophy and
Millennzal Belief in the Age of Newton™ (Yale, 1972).

Newton's gifts to the Trinity College Library are listed
in an old MS catalogue of the library; see I. B. Cohen:
“Newton's Atribution of the First Two Laws of Motion
to Galileo,” in Aui def Sympostum internazionale di sloria,
metodologia, logica e filosofia della scienza: V' Galileo nelia
storia e nella filosofia della seienza™ (Florence, 1967),
Pp. xxii-xlil, esp. pp. xxvii-xxviii and n. 22.

3. Mashemaries. The primary work for the study of
Newton's mathematics is the ed. (1o be completed in 8 vols.)
by D. T. Whiteside: Mathematical Papers of Isaac Newton
(Cambridge, 1967- ). Whiteside has also provided a
valuable pair of introductions to 2 facs. repr. of early
transkations of a number of Newton’s tracts, The Mathe-
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matical Works of Isaac Newton, 2 vols. (New York
London, 1964-1967), these introductions give an ad-
mirable and concise summary of the development of
Newton’s mathematical thought and contain  biblio-
graphical notes on the printings and translations of the
tracts reprinted, embracing De analysi; De quadratira;
Methodus fluxionum et serierum infinitaram: Arithmetica
universalis (based on his professorial lectures, deposited in
the University Library); Enumeratio lincarum tertii ordinis;
and Methodus differentialis (“Newton’s Interpolation
Formulas™). Attention may also be directed to several
other of Whiteside’s publications: “Isaac Newton: Birth
of a Mathematiczan,” in Notes and Records. Royal Society
of London, 19 (1964), 53-62; **Newton's Marvellous Year:
1666 and All That,"™ ibid, 21 (1966), 32—41; “Newton's
Discovery of the General Binomial Theorem,™ in Mathe-
matical Gazette, 45 (1961), 175-180. (See other articles of
his cited in (6), (7), (8) below.)

Further information concerning the eds. and translations
of Newton's mathematical writings may be gleaned from
the bibliographies (Gray, Zeitinger, Babson) cited above
(III). Various Newtonian tracts appeared in Johann
Castillon™s Opuscula . . . (II), I, supplemented by a two-
volume ed. (Amsterdam, 1761) of Arithmictica universalis.
The naturalist Buffon translated the Methodus fluxionum . .,
(Paris, 1740), and James Wilson replied to Buffon's preface
in an appendix to vol. IT (1761) of his own ed. of Benjamin
Robins® Mathematical Tracts; these two works give a real
insight into “what an interested student could then know
of Newton’s private thoughts.” Sec also Pierre Brunet,
“La notion d'infini mathématique chez Buffon,” in
Archeion, 13 (1931), 24-39; and Lesley Hanks, Buffor
avant ™ Histoire naturelle™ (Paris, 1966), pt. 2, ch. 4 and
app. 4. Horskey's e, of Newton's Opera (1) contains some
of Newton's mathematical tracts. A modern version of the
Arithmetica universalis, with extended notes and com-
mentary, has been published by A. P. Youschkevitch
(Maoscow, 1948). A. Rupert Hall and Marie Boas Hall have
published Newton’s October 1666 tract, “to resolve
problems by motion™ (U.L.C. MS Add, 3458, fols. 49-63)
in ther Unpublished Scientific Papers (11); see also H. W,
Turnbull, “The Discovery of the Infinitesimal Calculus,™
in Narwre, 167 (1951), 10481050,

Newton's Correspondence (11) contains letters and other
documents relating to mathematics, with valuable annota-
tons by H. W. Turnbull and J. F. Scott. Sce, further,
Turnbull’s The Mathematical Discoveries of Newton
(London-Glasgow, 1943), produced before he started to
cdit the Correspondence and thus presenting a view not
wholly borne out by later rescarch. Carl B. Boyer has
dealt with Newton in Comeepis of the Calewlus (New York,
1939; repe. 1949, 1959), ch. 5; *"Newton as an Onginator
of Polar Coordinates,” in American Mathematical Monthly,
56 (1949), 73.78; History of Analytic Geometry (New York,
1956), ch. 7; and 4 History of Mathematics (New York,
1968), ch. 19.

Other secondary works are W. W, Rouse Ball, 4 Short
Account of the History of Mathemarics, 4th ed. (London,
1908), ch. 16—even more useful is his A History of the
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Study of Mathematics at Cambridge (Cambridge, 1889),
chs, 4-6; J. F. Scott, A History of Mathematies (London,
1958), chs. 10, 11; and Margarct E, Baron, The Origins of
the Infinitesimal Caleulus (Oxford-London-New York,
1969).

Some specialized studies of value are D. T. Whiteside,
“Patterns of Mathematical Thought in the Later Seven-
teenth Century,” in Archive for History of Exact Sciences, 1
(1961), 179-388; W. W. Rouse Ball, “On Newton's
Classification of Cubic Curves,” in Proceedings of the
Londan Mathematical Sociery, 22 (1891), 104-143, sum-
marized in Bibliothrea mathematica, n.s. § (1891), 35-40;
Florian Cajori, “Fourier’s Improvement of the Newton-
Raphson Method of Approximation Anticipated by
Mourraile,” in Bibliotheca mathematica, 11 (1910-1911),
132-137; “Historical Note on the Newton-Raphson
Method of Approximation,” in American Mathematical
Monthly, 18(1911), 29-32; and A Hisrory of the Conceptions
of Limity and Fluxions in Great Britain From Newton to
Woodhouse (Chicago-London, 1919); W. J. Greenstreet,
ed., Isaac Newron 1642-1727 (London, 1927), including
D. C. Fraser, “Newton and Interpolation”; A. R. Forsyth,
“Newton's Problem of the Solid of Least Resistance™;
J. J. Milne, “Newton’s Contribution to the Geometry of
Conies™; H. Hilton, “Newton on Plane Cubi¢c Curves™;
and J. M. Child, “Newton and the Art of Discovery™;
Duncan C. Fraser, Newtorn’s Interpolation Formulas
(London, 1927), repr. from Jowrnal of the Institute of
Actuaries, 51 (1918-1919), 77-106, 211-232, and 58 (1927),
53-95; C. R, M. Talbot, Sir fsaac Newton's Enumeration
of Lines of the Third Order, Generation of Curves by
Shadows, Organic Description of Curves, and Consiruction
of Equations by Curves, trans. from the Latin, with notes
and examples (Loadon, 1860); Florence N, David,
“Mr. Newton, Mr, Pepys and Dyse,™ in Amnals of Science,
13 (1957), 137-147, on dice-throwing and probability;
Jean Pelsencer, “Unc lettre inédite de Newton 4 Pepys
(23 décembre 1693),” in Osiris, 1 (1936), 497499, on
probabilitics; J. M. Keynes, **A Mathematical Analysis by
Newton of a Problem in College Administration,” in Isis,
49 (1958), 174-176; Maximilian Miller, “Newton, Auf-
zahlung der Linien dritter Ordnung,"” in Wissenschaftliche
Zeischrift der Hochschule far Verkehrswesen, Dreesden, 1,
no. 1 (1953), $-32; “Newtons Differenzmethode,” ibid., 2,
no. 1 (1954), 1-13; and “Uber dic Analysis mit Hilfe
unendlicher Reihen,” ibid., no, 2 (1954), 1-16; Oskar
Bolza, “Bemerkungen zu Newtons Beweis seines Satzes
tiber den Rotationskdrper kleinsten Widerstandes,” in
Bibliotheea mathemarica, 3rd ser,, 13 (1912-1913), 146-149.

