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II1
THE NAVIER-STOKES EQUATIONS OF MOTION

PART I
GENERAL THEORY

1. Analysis of the motion of a fluid element
Tix motion of a fluid is completely determined when the velocity
vector v is known as a function of time and position. We now show
how the motion of any smell element of fluid may be analysed in terms
of this function. If the components of v at the point Plx,¥,z) are
(i, v, w), and at & neighbouring point (4B, Y-8y, 245z) the velocit \
components ave (-5, y—Br, w5, then, to the first order of xil]
quantities,

Si = '}(2;,53“,—(',,83/-%4& 6:)"'('%('? b2— L),

B0 = 3t b2t By -+, 804 1L B2 — £ 82),

310 o= (enp B8,y By -+, 35) T HESY Y sx),

where 2 2_2_‘_15 25’ — ﬁ
e = &c" v f-‘y - F
éw | o . c , ow
o &, =08, W= —— 1 —)
== N T X - iz ix
dv o 3
Coy = vy Ty =
o vE" oy
i &y & aw , Gv_EM -
md E:——-,—-, ”=7‘—;—- “—-E—'-'é . \
&y ex ¢z ox % oy

A small element of fluid initially at P has an over-all tm.uslationa:
velocity (u,v,w), but as it moves it is distorted and rotated in acconk
ance with the relative velocities given by (1),

The grouping of the terms in {1) corresponds to their diffevent phyvsical

interpretations. The terms }(y8:;—[&y), {dx—E83), (g By —n ek ;

represent a rotation of the fluid element as if it were a rigid body wit
angular velocity (4, v,

ete., defined in (2) are called the rate-of-strain components,

12). The vector w = (£, %, {) defined by (3

is the curl of v and is the vorticity of the fluid. The quantitics G
and thef

k>

.;.
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constitute the rate-of-strain tensor, The contribution of cach of th
. components to the motion deseribed by (1) is now considered -
3 - First, suppose that all the components except ¢, are zex:o Then
i = 1., 8%, 8¢ = 0, dw = 0, which represents m“oxtension.of the
element at a rate fe,. per unit length in the # direotion Similarly
Jeyy and e, ave the rates of extension of the fluid olenle;xt in the 4
anc z-divections. Secondly, if ali the components except e, are zerz-
. A :

¥
Bl

) rﬂ
c B
Cf—+ A

4'
O

A 4 =2

Bio. ITL. . Deformation produced by

L rate-of.etrain companent - Fre. 111 2. General deformation of

fiuld elemont,

e S = e, 3y,
vhich the sn;’c

or == de, &, Sw = 0. This represents a motion in
i e g b.et-\t:een the t.wo lines of particles which [ie initially
jgb10 z- and y axes is decreasing at a rate €ry The position of these
s "Pi!m;;[()f particles after a shore time js shown by the broken linc;

k |ﬁr .t. l..-[ If, for example: a seetion of the fluid element is initiallv

T y 1t will be deformed into an ellipse under this distortion (se;e

L 1), The mterpretation of the component e may be lifi

gatly by considering its effect in conjunction wi ]'w oyl
o with angular velocity —je, whicl oa il S TNl hodly e
© ol t: v B !.,.,vn nc}reduces the line of particles on
BB wich s oi"shear éq: :l :gxee a simple shear flow parallel to the

~ Toexen olify i e
 thy ‘dhtorti]o y _t'h‘f 00?11’?"1«1 .eﬂect.s of the rate-of-strain components,
i t".' m tfvo-dnnexmoual flow, of a fluid element which is
i i:‘f! “f“g‘“*‘“" thape, is shown in Fig. II1. 2. The original shape
G b clormed under the rates of extension e,,, ¢, alone into
2 Gy and the fina] shape is 04 B C*. ol

: ga(ion of continuity
ARrouo .

' _l.loll:: the mot-{on the mass of any element of fluid must he
oo hence, for incompressible flow, the volume of the fuid

 ( I mus - ’ . -
g t remain constant. This condition yields the equation of
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continuity which must be satisfied by the rate-of-strain components at
all points of the fluid, (The components of vorticity are not involved
since a rigid-body rotation leaves the volame unchanged.) If we con.
sider the fluid initially occupying & small rectangular parallelepiped

with faces normal to the coordinate axes, it is clear from the interpreta-
have only a second-order effect on

tions given above that e, e, €,
lement in a small time &. But the

the change of the volume of the e
lengths of the sides are increased by factors 1--e, 8, 1+de, &,
14-}e,. 82, Hence, the rate of increase of volume per unit volume is
A = }{e +eyyt+e:). This quantity A is called the dilatation, and for
incompressible flow it must vanish. Thus, the equation of continuity is

du  év &

6‘x+¢"y &z

(o

3. Principal axes of rate of strain
When dizcussing general properties of the flow, it is often convenient
to transform to the speeial set of rectangular axes for which the com-
ponents corresponding 10 €y € Coy become zero. The existence of
guch axes can be shown by appeal to a geometrical argument. If we

write
Y = ¢ (87)0 e, (0y)t e (B2)°+ 26, Sydz -+ De,, Sx3w4-2¢,, Bady, ()
and regard &z, 3y, 3z as current coorclinates, then W == constant is the
equation of a quadric with its centre &t P. TIn any other set of coordi:
nates, (&, y',3') say, if €y, €y.r €1C., BTE defined in terms of the corre:
sponding velocity components (1, ') as in (2}, 1" will have exactly
the same form as (5) in terms of ', o', =", This ‘nvariance’ is an essentisl
consequence of the tensor character of the rate-of-strain components
It may be verified directly by going through the coordinate transforma-
tion in detail, but it also follows from the following property of the
quadric. In the motion deseribed by (1), omitting the rigid-body rota-
tion, the displacements of points on the quadric (5) are normal to the
surface of the quadric since 8u, v, du are proportions! to the derivatives
of ¥ with respect to 8x, by, 3z, vespectively. Thie property isindependent
of the choice of axes, and it follows that for any coordinate system
coefficients in the equation of the quadric have the meanings given by
(1), i.e. they are the rate-of-strain components,
Now, the new axes may be chosen alon
quadric, and then 'I" becomes

e,-,-(sx"p*+£y-,{8y')"+c,,(8:‘)*.

the

g the principal axes of the -
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lence, for these axes, e ., ., ¢, Vanish, The rates of change of the
]es.botwocn lines of particles slong the axes are zero, and the
listortion of the fluid consists entively of extensions along thc; principal
“f‘ Tor exalnl?le, in Fig, IIL 1 the principal axes are at 45° to Sxe
original axes. ngtc generally, & fluid element which is initially spherical
wil be distorted into an ellipsoid with its axes along the principal axes
The .result used above that the terms in (1) which include the r#te:
m‘am components are proportional to the derivatives of 'V, is worth
ngcmg for its own sake, since it shows that this part of tl;e motio.n
\ be de'duced from a potential function. It also leads to the result
hat, if @ is any point on the rate-of-strain quadric, the rate of ch
f (PQ)*is V. For, the rate of increase of PQ is ' =

fe'V & &V 3y  &¥ 3 L2

: \e(z) PO 2(8y) PQ™ (32 PQ| T 2 PQ’

£ - Henee, 't-lxe rate of extension of any line element through P is inversely
)égpgomonal. tq the square of the radins vector drawn to the rate-of-

Py ;;_‘1 r;m quadric in the direction of the element

~ Finally, it may be show ' . i i

| 3_-‘;?0, i ca]cni e 3 : tf[mm (1) (preferably nsing principal axes

R o that the angular momentum of a small sphere
l;,_:.‘mkcit 1 same as if it were rotating ss a rigid body with angular

R ) o v .;.o - (3¢, kv, }g?. Thus, the whole of the rotation is given by

4«& | ;aecontl ter ms on the right-hand side of (1), and the rotation dcpcntis
‘M: on the vorticity veetor. It shoukl be pointed ount, however, t)

& result does not apply to any small i '. S
e ¥ to any sma portion of the fluid with its mass
':"m; e ; -.ls true only f[ the principal axes of rate of strain coincide

¢ principal axes of inertia of the finid element.

- ,g. Analysis of stress

~ Let ider anv
Pz A :l; :°:l'3]‘d" any simall element of surface containing a point
.-. 12 'i ntr" et us define .the direction of the normal to the element
A .ﬁs:' l{:g from one .sule, called ‘negative’, to the other, c&lle(i
7 - We then consider the stress exerted on the fluid on tl
Hegative side, by that on the positive side: this wi e
Yo positive zide; this will be & vector which
SoPents on n. The compo e
R oo ponents of the resultant stress in the direction
axes Ox, Oy, Oz, will be denoted by p,,, poos Pues
when the surface i S onms 2y Tom TONDOE:
Om ponents of ace is normal to the x-direction, we denote
Beotive] ;0 the stress parallel to the -, y-, z-axes by Poes P B
OOL ] - f . k ’ v 73 -z
gevely. Similarly, the stresses across surfaces normal to ?1';9 ;,'

 Taxes
, are denoted by (Pyes Py D) a0 (P, Py, P22), respectively.
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The stress compenents p,, ete., constitute the stress tensor, and the
stress neross a surface nt P with its normal in ary given direction may
be ohtained from them. For, consider a small tetrahedron with three
of ita faces through P and normal to the coordinate axes, and with the
fourth face normal to the given direction n. The forces exerted across
the faces of this tetrahedron are proportional to the areas of the faces;
hence, the external body forces and the inertis forces which are pro-
portional to the volume of the tetrahedron are of smaller order. Thus,
to this order of approximation, the surface tractions must form a system
in equilibrium, Moreover, to the same approximation, the stresses can
be taken equal to their values at 2. Then, if the stresses across the
surface normal to # are (P, Py Pr:)s We have by resolving in the

wdirection ;A8 = p, AS, P, AS,+Pu S,

using an obvious notation for the areas AS of the faces of the tetra-
hedron., Now

AS,AS, =1, ASJAS, =m, AS./AS, = n,
where (1#, %) are the direction cosines of the normal n. Thevefore, we

v
have Dz = (Przt P+ 0Py

Two similar equations are found for g, and p,..

The same considerations apply for the cquilibrium of the stresses
exerted across the faces of a cube centred at P with its faces por-
pendicular to the axes. Then, taking moments of the forces about P,

HE DAY Py: = Prys Pox = Py Pry = Py 16

In the same way as for the rate-of-strain compenents we can define
a stress quadric which is invariant to change of coordinates. Then.
we can say that there exist principal axes Ox', Oy, 02, such that
Pyy's Pyys Poe are the only non-zero components of stress. The planes
perpendicular to the principal axes of stress are called principal planes
of stress; the stress ncross each of them ig purely normal, and these
three normal stresses are called the principal stresses.

5, Relations between the stress and rate-of-strain components
The simplest assumption for the relations between the two sets of

components iz that they are linear. That is, each stress component =

may be expressed as a sum of multiples of the six rate-of-strain com-
ponents plus a quantity independent of them, If the rate-of-strain

components were small this would certainly be a natural approximation,

but as explained in Chapter I the relations have in fact been verified
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:"many fluids under a very wide range of conditions when the rate-
‘of-strain components are not gmall. The assumption that the relations
ﬁq linear is the basic one in deriving the Navier-Stokes equations for
mpressible flow.

)I_n an isotropie ﬂuid. the principal axes of stress and rate of strain
coincide, and the relations between the stress and rate-of-strain com-
4 onents must be gymmetrie since there is no preferred direction, There-
3 re, relative to principal axes, we have
S

Pre = —p+e
Siad ¥ P 1€y
¢ " Py‘y oo _p+Pey'y‘|
.
s Py = —p+l‘-c:';‘r (7)
where the quantities p and g« are independent of the rate-of-strain

b eo_mponcnts, but may vary from point to point of the fuid. (For com-
P % Fua.lble flow, in which A = He .. +e,, €. i3 not zero, a multiple
{id of A is added to each of these equations.) The appropriate relations for
. ..:"‘-V other sot of Cartesian coordinates (v, ¥, %) may then be deduced
et {.ﬂg:m (;)tt.o;?vet.llel' with the transformation equations for the stress and
- rate-of-strain components. Apart from the term —p in (7), the stress
E e?mponem.s are equal to the rate-of-strain components multiplied by
- hence, since the transformation equations for Pro te., and e, ete.,

are identical, this is true in any set of axes. Therefore, in general
2
&t

p.u' - “]j':-}‘t,yx = _p—":u

&x
X : E"
Dyy ™= —Ppey, = —p+2p ol
Pu= —pipe, = —p+2u s,
T o2
5 cw v
Dy ™ e, = Fr.—+';r .
\ey | éx
‘Cu

e e éir
Doy = p€p = pl—- :—')o
ez or

ol (8)

oo ldctaihs of the derivation of these equations are to be found in
! '(o i?3}2‘, PP. 571-6}, A more gophisticated derivation using the full
.. the tensor properties is given by Jeffreys (1031, Chapters 7

&v | fu
ox '

Py = Py = F(,—--l-
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For an incompressible flow it is observed, using the equation of
continuity (4), that p is the mean of the normal pressures over three
planes mutnally at right angles; it is called simply the pressure. It is
also seen that in & simple shear flow with @ = wu(y), ¥ = w = 0, we have

Eu
(%)

qu-__""—&—y'

Henee x is the coefficient of shear viscosity introduced and disoussed
in Chapter I. For each substance it varies only with temperature, and
thus where the temperatuve is constant, or the temperature variations
are small, the coefficient of shear viscosity may be taken to be a constant,

6, The momentum equations

The momentum equationg, which must be satisfied by the flow
quantities at each point of the fluid, may be deduced by applying
Newton's second law of motion to the fluid which oceupies a rectangular
parallelepiped centred at P with its edges parallel to the coordinate
axes, To the second order in the length of its sides, the stresses form
a aystem in equilibrium {as disonssed in Section 4). But, we now write
down itg equation of motion including terms of the third order, The
z-component of the net force due to the stresses on the element is

"-pr.\' ?}) rd {1))3

o oy Ta
multiplied by the volume of the element. (This type of result is often
required in this chapter; it is deduced as follows: in the distance &x
between the two faces normal to the a-axis, p,, inereases by &, fp,., &
when multiplied by the face area, this gives a contribution ép  @x
multiplied by the volume of the element. Similarly, the other stress
components contribute the terms proportional to ép,, ¢y and &p,, éz.)
If the extraneous force F per unit mass has components (X, Y, Z) and
the aceeleration f has components {f,. f,.f). we have

(10}

with two similar equations for the y- and s-directions,

Now, 5 é 3
Du 2n cn an i
= —— e e Y — W —

== at*; oy &

or

oy B epe
By T (LV) (el i)

{11)
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‘f-
- with similar expressions for £, and f,. The expression

-
-~
%

5

i
-

'
\ s

.

Eie Su cu
U —— v___'_ Mffatna
( & dy ué‘:)

~ represents the contribution to f, resulting from the change of the posi-

tion of the fluid element; it, and similar ones, arve usually called the

- ‘convection terms’. Substituting (11) in (10) and using the relations

(8) together with the continuity equation (4), we find

&t ou o ou 1¢
el ohadll —— — e p > 3
&l E‘.tTvi‘y R pEE'*‘A"'"V""’
v v an & 1¢é
v W — — () w— —— _p |
AT at gyt g =t Y+ "
ow , bw ow . éw 1&p
— e Y s e B e ‘-——-.;._l_ . '
B T e T (12)
where » = pp, and
) 52 2, 20
vy = div -k, % % ;
grad w =0 Mﬂg’ ey ete, {13}
In veetor form the equations may be written
v - 1
f= Ew-gradri\"‘}—- VXW= = grad p—F ¥y, (14)

u-l:ere Vv is the vector whose components in Cartesian coordinates are
(v ", Vi, Van),  Since V4v = gradidivv)—ecurlewrdy and divy = 0
wln!sf. owlv = w, the term Vv may be replaced by —ecurle, If, in
addition, the extraneons field of foree is potential so that F = —grad ()
we may then write (14) as o

7-'-—\' X = —grad(—’f-L Q-+ }\'2. s eur] (15)

7 b . —»eurlw. (15)
l The etil\n‘atio?s of motion {12} were obtained by Navier (1823}, Poisson
(1831), Saint-Venant (1843), end Stokes {1845), and are usually known

! :_ A5 the ‘Navier-Stokes equations’. A short account of the various
~ methods and hypotheses adopted by these authors is to be found in

tokes (1546),

+ Equations for the vorticity. The rate of change of circulation

3 The equation for the rate of change of the vorticity vector is obtained

taking the curl of (14). Assuming again that F = —grad(, we

P

(5] Vs
5 —oml(v X w) = »Vy. (16)
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Now, divw = 0 since w = curly, and divy = 0 from the equation of
continuity; henee, the components of eurd(v X wjare w grad u—v, grad ¢
and two similar expressions with v and », «cand £, respectively, in place
of w and £, Therefore, the components of (18) are