Other works relating to Newton's mathematics are cited
in (6) and (for the quarrel with Leibniz over priority in the
calculus) (10).

4. Opties. The eds. of the Opticks and Lectiones opticar
are mentioned above (I); the two MS versions of the latter
are UL.C. MS Add, 4002, MS DdA.9.67. An annotated
copy of the Ist ed. of the Opricks, used by the printer for
the composition of the 2nd ed. still exists (U.L.C. MS
Adv.b.39.3—formerly MS Add. 4001). For information
Cohen, Introduction te Newton's Principia (7), p. 34;




.

NEWTON

and R. S. Westfall, “Newton's Reply,” pp. 83-84—extracts
are printed with commentary in D. T. Whiteside's ed, of
Newtons Mathematical Papers (3). At one time Newton
began 10 write @ Fundamention opticar, the text of which is
readily reconstructible from the MSS and which is a
necessary ool for a complete analysis of bk, | of the
Opeicks, into which its contents were later mcorporated;
for pagination, scc Mathematical Papers (3), TIL, $52. This
work is barely known to Newton scholars, Most of
Newton's optical MSS are assembled in the University
Library, Cambridge, as MS Add. 3970, but other MS
Writings appear in the Waste Book, correspondence, and
various notebooks.

Among the older literature, F, Rosenberger’s book (V1)
may still be studied with profit, and there is much to be
learned from Joseph Priestley’s 18thcentury presentation
of the development and current state of concepts and
theories of light and vision. See also Ernst Mach, The
Principles of Physical Optics: An Historical and Philp-
sophical Treatment, trans. by John S. Anderson and
A. F. A. Young (London, 1926; repr. New York, 1953);
and Vasco Ronchi, The Nature of Light: An Historical
Survey, trans. by V. Barocas (Cambridge, Mass., 1970)—
also 2 eds. in Italian and a French translation by Juliette
Taton.

Newton's MSS have been used in A. R. Hall, “Newton's
Notebook™ (1), pp. 239-250; and in J. A. Lohne, “Newton’s
“Proof” of the Sine Law,” in Archive for History of Exact
Sciences, 1 (1961), 389-405; “Tsaac Newton: The Rise of
a Scientist 1661-1671," in Notes and Records. Royal
Socicty of London, 20 (1965), 125-139: and “Experimentum
crucis,” ibid., 23 (1968), 169-199. See alko J. A. Lokne and
Bernhard Sticker, Newtons Theorie der Prismenfarben, mit
Ubersetzung und Erliuterung der Abhandlung von 1672
(Munich, 1969); and R, S. Westfall, “The Development of
Newton's Theory of Color,” in Jsis, 53 (1962), 339-358;
“Newton and his Critics on the Nature of Colors,” in
Archives internationales d'histoire des sciences, 15 (1962),
47-58; “Newton's Reply to Hooke and the Theory of
Colors,” in Isis, 54 (1963), 82-96; “Isaac Newton's
Coloured Circles Twixt Two Contiguous Glasses,” in
Archive for History of Exact Sciences, 2 (1965), 181-196;
and “Uneasily Fitful Reflections on Fits of Easy Trans-
mission [and of casy reflection],” in Robert Palter, ¢d.,
The Annus Mirabilis (VI), pp. 88-104.

Newton's optical papers (from the Philosophical Trans-
actions and T. Birch's History of the Royal Society) are
repr. in facs. in Newton's Papers and Letrers (1), with an
intro. by T. S. Kuhn. See also I, B. Cohen, “I prismi del
Newton e i prismi dell’Algarotti,” in Atti della Fondazione
“Giorgio Ronchi™ (Florence), 12 (1957), 1-11; Vasco
Ronchi, “I “prismi del Newton' del Museo Civico di
Treviso,” ibid., 12-28; and N. R, Hanson, ““Waves,
Particles, and Newton’s ‘Fits,' ™ in Journal of the History
of Ideas, 21 (1960), 370-391. On Newton's work on color,
sec Gieorge Biernson, “Why did Newton see Indigo in the
Spectrum®,” in Amierican Journal of Physics, 40 (1972),
526-533; and Torger Holtzmark, “Newton’s Experinnentum
Crucis Reconsidered,™ ibid., 38 (1970), 1220-1235.
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An able account of Newton's work in optics, set
against the background of his century, is A. L Sabra,
Theorics of Light From Decartes to Newton (London,
1967), ch, 9-13. An important series of studics, based on
extensive cxamination of the MSS, are Zev Bechler,
“Newton's 1672 Optical Controversies: A Study in the
Grammar of Scientific Dissent,” in Y. Elkana, ¢d., Some
Aspects of the Interaction Berween Science and Philosopky
(New York, in press); “Newton's Search for & Mechanistic
Model of Color Dispersion: A Suggested Interpretation,”
in Archive for History of Fxaet Sciences, 11 (1973), 1-37;
and an analysis of Newton’s work on chromatic aberration
in lenses (in press). On the last topic, see also D, T.
Whiteside, Matiematical Papers, 111, pt. 3, esp. pp. 442~
443, 512-513 (a. 61), 533 (n. 13), and 555-556 (nn. 5-6).

5. Dynamics, Astronomy, and the Birth of the “*Prin-
cipia.” The primary documents for the study of Newton's
dynamics have been assembled by A. R. and M. B. Hall (IT)
and by J. Herivel, The Backzround to Newtor's Principia
(Oxford, 1965); other major documents are printed (with
historical and critical essays) in the Royal Society’s ed. of
Newton's Correspondence (T1); S. P. Rigaud, Historical
Estay on the First Publication of Sir Isaae Newton's
Principia (Oxford, 1838; repr., with intro. by I. B. Cohen,
New York, 1972); W. W. Rouse Ball, An Eszay on Newton's
Principia (London, 1893; repr. with intro. by I B.
Cohen, New York, 1972); and I. B. Coben, Introducrion ).

The development of Newton's concepts of dynamics is
discussed by Herivel (in Backgrownd, and in & scrics of
articles summarized in that work), in Rouse Ball's Essay,
I. B. Cohens Introduction, and in R. S. Westfall's Foree
in Newton's Physics (London-New York, 1971). On the
concept of incrtia and the laws of motion, sec I. B. Cohen,
Transformations of Scientific Ideas: Variations on Newtonian
Themes in the History of Seience, the Wiles Lectures
(Cambridge, in press), ch. 2; and “Newton’s Second Law
and the Concept of Force in the Principia,” in R. Palter
ed., Annus mirabilis (VI), pp. 143-185; Alan Gabbey,
“Force and Inertia in Seventeenth-Century Dynamscs,”” in
Studies in History and Philosophy of Science, 2 (1971),1-68;
E. J. Aiton, The Vortex Theory of Planetary Motions
(London-New York, 1972); and A. R. Hall, “Newton on
the Calculation of Central Forces,” in Annals of Science, 13
(1957), 62-71. Newton's encounter with Hooke in 1679 and
his progress from the Ward-Bullialdus approximation to
the arca law are studied in J. A. Lohne, “Hooke Versus
Newton, an Analysis of the Documents in the Case of Free
Fall and Planetary Motion,” in Centaurus, 7 (1960), 6-52;
D. T. Whiteside, “Newton's Early Thoughts on Planctary
Motion: A Fresh Look,” in Britisk Journal for the History
of Science, 2 (1964), 117-137, “Newtonian Dynamics,” in
History of Science, 5 (1966), 104-117, and “Before the
Principia: The Mamring of Newton’s Thoughts on
Dynamical Astronomy, 1664-84." in Jowrnal for the
History of Astronomy, 1 (1970), 5-19: A. Kowré, “An
Unpublished Letter of Robert Hooke to Isasc Newton,™
in Isis, 43 (1952), 312-337, repr. in Koyré’s Newtonian
Studies (VI); and R. S. Westfall, “*Hooke and the Law of
Universal Gravitation,” in British Journal for the History
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of Science, 3 (1967), 245-261. “The Background and
Farly Development of Newton's Theory of Comets™ s
the title of a Ph.D. thesis by James Alan Ruffner (Indiana
Univ., May 1966).

6. Mathematics in the Principia. The references for
this section will be few, since works dealing with Newton's
preparation for the Principia are listed under (5), and
additional sources for the Principia itself are given
under (7). See, further, Yasukatsu Macyama, Hypothesen
sur Planctentheorie des 17, Jahrkunderts (Frankfurt, 1971),
and Curtis A. Wilson, “"From Kepler's Laws, So<called,
to Universal Gravitation: Empirical Factors,” in Archive
for History of Exact Sciences, 6 (1970), 89-170.

Two scholarly studies may especially commend our
attention: H. W. Turnbull, Mathematical Discoveries (3),
of which cha. 7 and 12 deal gpecifically with the Principia:
D. T. Whiteside, “The Mathematical Principles Underlying
Newton's Principia Mathematica,” in Journal for the
History of Astronomy, 1 (1970), 116-138, of which a
version with less annotation was published in pamphlet
form by the University of Glasgow (1970). See akso C. B.
Bover, Concepts of Calculus and History (3), and J. F.
Scott, History (3), ch. 11. Valuable documcnts and
commentarics also appear in the Royal Socicty™s ed. of
Newton's Correspondence, 1. Herivel's Background (5) and
various articles, and D. T. Whiteside, Mathematical Papers
(3). Especially valuable are three commentaries: J. M. F.
Wright, A Commentary on Newton's Principia, 2 vols.
(London, 1833; repr., with intro. by 1. B. Cohen, New
York, 1972); Henry Lord Brougham and E. J. Routh,
Analytical View of Sir Isaac Newton's Principia (London,
1855; repr., with intro. by L. B. Cohen, New York, 1972);
and Percival Frost, Newron's Principia, First Book,
Sections I, I, IIl., With Notes and Illustrations {(Cam-
bridge, 1854; Sth ed., London—New York, 1900). On a
post-Principla MS on dynamics, using fluxions, see W. W,
Rousc Ball, “A Newtonian Fragment Relating to Cen-
tripetal Forces,” in Proceedings of the London Mathe-
matical Society, 23 (1892), 226-231;5 A. R.and M, B. Hall,
Unpublished Papers (II), pp. 65-68; and commentary by
D. T. Whiteside, in History of Science, 2 (1963), 129,
n 4