—g‘g w= . grad w+eVE,

%’ = w.grad v+»V?,
Dy _ L ,
Tt = w,grad w-4vV3, (17)

and they may be combined in the abbreviated form
e
—— = w, VvV,
Dt 25

These extend Helmholtz's equations to viscous flow,

The first terms on the right of (17) have the same interpretation s
they have in ideal flow (v = 0). They represent a stretehing of the
vortex lines with a consequent increase in the vorticity, To see this,
consider first any line element 5r which moves with the fluid. Its rate
of change D{3r) 1t is the difference of the velocities at its ends. Henee

-Q 8r = ér.Vv,

I

and we observe that « and 3r satisfy the same relation. Now, suppose
that 8r is part of a vortex line at t =0, with 8r = ¢w, say. The
equations for &1 and w give

}% (br—ew) = (Ar—cw).Vv,

and we want to conclude that $r—ew = 0 for all time. This is certainly
a solution; it is the only solution provided that the derivatives of v
ave bounded (and integrable). This appeals to the well-known unique-
ness theorem for ondinary differential equations, (The essential re-
guirement is that the right-hand sides should be Lipschitz continuous
in the unknowns; in the present case, thiz is so if the components of
Tv are bounded,) The result that br = ew for all time chows that
vortex lines move with the fluid and the verticity is proportional to
the length (8r of the line element, If we consider a small vortex tube,
its cross-sectional area will be inversely proportional to 3r| as it moves
with the fluid. Therefore, the ‘strength’ of the vortex tube, defined as
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g These results constitute Helmholtz's theorem for ideal flow.
. Some remarks should be made about the derivation given kere, since
- it is almost the same as Helmholtz's original one and that has been
- oriticized by Lomb and various subsequent writers as being unrigorous.
~ However, the version rightly contested by Luamb uses only the fact
: thfgt. D(ér—ew)/DE = 0at ¢ = 0, Clesrly, the result cannot follow from
o this fact alone, since any function behaving like # has this property,
e - - But when the full equation is used as above, there is no gap in the
= argument. {Notice that {* satisfies dfjdl == Af with 4 o f~} which is
I'u'n?mmdcd near ¢ = 0.) After pointing out the flaw in Helmholtz's
~ argument, Lamb discards this method instead of correcting it, and
- goes on to deduce the results from a different approach. This is a pity
- because, first of all, the corrected argument gives a very direct deriva-
5750 tion of Helmholtz’s theorem: secondly, it is desirable to have the
~ physical interpretation of the terms in Helmholtz’s equation as s
~ stretching of vortex lines without feeling a little uneasy sbout its
’ ;c : :;:::ﬁuffm :ll::‘:lt:::t;\}ll;el: :ll):: v’iscosity ttal'nls are added, their interp.ro-
o ; : 1) (see below) but not from the alternative
3 - apprt'mohes. Lamh refers to Stokes (1845), who pointed out a similar
\ flaw in a ‘proof” of Lagrange’s theorem that w = 0 for all time if it
L do'es g0 initially. But Stokes, in fact, goes on to propose a genuine proof
i using exactly the argument given above: he starts from D/ I0 = w. Ve
i and concludes that w = 0 for all ¢ if it docs so at ¢ = 0, This sCEMS
g ~ to have been overlooked., |
i
}
?

The second terms on the right of (17) show the additional variation
introduced by the viscosity of the finid, This variation follows the
same Jaw as the variation of tempersture in the conduction of heat
and represents diffusion of the vorticity,
kc hm'\ alternative apprtfach t0' the above results uses the expression for
1% the rate of change of circulation round any closed cirenit moving with

the fluid. By definition the eireulation round a clased cirenit i

et AL )

- Where the integra] is taken once completely round the civeuit. If the
“Kl particles making up the civcuit are labelled by a parameter o, the
'_tlon .of the civeuit will be given by & function r = r{e,#). Then we
Hay write
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As the cirenit moves with the fluid, the rate of change of cireulation ix

Dl‘_(ﬁ Dy ar &r
7)—‘- == g (ﬁ-.%-*-\'.zg—&) do.

Since v/ Di = —grad(p/p+Q)—veurlw and ér/él = v, this may be
written

14, LN (5 N ¢ P S (ﬁ

S, e 5;(;—{-9 kv }dc r. (curlew).dr.
Assaming that Q is single valued, we have

%l-; = —vf {emdw).dr, (10}

Thus, in & viscous fluid, the rate of change of circulstion in a circnit
moving with the fluid depends only on the kinematic viseosity and the
space rates of change of the vorticity components at the contour, so
that it i3 small when the viscosity is small, unless the space rates of
change of the vorticity components are large.

In an ideal fluid in which v is taken to be zero, we have Kelvin's
theorem that the cirenlation remains constant, From this result and
Stokes’s theorem it is possible to give an alternative proof that vertex
lines move with the fluid and the strength of a narrow vortex fube
remains constant (Lamb 1032, pp. 203-4), In fact, (17) and (19) are
equivalent to each other, and either may be deduced divectly from the

other.

8. The energy equation

In incompressible motion the egquations of continuity and momentum
(together with appropriate houndary conditions) are sufficient to deter-
mine the pressure and the three components of velocity, Essentially,
the energy equation is replaced by the assumption p = constant. In
any real flow there will be small density and temperature variations
and these become determinate when the energy equation and an
equation of state between p, p, and T ave introduced, In the approxima-
tion of ‘incompressible motion', the equations of continuity and momen-
tum are solved first, neglecting the small variations in density, then
the values of v and p obtained from them may be used in the enersy
equation to determine the temperature distribution in the flow. In
liquids, the density changes may be very much smaller than tempera-
ture changes, but in gases (to which the incompressible’ theory applies
when the velocities are small compared to the sound speed) they will

be comparable. Thus, for the energy equation, changes in p must be
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inclucled; however, their explicit appearance may be eliminated in the

~ First, the rate of dissipation of energy by the viscous forées will be
& :‘cha,incd. We consider again a fluid element which at time ¢ oeenpies
e rectangular parsllelepiped centred at Pix, y, z) with edges parallel to
the coordinate axes, The net rate at which the stresses are doing work
“on this element is

. (20)
per unit volume, and the rate of working of the extranecous forees is
p(Xu+4Ye4 Zw) (21)

- per unit volume. The kinetic energy of this element is increasing at

~ the rate D
P g B+t ut)} (22)

per unit volume, Using equation {10}, it is found that the total rate
. of working of the forces, which is equal to (20) plus (21), exceeds the
- rate of increase of the kinetie energy by
f . , . y
HPrx Crat Pyy by Do+ 2Wysbyt2p 6+ 2p,, Cey)r (23}
g (It should be noted that the assumption p == constant is not made in
~ the derivation of the momentum equation (10}.) Imtroducing the re-

lations between stress and rate-of-strain components given by (3), (28)
~ can be expressed as o

-2 —pA+d, (24)
7 £.9 4 L0 ' ' {
~ where © = Jufer,+ Gyt o+ 265+ 2684263, (25)

8 - 15 and A is the dilatation e meybe). Although A may be set equal
3 to zero as far as the equations of continuity and momentum are con-
3 cerned, for gases the term pA is not small compared with &, N ow, —pA
. represents the rate at which work is done in compressing the element
© of fluid, since A is the rate of increase of volume per unit volume,
Hence @ given by (25) is the rate of dissipation of energy per unit time
X unit volume by the viseous forces, .
- As noted in Section 3, for compressible flow a multiple of A is added
0 the ﬁ.rst three equations of (8), and this leads to an additional term
i I:Omo:mal to A% in the expression for @ (see Howarth 1053). But
Ancompressible” flow, this term can be neglected,
o addition to the work done by the stresses acting on the fluid
gement, heat energy is being conducted across its boundaries. If the
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thermal conduetivity is & and we neglect its variation with temperatuye,

the net loss of heat by conduction is

af 8T\ &[, 8T\ , &[2
=)+ o= )+ (k=] = kT2 2
“( m)*a_,,(‘ ?y) ‘ Ez(z (}'} rver (20)

per unit volume. The difference of (24 and (26) is equal to the rate ay
which the internal energy is increasing. Thus, if E denotes the internal

cnergy per unit mass,
DE
* D
Tutroducing the entropy S and the enthalpy J = E+ #/p, this equation
may be written in the alternative forms

= —pA".'Q":‘“kng. (27]

D__S_ DI Dp eyt a

Equation (28) gives explicitly the rate of increase of entropy due to

viscosity and heat conduetion,
In terms of pressure and temperature, the enthalpy is given by

T{éa\ Vdp
Al = C,dT {1+~(,f!,) }_;
S g

for this and other thermodynamical results introduced here, reference
may be made to the discussion given by Howarth (1953, chapter 2).
An immediate consequence of the result quoted above s that (28) mey

be written
DT T ?p I)p =X il & 2 o
p(",—[—J?-—-;(ﬁ)p—ﬁ‘- = ¢\ T, (=)

For liquids, the coefficient of expansion, —p=)(ép/eT),, is usnally very
small and as a consequence the term in Dp Dt ean be omitted. For a
perfeet gas, in which p « o7, we have —ToYép/eT), = 1. In either
case, derivatives of the density do not oceur, and in the coeflicient of
the first term p may now be taken as a constant, Thus, when the
velocity and pressure have been determined from the equations of
continuity and momentum, we have a linear equation for the tem-
perature,

In an important class of problem, the temperature variations are
principally due to applied heating (e.g. the wall of a body may be
maintained at a given temperature) and the terms involving Dp DX and
@ may then be neglected in (20). For liquids the small coefficient of
Dp/ Dt makes the term negligible in any case, but for gases the coefficient
is not small (being unity for a perfect gas) and we must consider the
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. @agnitude of Dy Dd. From the inertia terms in the momentum equa-
;,ions we see that .the pressuve changes ave O(pl'}), where U is a typical
value of the main-stream velocity. Hence, if 7} is a typical main-
stream temperature, Dp/ Dt is small compared with pC,bT/Dt if the
temperature changes are much greater than U}/, Since €, 7} is pro-
e ional to the square of the sound speed a,, the condition f)coomes

7,
N

'here AL is the Mach number [ 4,
3 If we estimate the order of magnitude of @ by the value of u(fu/éy)®
g‘ a boundary layer (where the viscous dissipation is greatest), wc'a see
that it is of the order pUf8% = p07} I, where 3§ is the houndary-layer
ickness proportional to (u!/pZ)! and { is a typical length in the stream
direction. Thus @ js also small compared to o, DT /Dt if the relative
temperature changes are large compared to 33, Thr:-nefore, when (30)
satisfied, we have both for gases and liguids the approximate equation
nr ok [
BT:p?;T’T:;V-T, (31)
whem o i.s the Prandtl number uC, k. Of comse {7'—7}) 7, must «till
;&h s.mnll if we are to neglect density ehanges in the equations of con-
% tinuity and momentum and the vaviation of & with 7.

,59 Dynamical similarity
: jﬁ It has been shown in Chapter 1 that, as far as the effects of viscosity
Are concerned, the determining parameter for geometrically similar
...l!ow'pattems is the Reymolds mumber. We may now verify this in
~ detail f‘or equations {4) and (12) which determine v and p, It isvnssumed
J t cither the external forces are negligible or they are conservative
Pa | have been absorbed into the pressure terms in (12) so that p
’ curcs thde difference of the pfvcssm'e from its hydrostatic value ~£/p.
B 7 U s« st chtncs of hvcn thopw wed oo et
ety U given orientation
00 size is specified by a typical length d. Then we introduce non-
Simensional variables by the following scheme:

= 3, {30

C = u/U, v == /U, w = wU,
X = a/d, Y = y/d, 2 = s/d, T = Ut/d,

P = plpUt,
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The equation of continuity takes the same form in the new variables 3 = f it may be solved by introducing the stream function J such that

that is, .
v, @v | ew e &
ot e -— = U o L vl = e—=t=, a
xTowTa =" (92) i 2 (35}
while the momentum equations {12) become R ‘he only non-zero component of vorticity is %, and, in terms of &, it
év _du ., _ov ., dv e 1jetv v #u SEOCOn ¢ éu  éw
e e U g el N T s R - o s i ] s e il o 4 ; bt R
at e etV a ax+R(axﬂ vt ar.!) (33) S i N Tl (36)

 The equation of motion for  may then be established from the appro-
te vorticity equation which reduces, since there is no stretching of

Py O rortex lines in this case, to
== = i ' -

with two similar equations, where K is the Reynolds number 177,
The boundary conditions u = U, ¢ = 0, w = 0 at infinity, and

at the boundary of the =olid obstacle, become v w 1, v wu 0, W = § g D Wi, (37)
infinity, and v = v = w = 0 at a fixed surface, independent of d, i, 2 ak, T20)
the (x,v,2) epace. With these boundary conditions, (32) and the equa. 5 (V¥ — —?-(—'F)— =T, (38)

tions of type (33) determine v, v, w, and », Thus, for fluids of differe)
densities and coeflicients of viscosity, for streams of different specds
and obstacles of different sizes, so long as R is thesame, /U ¢ U o 17,
and p aU% will be funetions of a/d, g d, z'd only. Since

éu 2 4v
SRR 1 LA I | G )
Per= —Pt+i g ”l( P‘Rex)

aw | o Uslew  év
By = F(‘a +a) = P—R‘(a: -’.a}’

the same is true for any stress component divided by pU% Any velocity
component divided by U, and any stress component divided by o™
is a function of x/d, y/d, z/d, and R only. Again, the component wlong
the axis of x, for example, of the force on the obstacle (apart from the ]
force of buoyancy) is [ Pur 48, and since, for a given value of X, p; ~ onlinates, v, xy, x,
varies as o1, this force component will vary s pUS, where S is some 8 Let the elements of length at (x,, xy, ;) in the divections of increasi
representative area associated with the obstacle, The same is true for . %, 7, and %y respectively, be i 2 e 3 b T A Lok easing
any other force component; hence, any force component divided by ~enote the components of a vectfor xlt' in'th;klircct'i:ns’c‘)f incrcfz;.i:”:s}
PUS 18 a fimetion of B alone. ; ; S dnd ay, vespoctively, Ther (see, for example, Weatherburn (l9g4:i; :

When the temperature is determined by (31) it is clear that, in addi- PP 28-30, or Love (1927), pp. 51-335, but note t~h;t- the ¢ uant';‘ biy, e :
tion to the Reynolds number, the Prandt] number appears as a similarity #tsed by Love are the reciprocals 'of e émplov 23 lllene)'l R s My
parameter for the temperature field. ' 8 p

! When coordinate systems other than the Cactesian one are considered,
the oantl.mmy cquaum} both for two-dimensional flow and for axi-
symmetric flow may still be solved by the introduction of & stream
unction. The details and the equations corresponding to (39) and (38)

o

~are included in the next section,

Ll

.‘.7 General orthogonal coordinates

The invariant vector form of the equations of motion, that is, equation

= _: 5) for the momentum equation and divy = 0 for the continuity
tion, apply for any coordinate system, In order to expand them

h component form for any particnlar system we require the formulae

“kr the gradient of & sealar and the divergence and curl of a vector in

'

‘ ,,g_h& system. Here, we write out these formulas for general orthogonal

(liva [~

1hedy
¢ components of b = curla are given hy

& o &
10. The stream function {E{l U‘”"’“"-"E‘;}“‘J"l“*”‘aU’x":“s'}’ (39)

In two-dimensional flow the equation of continuity is

&, éw ol s 32140 a
'é;'*'*e;; =0, (34) by = Fohy (-"._z‘.’{"s“a)—gﬁ("z“a]}- ete, {40}

s
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The components of the gradient of a scalar ¢ are different at {z,,2,, } and at : e o
18 18 1 & . 4 terms are intm‘);iuzr.:;; w]) i vhany nmghhoufmg boint, 50 that additional
Tt Ty b, g brg {41) hen the rate-of-strain components are expressed
L% 3 O3 s Oy in terms of the derivatives of the velocity odmponent.s Tixp
- These ex-

With these results the equation of continuity and the three components pressions are (Love (1927), pp. 53, 57)

of (15) may be obtained for any system of orthogonal coordinates. 180, v &k
However, since div v = 0 for incompressible flow, there is an indeternj. ; e = 7 ETJ o i %,
1 'rl h}, kt ?.z" k,hl axa

nateness in the equations because expressions involving div v may he
added. In fact it is usual to retain the form
vigrad div v—curl w)

T T " 8 v , a
289 ksax.(k +i., ax,(/ 4 (#4)

i
- and the other components are giv W .
in working out the last term of (15), since this has components Uy,  components are still given by given by similar expressions, The stress
Vip, Vo, in Cartesian coordinates, ¥ i
Pu ™ —pipen,  Pay = pay = ez,  ete., (45)