7. The Principia. Many of the major sources for
studying the Principia have already been given, in (3), (6).
including works by A. R. Hall and M. B. Hall, J. Hernvel,
R. S. Westfall, and D. T. Whiteside. Information on the
writing of the Principia and the evolution of the text is
given in I. B. Cohen, Introduction to Newton's Principia
(Cambridge, 1971) and the 2-vol. ed. of the Principia with
variant readings, ed. by A. Koyré, 1. B, Cohen, and Anne
Whitmsan (1). Some additional works are R. S. Westfall,
“Newton and Absolute Space,” in Archives infernationales
dhistoire des sciemces, 17 (1964), 121-132; Clifford
Truesdell, “A Program Toward Rediscovering the Rational
Mechanics of the Age of Reason,” in Archive for
History of Exact Sciences, 1 (1960), 3-36, and “Reactions
of Late Baroque Mechanics to Success, Conjecture, Error,
and Failure in Newton's Principia,” in Robert Paler, ed.,
The Annus Mirabilis (VI), pp. 192-232—both artickes by
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Truesdell are repr. in his Essays in the History of Mechanics
(New York-Berlin, 1968). E. J. Aiton, “The Inverse
Problem of Central Ferces,” in Annals of Science, 20
(1964), 81-99: J. A, Lohne, “The Increasing Corruption™
(V1), esp. 5. The Planetary Ellipse of the Principia™; and
Thomas L. Hankins, “The Reception of Newtoa's Second
Law of Motion in the Eighteenth Century,” in Archives
internationales d histoire des sciemces, 20 (1967), 43-65.
Highly recommended is L. Rosenfeld, “Newton and the
Law of Gravitation,” in Archive for History of Exact
Selences, 2 (1965), 365-386: soe also E. J. Aiton, **Newton's
Aether-Stream Hypothesis and the Inverse-Square Law of
Gravitation.” in Annals of Science, 25 (1969), 255-260; and
L. Rosenfeld, “Newton's Views on Acther and Gravita-
tion,” in Archive for History of Exact Sciences, 6 (1963),
29-37.

I. B. Cohen has discussed some further aspects of
Pmu'a}:iaqusﬁominthcwmucmmﬁ)mdasmdyof
“Newton's Second Law™ (5); and in “Isaac Newton's
Principia, the Scriptures and the Divine Providence™, in
S. Morgenbesser, P. Suppes, and M. White, cds., Essays
in Honor of Ernest Nagel (New York, 1969), pp. $23-548,
csp. pp- 537 ff.; and “New Light on the Form of Definitions
LII-VI-VIL" where Newton’s concept of “measure”™ is
explored. On the incompatibility of Newton’s dynamics
and Galileo’s and Kepler's laws, see Karl R. Popper, “The
Aim of Science,” in Ratio, 1 (1957), 24-35; and I. B.
Cohen, “Newton’s Theories vs. Kepler's Theory,” in
Y. Elkana, od., Some Aspects of the Interaction Between
Science and Philosophy (New York, in press).

8. Revision of the Opticks (The Laier Queries);
Chemistry, and Theory of Matter. The doctrine of the later
querics has been studied by F. Rosenberger, Newron und
seine physikalischen Principien (NT), and by Philip E. B.
Jourdain, in a serics of articles entitled “Newton's
Hypothesis of Ether and of Gravitation. . . ," in The
Monist, 25 (1915), T9-106, 233-254, 418-440; and by
L B. Cohen in Franklin and Newtor (VI).

In addition to his studies of the queries, Henry Guerlac
has analyzed Newton's philosophy of matter, suggesting an
influence of Hauksbee's electrical experiments on the
formation of Newton's later concept of cther. See his
Newton et Epicure (Paris, 1963); “Francis Hauksbee:
Expérimentateur au profit de Newton,” in  Archives
internationales d*histoire des sciences, 17 (1963), 113-128;
“Sir Tsaac and the Ingenious Mr. Hauksbee,"” in Mélanges
Alexandre Koyré: Laventure de la science (Paris, 1964),
pp. 228-253; and “Newton's Optical Aether,” in Notes and
Records. Royal Socicty of London, 22 (1967), 45-57. See
also Joan L. Hawes, “Newton and the ‘Electrical Attraction
Unexcited." ** in Annals of Science, 24 (1968), 121-130;
“Newton's Revival of the Aether Hypothesis and the
Explanation of Gravitational Attraction,” in Neres and
Records. Roval Society of London, 23 (1968), 200-212; and
the studies by Bechler listed above (4).

The clectrical character of Newton's concept O “spiritus”
in the final paragraph of the General Scholium has been
disclosed by A. R. and M. B. Hall, in Unpublished Papers
(I1). On Newton's theory of matler, sce Maric Boas (Halll,
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“Newton's Chemical Papers,” in Newron's FPapers and
Letters (1), pp. 241-248; and A. R. Hall and M. B. Hall,
“Newton's Chemical Experiments,” in  Archives inter-
nationales d'histoire des sciences, 11 (1958), 113-152;
“Newton's Mechanical Principles,” in Journal of the
History of Ideas, 20 (1959), 167-178; “Newton's Theory of
Matter,” in Jsis, S1 (1960), 131-144; and “Newton and
the Theory of Matter,” in Robert Palter, ed., The Annus
Mirabilis (VI), pp. 54-68.

On Newton's chemistry and theory of matter, see
additionally R. Kargon, Atomism in England From Hariot
to Newton (Oxford, 1966); A. Koyré, “Les Querics de
I'Optique,™ in  Archives internationales d’histoire des
sciences, 13 (1960), 15-29: T. S, Kuhn, “Newton’s 3lst
Query and the Degradation of Gold,” in Isis, 42 (1951),
296-298, with discussion ibid., 43 (1952), 123-124: J. E.
McGuire, “Body and Void . . .,” in Archive for History of
Exact Sciences, 3 (1966), 206-248; “Transmutation and
Immutability,” in Ambix, 14 (1967), 69-95; and other
papers; D, McKie, “Some Notes on Newton's Chemical
Philosophy,™ in  Philosophical Magazine, 33 (1942),
847-870; and J. R. Partington, A History of Chemistry, 11
(London, 1961), 468477, 482-485.

For Newton's theories of chemistry and matter, and
their influcace, see the books by Héléne Metzger (VI),
R. E. Schofield (VI), and A. Thackray (V).

Geoffroy's summary (“extrait™) of the Opricks, presented
at meetings of the Paris Academy of Sciences, is discussed
in I. B. Cohen, “Isaac Newton, Hans Sloanc, and the
Académie Royale des Sciences,” in Mélanges Alexandre
Kayré, 1, L'aventure de la science (Paris, 1964), 61-1 16; on
the general agreement by Newtonians that the queries were
not so much asking questions as stating answers to such
questions (and on the rhetorical form of the queries), see
I. B. Cohen, Frankiin and Newton (VI), ch. 6.