I't should be noted that in general orthogonal coordinates the com. P e .h 1 i
bk s mélod o | Hbep 5 A ke e ,1;‘ ‘or:;;tﬂ, or example, is the component in the direction of 3 increasing
v ave terms in addition to ~ of the stress exert ) =.
Viay, Vg, Viay (where ed at {2y, &g, ¥5) across the surface Iy == constant,

Vg, = divgrad e, ete.); the correct expressions may be obtained using B ¥ : '
: : - . . i of motion, the £ p A
This must be used, for examyple, in deriving the appropriate forn of 2 becomes » the equation of continuity divv = o
ieity i imilarly ; Iv de- é 8
the vorticity equations from (16), Similarly, the vector, usually d $5 5;1(,!‘ !,1]?_5._.:" S
3

noted by (b.V)a, defined by the components i D ™
. Therefore, we can introduce a stream function o such that

{b.grade,, b.grada,, b.grade,)
in Cartesian coordinates, cannot be expressed immediately in generd e ¥ = _l;!‘;, S 1 &b
orthogonal coordinates. We do, in fact, avoid using the formulac for g - ﬁ,m hy g hy &y
this vector, but since they are often useful and do not appear in the ng fon-zero component of vorticity, w,, is then given by
usnal reference books, we note the results here. The ay component is =gy B 1 [ & (,13 a ) + 2 fh, fvi") o
1 S hihg (AN éxy) ' éx, Ay Ey padd s

byfag éhy | 6y 2hy , 0y TRy}
by \fig €y " By G " Big Ty
_fey by "il_,_“a by @Ay | a3by Ehy) (43)

—— — —

W1 Ex, " hghy &xy ' hyhy Eny)

Substituting this v i i
tuting this value in the thirg component of the vorticity equation

b.grada, -~
6), we lave the equation for y:

é I &, T2

,—[V’g&)———— (i, \U]= o

‘ @ 3 P e

‘or axisy i r, i

4 mm:.l?az:);le:;c ;Iovi\ ,if % l;nd #g 8re general orthogonal coordinates

‘ nd &y 15 the azimuthal angl i it

. : gle, and if all quantities
® Bupposed independent of g, the equation of continuity i.-:]

and the other components are given by similar expressions.

We now conzider the expressions for the rate-of-strain components
in general orthogonal coordinates. For Cartesian coordinates with axes
in the directions of x, increasing, &, increasing, and  increasing at 7'
the rate-of-strain components would be defined exactly as in (2). Thus,
even for non-Cartesian orthogonal coordinates, fey, is still the rate of
extension of a line element in the direstion of x; increasing, and en ¥
still the rate of change of the angle between two lines, moving with the

e 8
a—xl (fig oy "1]'*"._—:;“!, heaty) == 0,

e ky mea i i
B t:ma ‘s::ta? distance from the axis of svmmetry. Again a stream
s ¥ be introduced and in this cage we take

fiuid, drawn in the directions of #, increasing and x, increasing. Tut i
the directions of x, increasing, z, increasing, and 2, increasing #r Bty = = ¥ VTR B,
¢ 3 cx‘ e R 5‘; f’—x—.

1
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This applies whether the velocity v, round the axis is zero or not, so
long as it is independent of . If it iz not zero, we put havty = €2, Then

SR ) 27 Kby oy

“’=m[aal(h:‘l% +"{ih:eﬂ";)] r”’*‘*'

D=t .ﬁ(i'_ _‘3_.' "l )]
The x, component of the equation for the vorticit-y gives

20 &0, h,) 1 ol D), 2D% 2k hy) o
"(D "’H"h,}a_? W By, as) Ahghg g, ag) | By by R &y, ) 7,
If v, = 0 then £} = 0 and this is an equation for . Otherwise, we
requite another equation, which is provided by the second component
of the momentum equation. This gives
a1 @yl
e by Ay hig E(y,15)

where

w13,

12. Cylindrical polar coordinates
With eylindrical polar coordinates 7, &, z such that
& = reosf, o = rsiné,
are taken as xy, vy 75, respectively, then

IJ,=].

ifr, 8,2

By =1, fig =1,

Hence, using subscripts r, 8, z for the components of veetors and tensors,

we have 120y . 60
livy = - — {70+ = 24 ==, 40}
: A ré8 ' & l
160, &g v, @, 1 &,
- — —— Q.4 = — e | 3] — - —
HEWo . AT A e WREIIe
e 147)
i 1éy; | v, ae
e fem -E’ET}!” 1. ==
1év, , v _ v, , v, éfvgy , 1éy,
w=1mta ““wmtay “TE:)TE

1. 12
“and the momentnm equations are

Ve o2y %
nar‘+r&r+r’2¢ T

- With spherical polar coordinates {r, & 1) such that

e
l

. _),rclune

NAVIER-STOKES EQUATIONS OF MOTION

o, O, Yy, o e
7 TR 60,+ . '—?“—" ";55:’-5-1'(7'!’--
vy ,  &n v
ooty ted, Bt 12
pré
v, . &, vy o, 1ép
a +&, + - de'-i- ,?~ = _;E:._,,vs,ﬂ
&, o

133

N a = rsinfeos), ¥ = rsinfsind, = roosd,
2 & ifr, 0, X ave taken as (x,, 2, 2,) respectively, then
e by=1, Jhy=r,  hy=rsind,

Henoe using subscripts 1, 8,  for the components of veetors and tensors

" S r-!i.(,%(ret',) ; rs|l|10 '9( R ITB ;_X (0]
: '.\' = rsxln0l(8( 291 B~ "J}
= i 77 2
L ‘ w) = -r;;( q,l—;] :::? (31)
de, = %’: {00 = %%‘-; ’_:',
i = rs:'lnB %_?_Eo_{:og'
_ sind ?( ) 1 g
v éb\sing! " rsind e’
S e rmln(f n‘?+ __(Q)
wo=rgli)+ o (52)
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and the momentum equations are
e o S e, 0 v vty
@&  Tér' r o8 " reind e ¥
_1ep o, v, 20y ucctd_ 2 oy
pér T2 el r? seind &/
%o, L i Lo A B v vy vicotd
a8 " Tor' r 00 "seinéar’ r r

R i, T N, I 1 T
T p ?&'9-*-"(‘- vot 3 od s 2sin® el [’

Buy , By, vy by ty ©&uy , vyY,, ravycotd
Ry SR Ry R
1 1 ép oy 2 @y, , 2c080 oy
EEE . e G - Suntdtainas . ailS U v!.‘,‘ — s " ucied A - —
preinf 8A+'( ) r’sm’o_*'zesmd é\ ' rtsin®d t.\lt'
(53)
1 b

where .1~ & I & . __l__. ..{ pina_e_. i 20 e K ha £
ol o) BEinf & il rEsin?? eA2’

PARTII

SOME EXACT SOLUTIONS

14. Solutions for which the convection terms vanish

The fundamental difficulty in solving the Navier-Stokes equations
(either exactly or approximately) is the non-lineavity introduced by
the convection terms in the momenium equations (12), There exist,
however, non-trivial flows in which the convection terms vanish, and
these provide the simplest class of solutions of the equations of

motion,

For the equations in Cartesian form, such solutions are obtained by
taking all except one of the velocity components equal to zero. If we

take v v i o 0, an immediate consequence of the continuity equation
is that « is indepandent of x, and it then follows that all the convection

terms in (12) vanish. Assuming, as in the remainder of this chaptef, -

that any external field of force meay be accounted for by measuring
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on _Yép, [ o
at pér \ayd T aE) (54)
o ép

Since « is independent of z, we see that &p/éx must be a function of ¢
one. This pressure gradient may be preseribed as an arbitrary func-
of t, then %y, 2,1) is determined by solving the linear equation (34).
houkl be noted that (54) is identical with the equation for heat
£ oo duction in two dimensions if the term —p~t&p/éx is interpreted as
A uniform distribution of heat sources, Thus, known solutions in the
~ theory of heat conduction may be taken over directly and interpreted
fluid fows,
It is clear that the flows to which this theory applies are parallel to
- cylindrioal surfaces whose generators are in the x-direction, There aro
~two main problems: (i) steady flows through pipes of uniform eross-
section with constant pressure gradient, and (ii} unsteady flows pro-
~ pccd by the motion of a zolid boundary in the a-direction.
R In problem (i), wiy, 2) satisfies Poisson’s equation,
= Srs &  Au ldp
v :,i,t: ZF’TE?:;—&;"
v ‘;ﬁlml t.he boundary condition ¥ = 0 at the walls of the pipe. Tt is clear
\ ‘-A-;:llut in all cases « may be expr:efs'scd as —fly, 2}t dp dx, where f(y,z)
+ depends only on the cross-sectional shape: similarly, the volume flux
: takes the form .—-Cp'l dp dx. The problem can be solved analvtically
3 ,‘; for several special shapes of cross-section, and for a detailed t;coolln;t
; o(‘ these, reference may be made to Love (1927, chapter xiv), where the
q ,'logous problem of the torsion of hars of varions cross-sections is
- tonsidered. Here, we note the results for the more important cases,