9. Alchemy, Theology, and Prophecy. Chronology and
History. Newton published no essays or books on alchetmny.
His Chronology of Ancient Kingdoms Amended (London,
1728) also appeared in an abridged version (London,
1728). His major study of prophecy is Observations Upon
the Prophecies of Daniel, and the Apocalypse of St. John
(London, 1733). A selection of Theological Manuscripts
was edited by H. McLachlan (Liverpool, 1950).

For details concerning Newton's theological MSS, and
MSS refating to chronology, sec secs. VII-VIII of the
catalogue of the Sotheby sale of the Newlon papers (IV):
for other eds. of the Chronology and the Observations, see
the Gray bibliography and the catalogue of the Babson
Collection (111), There is no analysis of Newton's theolog-
ical writings based on a thorough analysis of the MSS: see
R. S. Westfall, Science and Religion in Seventeenth-Century
England (New Haven, 1958), ch. 8; F. E. Manuel, The
Eighteenth  Century Confronts the Gods (Cambridge,
1959), ch, 3; and George S. Brett, “Newton’s Place in
the History of Religious Thought,” in F. E. Brasch, ed.,
Sir Isaae Newton (VI), pp. 259-273. For Newtoa's
chronological and allied studics, sec F. E. Manuel, Isaac
Newton, Historian (Cambridge, 1963).

On alchemy, the catalogue of the Sotheby sale is most
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illuminating. Important MSS 2nd annotated alchemical
books are to be found in the Keynes Collection (King's
College, Cambridge) and in the Burndy Library and the
University of Wisconsin, M.LT., and the Babson Institute.
A major scholarly study of Newton's akhemy and
hermeticism, based on an extensive study of Newton's
MSS, is P. M. Rattansi, “Newton’s Alchemical Studics,™
in Allen G. Debus, ed., Science, Medicine and Society in the
Renaissance: Essays to Homor Walter Pagel, TI (New
York, 1972), 167-182; see also R. S. Westfall, “Newton
and the Hermetic Tradition,” ibid., pp, 183-198.

On Newton and the tradition of the ancients, and the
intended inclusion in the Principia of references to an
ancient tradition of wisdom, s¢¢ L. B, Cohen, * *Quantum
in s¢ est’: Newton’s Concept of Inertia in Relation to
Descartes and Lucretius, in Notes and Records. Royal
Society of London, 19 (1964), 131-155; and esp. J. E.
McGuire and P. M. Rattansi, “Newton and the ‘Pipes of
Pan’," ibid., 21 (1966), 108-143; ako J. E. McGuire,
“Transmutation and Immutability,” in Ambix, 14 (1967),
65-95. On alchemy, see R. J. Forbes, “Was Newton an
Alchemist?” in Chymia, 2 (1949), 27-36; F. Sherwood
Taylor, “An Alchemical Work of Sir Issac Newton,” in
Ambix, 5 (1956), 59-84; E. D. Geoghegan, “Some Indica-
tions of Newton’s Attitude Towards Alchemy,” ibid., 6
(I1957), 102-106; and A. R. and M. B. Hall, “Newton’s
Chemical Experiments,” in Archives internationales d'his-
toire des sciences, 11 (1958), 113-152.

Asalularypointofviewbmsedbyblaryl"m
“Hermeticism and Historiography: An Apology for the
Tnternal History of Science,™ in Roger H. Stuewer, ed.,
Historical and Philosophical Perspectives of Science, volL. V
of Minnesota Studies in the Philosophy of Science
(Minneapolis, 1970), 134-162. But see also P. M. Rattansi,
“Some Evaluations of Reason in Sixteenth- and Seven-
teenth-Century Natural Philosophy,™ in Mikulés Teich and
Robert Young, ods., Changing Perspectives in the History
of Science, Essays in Honour of Joseph Needham (London,
1973), pp. 145-166,

10. The London Years: the Mint, the Royal Socicty,
Quarrels With Flamsteed and With Leibniz. On Newton's
life in London and the affairs of the mint, see the bio-
graphics by More and Brewster (1), supplemented by
Manuel's Porrrair (1). Of special interest are Augustus
De Morgan, Newton: His Friend: and His Niece (London,
18835); and Sir John Craig, Newron at the Mint (Cambridge,
1946). On the quarrel with Flamsteed, sec Francis Baily,
An Account of the Rev®. Jokn Flamsteed (London, 1835;
supp,, 1837 repr. London, 1966); the above-mentioned
biographies of Newton; and Newton's Correspondence (11).
On the controversy with Leibniz, see the Commercium
epistolicuns (1). Newton’s MSS on this controversy (U.L.C.
MS Add. 3968) have never been fully analyzed; but see
Augustus De Morgan, “On the Additions Made to the
Second Edition of the Commercium epistolicum,” in
Philosophical Magazine, 3rd ser., 32 (1848), 446-456; and
“On the Authorship of the Account of the Commercium
episiolicum, Published in the Philosophical Transactions,”
ibid., 4th ser,, 3 (1852), 440444, The most recent ed. of
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The Leibniz-Clarke Correspondence was cdited by H. G.
Alexander (Manchester, 1956).

11. Newton's Philosophy: The Rules of Philosophizing,
the General Scholium, the Queries of the Opticks. Among
the many books and articles on Newton's philosophy,
those of Rosenberger, Bloch, and Koyré (VI) are highly
recommended. On the evolution of the General Scholium,
see A. R. and M. B. Hall, Unpublished Papers (11), pt. IV,
intro. and scc. 8; and L B, Cohen, Transformations of
Scientific Ideas (the Wiles Lectures, in press) (3) and
“Hypotheses in Newton's Philosophy,™ in Physis, 8
(1966), 163-184.

The other studies of Newton's philosophy are far too
pumerous to list here; authors include Gerd Buchdahl,
Ernst Cassirer, A. C. Crombie, N. R. Hanson, Ernst
Mach, Jirgen Mittelstrass, John Herman Randall, Jr.,
Dudley Shapere, Howard Stein, and E. W. Strong.

1. B. ConeN

SOVIET LITERATURE ON NEWTON

A profound and manifold study of Newton's lifc and
work began in Russia at the beginning of the twentieth
century; for earlier works sce the article by T. P. Kravets,
cited below.