(a) Two-dimensional channe] —¢ <

(50)

s c
F=3c=2), C=jc

.n“." i

. ‘;h;s ca=e, of course, ¢ corresponds to the volume flux per unit
WG .
O Cireular section of radius ¢;
f=Ht—r), O et
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{£) Annular section b < v = ¢ g = 0, u(z,4) satisfiea fu .-a'—':,
L of &z
1 2P f) 7 ﬂ.fc(__bt_.(f:_b_lj_], 3 :
£ .i(b’“'g'*'logc;‘blogb 1 L [ loge'd | ~ and the appropriste boundary and initial conditions are w(0,t) = U/
4) Elliptic section g?/52+32/c* < 1: ~{t = 0), and (2, 0) = 0. The analogous problem in the theory of heat
( : & o §es ‘gonduction is well known and the solution is (Carslaw and Jacger
I= i Mo (l-!L—f)- 0= i"a;"—g' 1047, p. 43) -
Z(hF4-e%) A T¢ = T — U(l —crf:)ﬁ.(‘.—,g))’ (57)
() Rectangular section —b << y < b, —¢ <z < e N
NI S (1) cosl](2n+l](7r:‘:'2b)c ont-1)72. e r b _
r= == Y s R e TV il [t (38)
(]

_ " In diffusion problems there is, of course, no true propagation speed,
i_"-f ];ut if the boundary-layer thickness is defined as the distance in which
- wdrops to a given small fraction of U, we may determine its rate of
e growth. From ({57) we see that this boundary-layer thickness is pro-
B+ , portional to \1s¢}, andl it grows at a rate proportional to /(vt).

- Rayleigh (1911) suggested that this comparatively simple solution

26~ 1 : me
Cw= icb‘—Sb‘(;) 2. mémnh(;’n+l) 53"
When & = ¢, C = 0-5628b%; when ¢ > 33,
€~ cb’(§—0-84og).

3

“bould be used ta give an approximate solution to the problem of steady
0§Ml along a semi-infinite flat plate, the flow direction heing perpen-
A %«jﬂmlar to the edge of the plate, The basic idea is that the disturbance

~ due to the plate spreads out into the stream at the rate given by the
- mnsteady problem, but at the same time it is swept downstream with
 thefluid. Asa rough approximation, it is assumed that the disturbance
+P=0 - ;fb convected downstream with the main stream velocity £, Thus, at
- \:'I distance x along the plate from the leading edge, the boundary-layer
3 thickness and velocity distribution can be found by identifving ¢ in

A '_'-:l;";v(&‘i) with x'T7, Modifying (37) so that » measures downstream velocity
- rlative to the plate, this gives

- i o
X = -_.——!(y..'l , o
ar ke . i
0w { erfiz | (;) (59)

When the eross-section ig not one of the special shapes for Whi(‘].l an >
analytic solution can be found, the reguired results may be ohtnum}l
by l;mking certain measurements on soap films, For, if & soap filu is
stretched across a hole of the given shape and hias a small excess pressure
p on one side of it, then the displacement X iy, =) satizfies
lP’ - ‘ﬁ‘
o c‘_.\_ _x_f:‘
oyt ' o
(where T is the surface tension), together with the boundary condition
X = 0 on the edges of the hole. Therefore,

and is proportional to w. Thus, the velocity distribution can be dc_:ducml
from measurements of the displacement X. The volume flux is pro-
portional to [ J' X dyd: and this is found by measuring the total volume

h refore, the boundary-layer thickness is proportional to Vive 7). and
¢ skin frietion is

¥ 1
re easily made o CHIR
under the soap film. These measurements arve much mo \ - ( fi‘ op [ j ({_) i
'3 2o A U 4

than direct measurements of the velocity in the fluid-fiow prohlelfl or
of the displacement in the torsion problem, The experimental technigue
is deseribed by G, I. Taylor (103%«1. .
Perhaps the simplest case of preblem (i) is that of an 1.nﬁmte phut'
which, starting at (= 0, is moved in its own pluno.wl'th eonslane'
velocity ' through fiuid initially at rest. If the plate lies in the plan .
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and the physical argument given above is equivalent mathematically
to the following approximations in this equation. Firstly, the convee.
tion terme on the left ave replaced by the approximation U & éx, and,
secondly, the term v/@x® is neglected in the viscous terms on the
right. In this way, we obtain the diffusion equation for « with £ re.
placed by x/U, The boundary-layer approximation retains the con.
vection terms in full and makes only the second simplification,

The Rayleigh approximation ohvionsly overestimates the convectiog
effects; hence, its prediction of the boundary-layer thickness will Le
too emall and the value of r too great. As later investigations show [see
Seotion V. 12), the accurate value for =, obtained from boundary-layer
theory, is 0-832oU%(v/2U), which corresponds to identifying ¢ with
z/(0-346L7), But, in spite of its approximate nature, this so-calle
‘Rayleigh enalogy’ offers a method of estimating the skin fiction in
steady problems for which the aceurate formulation proves intractable,
As examples of unsteady problems which have been used for this
purpose, we may mention the flows resulting from the impulsive motion.
of & semi-infinite plate parallel to its edge (Howarth 1950), a weilze
parallel to its edge {Hasimoto 1951, Sowerby and Cooke 1053}, and
cylinders of finite cross-section parallel to their generators (Batchclor
1954a). These will be discnssed in Chapter VII, and sagain in Chapter
VIII where the steady-flow ‘analogies’ are required.

For the motion of the infinite plate, the solution can be obtained for
any preseribed variation of the velocity of the plate with time. One
caze of special interest arises when the plate oscillates periodically. that

iz, % = A cogwl at 2 = 0. The solution satisfving this boundary ¢ ti-

H 's X ' . g
tion § w = ekt cos(¢-;f-~~l‘:], k= 3\ 2v) (1)

Tt represents waves spreading out from the plate with velocity
w,l = \"(25’(‘))

end amplitude decaying exponentially with : When v is small the
damping is heavy and the disturbance is then confined mainiy 1o« thin
boundary layer near the plate with thickness of order \I» w).

There are, of course, many other solutions of the heat equation v hich
may be applied to finid flows, but we do not attempt a complete survey

here. {Additional examples are given in Schlichting (10533), chapterv.) _

However, it should be pointed out that the solutions are not confined
to the Cartesian form of the equations. For example, in evlindrical

polar coordinates (Section 12), we may take ¥, = v, = 0, vy == l". fh
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~ p == constant. Then v satisfies

iﬁ'ﬁ =3 .__.Pva.*_..]. 809 U
ot ot e )
S S 12
“and the vorticity, @, = = — (rug)
el »er @l

 satishies the diffusion equation

-:&'—0-5 = p(?gf ._'...l. f.m_‘
d a ot “ror)
- A well-known solution of this equation is

7 : I‘

" . @, T —— @~
0 dmt X

."7' ,t'ha application to fluid flow it describes the dissolution of a vortex
filament which is concentrated at the origin at ¢ — 0, and I'ig the initial
lue of the cireulation about the origin.
.‘Anothc:r apph.catic.-n of {62) is to the motion of fluid contained in or
sar :::dnlng an mﬂmte'cylmdcr which starts to rotate. Equation (62)
F ¥ be used to determine how the vorticity, which is initially concen-
‘ ;;' 1;_}_ .tcd z.at the surface of the exvlinder, gpreads out into the fluid. Outside
)}_‘ the eylinder, w'f —+0as!— oo and then vyoc 14 inside the cylinder, w
. lends to a constant value equal to twice the angular velocity of th;
eylinder, and the fluid rotates like a solid body,
In concluding this section we may refer briefly to a solution which
omes under the hendx.ng of this section, although it is quite different
i fra !ho aboveI solutions. It was derived by Tavlor (19284} in the
- Jollowing way. In two-dimensional flow the equatia rortici
‘: N e o ’ o cquation for the vorticity
} e O Bbey 2pey T
- & "ézex oxez M el
¢ ;u_ulv: n:. given in terms of the stream function ¢ by = Vi Now the

y POt I 1 - N 3 : y : |

e s:mk terms in (63) vanish when 1 is a funetion of . As a special

* We take 5 = —Q; then (63) is satisfied if
{;‘E - "“:"\&r

a Tz\b = —bﬁ.