The foundation of Soviet studies on Newton was laid
by A. N. Krylov, who in 19151916 published the complete
Principia in Russian, with more than 200 notes and
supplements of a historical, philological, and mathematical
nature. More than a third of the volume is devoted to
supplements that present a complete, modem analytic
expasition of various theorems and proofs of the original
text, the clear understanding of which is often too difficult
for the modern reader: “Matematicheskie nachala
naturalnoy estestvennoy filosofii™ (“The Mathematical
Principles of Natural Philosophy™), in Izvestiya Niko-
laevskoi morskoi akademii, 45 (1915-1916); 2nd ed. in
Sobranic trudov akodemika A. N. Krylova (“Collected
Works of Academician A. N, Krylov™), VII (Moscow-
Leningrad, 1936). Krylov devoted special attention 10
certain of Newton's methods and demonstrated that afler
suitable modification and development they could still be
of use. Works on this subject include *Besedy o sposobakh
opredelenia orbit komet 1 planet po malomu chislu
nabludenii” (“Discourse on Mcthods of Determining
Planetary and Cometary Orbits Based on a Limted
Number of Observations™), ibid., VI, 1-149; a serics of
papers, ibid., V, 227-298; and “Nyutonovi teoria astrono-
micheskoy refraktsii” (“Newton's Theory of Astronomical
Refraction™), ibid., V, 151-225; sec also his “On a Theorem
of Sir Isaac Newton,” in Monthly Notices of the Royal
Astronomical Society, 84 (1924), 392-395. On Krylov's
work, sce A. T. Grigorian, “Les études Newtoniennes de
A.N. Krylov,” in I. B. Cohen and R. Taton, eds., Mélanges
Alexandre Koyré, T1 (Pans, 1964), 198 207,

A Russian translation of Newton's Observations on the
Prophecies . . . of Danicl and the Apocalypse of St. John was
published simultaneously with the first Russian edition of
Principia as Zamechania na Kknigu Prorok Daniil
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Apokalipsis sv. loanna (Petrograd, 1916); the translator’s
name is not given.

An claborately annotated translation of Newton’s
works on optics is S, 1. Vavilov, ed., Oprika il traksat ab
otrazheniakh, prelomieniakh, izgibaniakh i tsoetakh svera
(“Optics”; Moscow-Leningrad, 1927; 2nd od., Moscow,
1954), Vavilov also published Russian translations of two
of Newton's essays, “Novaya teoria sveta i tsvetov” (“A
New Theory of Light and Colors™) and “Odna gipotesa,
obyasnyayushchaya svoystva sveta, izlozhennaya v neskol-
kikh moikh statyakh™ (“A Hypothesis Explaining the
Properties of Light Presented in Several of My Papers™), in
Uspekhi fizicheskikh nauk, 2 (1927), 121-163; and Lekssii
po optike (“Lectiones opticae™; Leningrad, 1946). Vavilov
was the first to study thoroughly the significance of the
last work in the development of physics.

Newton’s mathematical works published by Castillon
in vol. | of Opuscula mathematica (1744) were transiated
by D. D. Mordukbay-Boltovskoy as Matematicheskic¢
rabory (“Mathematical Works”; Moscow-Leningrad,
1937); the editor’s 336 notes constitute nearly a third of the
volume. Arithmerica universalis was translated by A. P.
Youschkevitch with commentary as Vseobshchaya arif-
metika ili kniga ob arifmeticheskikh sintese i analise
{Moscow, 1948).

Many works dedicated to various aspects of Newton's
scientific activity and to his roke in the development of
science were included in the tercentenary volumes Isaak
Nyuton. 1643-1727. Shornik statey k trekhsotletiyn so dnya
rozkdenia, S. 1. Vavilov, ¢d. (Moscow-Leningrad, 1943);
and Moskoosky unmiversitei—panmyati Nywtona—sbornik
statey (Moscow, 1946). These works arc cited below as
Sympozium I and Symposium II, respectively.

Z. A Zeitlin, in Nawka i gipotesa (“Science and Hy-
pothesis™; Moscow- Leningrad, 1926), studied the problem
of Newton's methodology, particularly the roles of Bentley
and Cotes in preparing the 2nd ed. of the Principia, and
emphasized that both scientists had faksificd Newtonian
methods; the majority of other authors did not share his
viewpoint. In “Efir, svet i veshchestvo v fisike Nyutona™
(“Ether, Light, and Matter in Newton's Physics™), in
Symposium I, 33-52, S. 1. Vavilov traced the evolution of
Newton’s views on the hypothesis of the ether, the theory
of light, and the structure of matter. Vavilov also dealt
with Newton's methods and the role of hypothesis in
ch. 10 of his biography Isaak Nyufan (Moscow-Leningrad,
1943; 20d ed., rev. and enl., 1945; 3rd ed, 1961). The
3rd od. of this work appeared in vol TIT of Vavilov's
Sobranie sochinenii (“Selected Works™; Moscow, 1956),
which contains all of Vavilov's papers on Newton. The
biography also appearcd in German trans. (Vicona, 1948;
Berlin, 1951).

B. M. Hessen in Sotsialno-ckonomicheskie korni mekha-
niki Nyutona (“The Sociocconomic Roots of Newtons
Mechanics™), presented to the Second International
Congress of the History of Science and Technology beld
in Loadon in 1931 (Moscow-Leningrad, 1933), attempted
to analyze the origin and development of Newton’s work
in Marxist terms. Hessen examined the Principia in the
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light of contemporary economic and technological
problems and in the context of the political, philosophical,
and religious views which reflected the socal conflict
occurring during the period of revolution in England. His
cssay appeared in English as Science ar the Crossroads
(London, 1931), which is reprinted in facsimile with a
foreword by Joseph Needham and an introduction by
P. G. Werskey (London, 1971) and with a foreword by
Robert S. Cohen (New York, 1971),

In his report on Newton's atomism, “Newton on the
Atomic Theory,” in Royal Society, Newron Tercentenary
Celebrations: 15-19 July, 1946 (C: ambridge, 1947), Vavilov
compared Newtonian chemical ideas with the development
of chemistry in the nincteenth and twentieth centuries and,
m particular, with the work of Mendeleev. The latter
topic was also discussed in T. I, Raynov, “Nyuton i
russkoe estestvoznanic” (“Newton and Russian Natural
Science™), in Symposium I, 329-343, which also examined
Lomonosov's attitude toward Newton, See also P. S,
Kudriavtsev, “Lomonosov i Nyuton,” in Trudy Instituta
istorii estestvoznaniya i tekhniki, Akademi va nauk SSSR, 5
(1955), 33-51. On Newton's role in the development of
chemistry see also N. L Flerov, “Viianie Nyutona na
razvitic Khimii™ (“Newton's Influence oa the Development
of Chemistry™), in Sympasium If, 161-106.

For detailed comments on some important problems of
the Principia, see 1. N. Sretensky, “Nyutonova teoria
prilivov i figury zemli™ (“Newton's Theory of Tides and
of the Figure of the Earth™), in Symposium I, 21 1-234; and
A. D. Dubyago, “Komety i ikh znachenie v obshchey
sistee  Nyutonovykh Nachal (“Comets and Their
Significance in the General System of Newton's Principia™),
ibid., 235-263. N. L. Idelson dealt with the history of the
theory of lunar molion and presented a detailed study of
the St. Petersbury competition of 1751, through which the
theory of universal gravitation received lasting recognition,
in “Zakon vsemirnogo tyagotenia i teoria dvizhenia luny™
(“The Law of Universal Gravitation and the Theory of
Lunar Motion"™), ibid,, 161-210. See also Idelson’s paper
“Yolter i Nyuton,” in Volter 1694-1778. Stati i materialy
(Moscow-Leningrad, 1948), 215-241; and A. D, Lyublins-
kaya's paper on the discussions between the Newtonm@ans
and the Cartesians, “K voprosu o vlianii Nyutona na
frantsuzkuyu nauku™ (“On the Problem of Newton's
Influence on French Science™), in Symposium I, 361-391.
On Newton's physics, sce V. G, Fridman, “Ob uchenii
Nyutona ¢ masse™ (“Newton’s Doctrine of Mass™), in
Uspekhi fizicheskikh nawk, 61, no. 3 ( 1957), 451-460,

On Newton's optics, apart from the fundamental studies
of Krylov and Vavilov, see G. G. Slyusarev, “Raboty
Nyutona po geometricheskoy optike™ (“Newton's Works
in Geometrical Optics™), in Symposium I, 127-141;
L A. Khvostikov, “Nyuton i razvitic uchenia o refrakisii
sveta v zemnoy atmosfere™ (“Newton and the Development
of Studies of the Refraction of Light in the Earth's
Atmosphere™), ibid., 142-160; and L. 1. Mandelhtam,
“Opticheskic raboty Nyutona™ (“Newton's Works in
Optics”), in Uspekhi fizicheskikh nauk, 28, no. 1 (1948),
103-129.
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P. S. Kudriavisev treated Newtonian mechanics and
physics in his Istoria fiziki (“History of Physics™), 2nd ed,
(Moscow, 1956), I, 200-258; and also published a biog-
raphy, Isaak Nywuton (Moscow, 1943; 2nd ed., 1955). The
basic ideas of Newton's mechanics are described in A, T.
Grigorian and L B. Pogrebyssky, eds., Istoria mekhaniki 3
drevneyshikh vremen do kontsa 18 veka (“The History of
Mechanics from Antiquity to the End of the 18th Cen-
tury™; Moscow, 1971).

Many works on Newton as mathematician were devoted
to an analysis of his views on the foundations of infinites-
imal calculus and, in particular, of his conceptions of the
limiting process and of moment. S. Gouriev dealt with this
question in “Kratkoe izlozhenic razlichnykh sposobov
izyasnyat differentsialnoe ischislenie™ (A Brief Account of
Various Methods of Explaining the Differential Calculus™),
in Umozritelnye issledovanie SPh. Akademii nauk, 4 (1815),
159-212. Gouriev's conception was subsequently reinter-
preted—occasionally with disagreement—in the com-
mentarics of Krylov and Mordukhay-Boltovskoy (sce
above); and in the papers of S. A. Yanovskaya related to
the publication of the mathematical MSS of Karl Marx,
“O matematicheskikh rukopisyakh Marksa™ ("On Marx's
Mathematical Manuscripts™), in Marksism i estestvornanie
(Moscow, 1933), 136-180. See also K. Marx, Mare-
maticheskie rukopiz! (“Mathematical Manuscripts”; Mos-
cow, 1968), 573-576; S. A. Bogomolov, Aktualnaya
beskonecknost (“Actual Infinity™; Leningrad-Moscow,
1934); N, N. Luzin, “Nyutonova teoria predelov™
(“Newton's Theory of Limits™), in Sympesium I, 53.74;
S. Y. Lurie, “Predshestvenniki Nyutona v filosofii besko-
nechno malykh™ (“Newton's Predecessors in the Philos-
ophy of Infinitesimal Calculus™), ibid., 75-98; A. N.
Kolmogorov, “Nyuton i sovremennoe matematicheskoe
myshlenie™ (“Newton and Modern Mathematical
Thought™), ibid., II, 27-42; and F. D. Kramar, “Voprosy
obosnovania apalisa v trudakh Valisa i Nyutona™ (“The
Problems of the Foundation of the Calculus in the Works
of Wallis and Newton"™), in [storiko-matematicheskic
issledovaniya, 3 (1950), 486-508,

K. A. Rybnikov studied the role of infinite series as
a universal algorithm in Newton’s method of fluxions in
0 roli algoritmov v istorii obosnovania matematicheskogo
analisa”™ (“On the Role of Algorithms in the History of the
Origin of the Caleulus™), in Trudy Instituta istorii estestvoz-
naniya i tekhniki, Akademiya nauk SSSR, 17 (1957),
267-299. The history of Newton's paralledogram and its
applications was discussed in N. G, Chebotaryov,
“Mnogougolnik Nyutona i ego rol v sovremennom
razvitii matematiki” (“Newtons Polygon and his Role in
the Modermn Development of Mathematics™), in Sympo-
siwm I, 99-126. 1. G. Bashmakova examined the research
of Newton and Waring on the problem of reducibility of
algebraic cquations in “Ob odnom voprose teorii al-
gebraicheskikh uravneny v trudakh I Nyvutona i E.
Varinga™ (“On a Problem of the Theory of Algebraic
Equations in the Works of 1. Newton and E. Waring™), in
Istoriko-matematicheskie issledovaniya, 12 (1959), 431-456,
Newton’s use of asymplotic series was discussed in M, V.