A D
e l;t:ll’et l?c -:! g&,l[x. zJe, where V4 = — 24, This equation for oy
L echanical problem of the vibrating membrane, and we
kS useful analogy that the streamlines dy == constant are given
§° contours of the membrane. A particular example is :

(62)

== A 008~ c0s "Fexn| . 2
Pidiconcy sy dapl =S (64)
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of vortices (as shown

and this flow may be interpreted as a flouble.nrm:\,'
in Fig. 111 3) which decay exponentially with time.

(

p

NONO)(

Fie. 111, 3. Streanilines of the flow given by equation 1040,

he flow given by equation (631,

Fi. ITL. 4. Sweamlines of tt

Kovasznay (1048) has obtained a ste:'\dy
manner by assuming that 7 18 proporti

mainstream velocity in the w-direction,
ease is given by

The stream function in

2w X ap RS- 2}’
o = Uz~ sin .{;—explﬁlﬂ JIRA4-167%))

flow solution in & simil]nr
) —Uz, U being the
onal to & : s
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where £ = Ud'v. The flow is periodie in the :-divection, and the stream-
lines for one period are shown for & = 40 in Fig, III. 4; Kovasznay
suggests that this may be used to deseribe the flow downstream of a
two-dimensional grid.

15. Examples of flows with suction

Even if the convection terms do not vanish, they will not introduce
serious complications provided that they are linear in the unknown
varisbles, Such is the case in the following problems of flows with
suction.

SN A

,ﬂ

:
,‘f,néi?

'
.
»
y

{a) Asymptotic suction profile

A surprisingly simple solution, which is nevertheless important,
describes steady flow parallel to an infinite plane surface on which the
: normal component of veloeity takes a given non-zero value. This
E solution represents the steady flow far downstream of the leading cdge
t of a semi-infinite flat plate. Without suction the boundary layer would
} grow indefinitely downstream so that, at any finite distance from the
t plate, the velocity ultimately tends to zero. But with suction this is
not the case; the boundary-layer growth is eventually subkdued, and
t we have the ‘asymptotic suction profile’.

1 If ¥ and = are measured along and perpendicular to the plate, the
‘ velocity components w, w, and the pressure are independent of .

Hence, from the continuity equation (4), i remains constant and equal
toits value, — IF" say, at the wall; from (12),

—Wdw dx = »dtu dz* (GG)
and the pressure remains constant throughout the flow. Since » = 0
atz = Oand tends to the main-stream value I ags - o, the appropriate
solution of (06) is

= U(lmg=tir), (67)
~ Asv.5 0, the disturbance to the main stream becomes more and more
’@ml|colltratod in a ‘boundary layer' at the plate, and in fact (67) is also

vhc solution of the approximate boundary-layer equations (see Section
g U

b) Circwlatory Siow about @ volating circiler cylinder with suetion

As noted in the previous section, if an infinite cylinder immersed in
at rest is suddenly rotated about its axis with constant angular
% ty, the vorticity w, = r-22(rey) ér, which is initially concentrated
' % the surface of the eylinder, diffuses ont until e, == 0 everywhere,
BLANIS final steady state vy = I} 200, where T 1 18 the circulation around
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the eylinder, However, if there is suction through the surface of the
cylinder, the vorticity may ultimately settle down to a steady-state
distribution in which the outward diffusion is balanced by the con-
vestion of vorticity towards the cylinder. Such solutions were first
obtained by Hamel (1917) and have been discussed more recently by
Preston (19502). If ry is the radius of the eylinder and the suction
velocity normal to the surface of the cylinder is —F, the radial velocity

in the fluid must be given by :
re

v = —

v
in order to satisfy the continuity equation. The rate at which vorticity

diffuses across a cirele y = constant is — 2mry Gay/r, and the rate of

convection is 2mri,w,; therefore, a balance js achieved when

fw o
pobant JH i - Jpad 1 11
o T =
where B = r1"/v.

The solution for w, i3

- fLAR
0. = .l. .'(‘; (ﬂ-‘g) = ,4('—0} . (a8
ror r

where 4 is the value of e, at the cylinder. Thig example is of particular
importance in considering the possibility of nsing guction to maintain
different values for the circulation at the eylinder and at infinity (sec
Preston 1850z, Thwaites 1050), and it is useful, therefore, to quote the
expression for the cireulation T = 2=r15. We have, from {68),

P =22 (" (k22
b ol

’ r , . ~

= [+2=r54 log;« (R =2) (65
0

We see that if B = 2, the only solution with finite cirenlation at infinity

is T == I}, o, »= 0, vy = 1}/ 2m0, but if B > 2, I} is the value of the

circulation at infinity and A can be adjusted to give any cireulation

at the cylinder. Thus to maintain different values of the ciroulation at

the eylinder and at infinity, it is necessary for the suction velocity ¥
to exceed 2r/rg.
16. Similarity solutions

Apart from types of solutions descr:
which linear equations are obtained, all exact solutions k

present writer are similavity golutions. The dependent variables are

bed in the previous sections, i

nown to the
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Y functions of only two coordinates end, moreover, they can be so chos
- ..‘h“ they are functions of & single elementary function of the cﬁort;'n
 nates, Tl.zen the unknowns satisfy ordinary dgl'femntial equations, a li
ez the solution of such equations (numerically, if necessary) is a &i,m nl(
£ mmc.r compared with the solution of the original partfal diﬁe;\?ntli):
¥, __equ.atlons. If we consider equations for two variables w(x, ¥) and v{x )
Ar'eypxcal e.ynmples of similarity solutions are i = 2%U(3) ar:d ¢ = x"i’, 4
j(whcr.e 7 is & given function of x and y. In fact the similarity solut'(n).
~ in this chapter all belong to the simple case where 5 is y itseli: fat lwml
_when tl.xe most suitable coordinate system is used), but the more enzar::
: \gypean.scs in connexion with the approximate boundary-layer e usatio
% ~ As will be illustrated below, the existence of similarity sol?:tio: i
Fas, often 1:coognized by physical considerations, and in pa.rt-icular f‘:::
, {?‘ deductions as t? the forms of solution which are possible dimensionall
;....-}“;:.when the physical parameters in the problem do not provide both 4
R fundam‘enml length and a fundamental time. The emphasis is on 1} 4
& two units since, if such guantities appear, the unit of mass 1 'IC‘S"!
~ be derived from the density., S
: 'I‘hefve is alz0 a rather general method of testing for similarity sol
& tions; it is most conveniently demonstrated by an example, and .}O:Ot]u-
: gcnfml theory reference may be made to Birklioff (1050 :m(l Mo n
3 g::z, If \(-.: mn.lsidor the equations for steady two-dimensiox;nl l;f::
¢ ions (4) and (12) with « = 0), then, in. plving thi
we Jook for & one-parameter transformation of t:;};}:{,::;:b;i:in:ethod’,
P~ p, under which the equations are invariant (since only d;qtl:', . t"‘.' i
- of p oceur in the equations of motion, p, may be any o':wsmnt R' l; %
of the pressure). A particularly useful transformation is“ o

-

a' = A%,
where A is th =M p'—ph = ¥{p—p,), (70
N is the parameter, and it is easily i
Bl o s . ot s
4 '&y .that‘ there exist:s a solution in which wax, vz, (p~ j:,,).;"-' are";{l:c‘iizzl:
% fyé:‘,:,:l.m-e c‘ach ot' these guantities .is invarient in the tmlwformat.iou».
o se it 1.5 now clear that for this solution polar coordinates are
. gf::?lg:::)te },1 ;i\icn. tiv,.,l re'g, 1% p—p,) are functions of 9 alone,
e ;0 s :i (tt;( uced a form of solution by this transforma-
R Th’e S lec : ’mththe I:elcvfmt boundary conditions can be
3 = (.ﬁsmg“(gll.\ en here t'::escnbes flow between inclined plane
in detail in the next section.

v = Xy,

W' = A,
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17. Twa-dimensional flow between non-parallel plane walls

Although the form of solution for this problem has been found as ay
example of the qransformation method’, the following dimensions|
argument, which leads jmmediately to the required form, is mowe
satisfactory, The only physical parameters involved in the probley
are the kinematic viscosity v and the volume flux @ per unit distance
perpendicular to the flow plane. But Q and » both have dimenzions
L7, Hence, the velocity components v, vy and the digtance r con
appear only in the combinations 7, and ey which have dimensions
AT, Thus re,/v and ragly must be functions of § and @ » alone, The
equation of continuity then shows that vay is constant, and since vy = ¢
at the walls the constant must be zem; therefore, the flow is radial,
Using a similar dimensional argument to establish the form of the
pressure difference p— Py, We have

_vF{f) p—pe _ vV PIH) .
v, = "T» e e e !
3 ;

These expressions anid the equations for F' given below were first ol

tained and studied by Jeffery (1915} and Hamel (1017). Subsequesntly,

many writers {Harrison 1919, Kérmdn 1924, Tollmien 1031, Noether

1931, Dean 1984) worked on special aspects of the problem but the

most comprehiensive treatments have been given by Rosenhead (3040

and Millsaps and Polilhausen (1953); we shall yefer in detail to the lust
two investigations.