T —
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Chirikov, “Iz istorii asimptoticheskikh ryadov™ (*On the
History of Asymptotic Scrics™), ibid., 13 (1960), 441-472.
On Newton's calculations equivalent to the use of multiple
integrals, see V. 1. Antropova, “O geometricheskom
metode ‘Matematicheskikh nachal naturalnoy filosofn’
I. Nyutona™ (“On the Geometrical Method in Newton's
Philosophiae naturalis mathematica principia™), ibid., 17
(1966), 208-228; and “O roli Isaaka Nyutona v razvitii
teorii potentsiala™ (“On Isaac Newton’s Role in the
Development of Potential Theory™), in Uchernye zapiski
Tulskoge goswdarstoennogo  pedagogicheskogo  insvitwa,
Mat. kafedr, 3 (1970), 3-56. N. 1. Glagokyv described
Newton's geometrical ideas in “Nyuton kak geometr”
(“Newton as Geometer™), in Symposium IT, T1-80; and his
mathematical discoveries were summarized in vols, 11 and
HI of A, P. Youschkevitch, ed., Istoria matematiki s
drevneyshikh vremen do nachala XIX stoletia (A History
of Mathematics From Antiquity to the Beginning of the
Nineteenth Century™; Moscow, 1970-1972).

See alko two papers on Newton as historian of antiquity:
S. Y. Larie, “Nyuton—storik drevnosti™ (“Newton—
Historan of Antiquity™), in Symposiem I, 271-311; and
E. C. Skrzhinskaya, ““Kembridgsky universitet i Nyuton™
(“Cambridge University and Newton'™), ibid., 392-421.

On Sovict studics of Newton, see T. P, Kravets,
“Nyuton 1 1zuchenie ego trudov v Rossii" (“Newton and
the Study of His Works in Russia™), ibid., 312-328;
A. P. Youschkevitch, “Sovetskaya yubilecynaya literatura o
Nyutone™ (“Soviet Jubilee Literature on Newton™),
in Trudy Institusa istorii estestvozmaniva. Akademiya
nawk SSSR, 1, 440-455; and [Istoria cstestvoznaniya.
Bibliografichesky wkazarel. Literatura, opublikovannaya v
SSSR (1917-1948) (“History of Natural Science. Bibliog-
raphy. Literature Published in the US.S.R. 1917-19M8";
Moscow-Leningrad, 1949).

A. P. YOUSCHREVITCH

NICERON, JEAN-FRANCOIS (5. Pars, France,
1613; d. Aix-en-Provence, France, 22 September 1646),
geometrical optics.

Niceron was the eldest child of Claude Niceron and
Renée Barbitre, He studied under Mersenne at the
Collége de Nevers in Paris and then cntered the Order
of Minims, where he took his second name to distin-
guish him from a paternal uncle, also named Jean, In
1639 Niceron was appointed professor of mathematics
at Trinitd dei Monti, the order’s convent in Rome.
From 1640 he also served as auxiliary visitor for
Minim monasteries. The frequent travels required by
the latter post weakened his already frail health, and
he diced at the age of thirty-three while visiting Aix.

Having been a student of Mersenne, Niceron shared
his mentor’s broad interest in natural philosophy as
well as his penchant for gathering and disseminating
news of the latest developments, Niceron's journeys

103

NICERON

to Rome brought him into contact with many Italian
scientists, to whom he communicated the results of
French investigations and whose work he in turn for-
warded to Paris. In 1639 Niceron informed Cavalieri
of the work of Fermat, Descartes, and Roberval on
the quadrature and cubature of curves of the form
¥ = x" and on the properties of the cycloid. Niceron’s
revelations concerning the cycloid angered Roberval,
who apparently wished to keep his results secret until
he could publish them or use them in the triennial
defense of his chair at the Collége Royal. Not knowing
the true source of Cavalieri’s information, Roberval
accused Beaugrand of having betrayed confidences.
The affair seems to have become something of a cause
célébre until Cavalieri clarfied matters in 1643 (see
Cavaliert’s letters in Correspondance de Mersenne, C.
de Waard ef al., eds., X1 [Paris, 1972], passim). In
1640 Niceron returned to Paris with the first copies of
Cavalieni's Geometria indivisibilibus . . . promota.
While in Italy in 1639-1640, Niceron measured the
declination of the magnetic compass in Ligurno,
Rome, and Florence. From 1643 to 1645 he collabo-
rated with a group of scientists in Rome (including
Magiotti, Baliani, Kircher, Ricci, and Maignan) in
conducting experiments suggested by the work of
Galileo. It was from Niceron that Mersenne first
heard of Galileo’s death (sec Niceron to Mersenne,
2 Feb. 1642, Correspondance de Mersenne, X1, 30-34).
Niceron’s major work, however, dealt with perspec-
tive and geometrical optics. His Perspective curicuse
{1638) defines the range and nature of the problems he
addressed; later editions of the work simply provide
more detail. Although aware of the latest theoretical
developments, Niceron concentrated primarily on the
practical applications of perspective, catoptrics, and
dioptrics, and on the illusory effects of optics then
traditionally associated with natural magic. The work
is divided into four books, of which the first presents
briefly the fundamental geometrical theorems that are
necessary for what follows; it then develops a general
method of perspective collincation, borrowing heavily
from Alberti and Diirer. Book 11, which is addressed
to the problem of establishing perspective for paintings
executed on curved or irregular surfaces (for example,
vaults and niches), presents a general technique of
anamorphosis; that is, the determination of the surface
distortions necessary to bring a picture into perspec-
tive when viewed from a given point. Niceron showed,
for example, how to construct on the interior surface
of a cone a distorted image which, when viewed end
on through the base, appears in proper proportion.
Book 111 discusses the anamorphosis of figures that
are viewed by reflection from plane, cyhindrical, and
conical mirrors. He explained how to draw on a plane