When v, and p given by (71) am substituted in (49), we find

Pe= —AFPLF), 1" = aF': hence P = 2F-+C, where €' is an arhie

wary constant, and  pro g2 g PLoC =0, -
On multiplication by F', the equation for F can be integrated to
U"”w}l"’—é—?}'*-%-ﬂff‘ = ponastant.
It is convenient to write
gF'*—ya—F)(F—-b'p(F—c) = {, [73)
where only two of the constants a. B, ¢ are independent ginee ey
satisfy atbig= e )
Now v, must vanish at the walls, 8 = Za, say, 20 that (73) must
be solved subject to the conditions F(4=0) = 0. The integration can
be carried out in terms of elliptic functions and the values of 2 und

o

Qiv = | Fi8)dd for the possible range of values of a, b, snd ¢ may thee 5

-

Ar ' the ¢ o v, .
& otal energy is zero, Since V' < 0in the motion and the particle
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e deduced, But appeal to the theory of elliptic fanctions can with

~ advantage be postponed, and reduced t ini

Y | X ko , ‘l to a minimum, by maki

of n 'd;,-nmmcal interpretation. If we consider a pmcicleyof :x':il:fnlm.se
~ moving along a straight line, with its displacement at time & measured

¥V
o ¥
-
P
(i)
'l
[\B o /)
T

[\,

(i)
Fia, II1. ¥, Sketches of the two possible forms for the
potential encrgy V(F).

s PR
sz. :_quauon (73} is the energy equation for a motion in which
4 potential energy of the particle is given by

V(F) = —3ia—F)F—b)[F—¢),

Msat 7 = 0 for @ == —x and ¢

B — returns to & we 0 for § = a, it iz ¢l
:mt;onr.e only two cases to consider. If @ is real and b and : :::

: njugates, I'(F) must be as in Fig, II1. 5 (i) with a = 0; if
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ayb, ¢ are all veal {a > b 3= ¢, V(F) must be as shown in Fig L5 i) 88 B N

with @ = 0,5 < 0,¢ < 0. In case (i) the particle starts at O with finite ; ! |
velocity and moves to 4 and back to 0; the representative point on 1% Kca ///%b/gd/“v{nf«l/ /
the curve of I'(F) starts at P, moves up to A, and back to P, (The I gy 3 2

E¥ / 5
subsequent motion doeg not concern us since the particle cannot return T // g }/ /

to 0.) For the fluid motion this represents ‘pure outflow’, sinee ¥ . ¢
throughout, and the flow is symmetrie, But in case (ii) the fluid motion -4 / / L/ L/

may be ‘pure cutflow” 040, or 'pure inflow” QB0, or it may be con- old /] ] //‘ /
posed of & number of alternate outflow and inflow regions represented I ok 2
by the particle oscillating between A and B; indeed, if a is too large
multiple oscillations cannot be avoided, Thus, in case (ii) there are
geveral possible values of a and @/v for each aet of constants @, b, ¢,
However, they ean all be deduced from the appropriate combinations
of the values for the two basic motions: outflow 0AO and inflow G800,

Definite integrals for a and @ are easily written down from (73) and
they can be transformedinto expressionsinvolving onlyelliptic functions, ' : —
for which tables are available. We see from the above interpretation : 2
that there may be several solutions, corresponding to difTerent numbers
of outflow and inflow regions, which lead to the same values of x and i /
QJv. In fact, Rosenhead {1040) fincls that there is an infinite number b 1o /
of solutions for each a and @/v and that for each fype of solution (i.e. 4
number of outflow and inflow regions) there is, for given a, a eritical K /
valne of Qv above which that particular solution becomes impassible,
For a < i, the critical values of @» are all positive, the smallest being
for pure outflow, but for 7 > a = = pure inflow is also limited. For
practical purposes, the eritical curve for pure outflow and pure intlow
is of particular importance and it is shown in Fig. II1. G: as 1 -0,
(@/V)egys ~ F424/a,

In pare outflow the flow becomes more and more concentrated in the
centre of the chaunel as @ v increases, until at the critical value the
velocity gradient at the wall drops to zero; for greater values of @,
inflow regions must appear, But for pure inflow, as Q|/v increases the
velocity profile becomes flatter with nearly uniform flow across the
channel except for thin boundary layers at the walla. Velocity profiles
for a channel with & w= 3° are shown in Fig. IITL. 7, which is taken from
Millsaps and Pohlhausen (1833). These authors use, in place of ¢
o Beynolds nmmber based on maximum out ward or inward velocity and
distance r; thus, for outflow the Reynolds numnber is a, and for inflow
it is —b. (This certainly simplifies the mathematical analysis, sinee @
ia given by a somewhat complicated expression involving the Jacobian

A —-20 — 10 0 i 20 a0 40 80

IN
N

N\

o B
fldegroce) ! ! : : :
. ;’.:)o III. 7, Velocity profiles for a channel with x e 5
=" B neunl_.le pacaboln. A, B, € are inflows with 2
¥ § 7= 034, respectively, A, B, ¢ ore ouetl
@ s 034, respectively, a = 1,3 :

: The broken line ix 4he

[ = 5,000, |5 = 1,542, and

o ou's \r_.t]: a = 5,000, a = 1,342, and
2 being th rritical value for ¢his channel,

eta funct; : ;

= ;t:?j I;or ﬂ.\efl a, the'varmti-ms of pure outflow with in-
el wilt h(') pure mﬂoow with increasing —& sre similar to the
, mereasing |Q, ». There is agai iti
. . L : gan & critical value of a
: hich pure outflow is impaossible, The relation between the
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critical values of a and a is given below in equation (83): for large
W’&llles Ofﬂ, X~ 3‘2‘ la_" 75)

The graph of a against a is given in Fig. IIL 8,

LG //

=1

fow present

N
\\\\‘

// Z/%/ //,/
GLRL Y

& 0 uae
v

Fie. 111 8. Critical values of a for pur ousflow.

ynolds pumber to use, it moy be re-

On the question of which Re
wolds number R = ax, based on

marked that in some ways the Rey
maximum velocity and channel semi-width, is most significant. This

is 20, for example, in comparing the present results with those for flow
in non-uniform channels in general. In terms of B we see from (73]
that pure outflow becomes impossible when o == 10:31 'R. This is very
close to the results found for the eritical value of the divergence in the
approximate theories for general channels of small variation. Thes
Abramowitz (1940), improving on the work of Blasius (1910}, finds that
the eritical divergence is $:24 R, where E is based on maximum velocity
and channe! semi-width, (The value obtained by Blasius was 13:125 i)
Tt is perhaps worth noting the main analytical results for pure out
flow and inflow; the results for the more complicated flows may be
deduced from the appropriate com
F = a when # = 0, we have from (73)

é = \'g ) ;x-—‘{(a—F]‘t'_b}(F_c)}‘

for the inflow regions, the inte
by the use of standard transformations {3ee,

Jeifreys 1650, p. 683), we have:

for example, Jeffreys

bination of these. For outflow, since
dF . (16}

gration is from & to F. Reducing thes }

R (1. 17 NAV .
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(i) faisrealand b and ¢ ar j
g e re complex conjugates, only pure outflow
F(#) = g— 3HE1—en( M8, x)
2 l4en(Mdx)’ (73)

Mt = §(la—b)a—cl}}, % §+-2F2 .
(i) Ifa, b, ¢ are real, then for outflow 20re (7%)
~ and for inflow F = a—0km2ent(md, k), (79)

F = — o -
a—6lAmEsn (K —md, k) = b4 Okt on(K —m6, k),  (S0)

m? = a—e ) a—b
Ha—e), 2 T il (81)

- . a—¢
= opm);invga i:?: Orll[am- found Ly setting F = 0 in (16) and the
8= b y gral for inflow; the values of PR S cox:rc.
. hmgll:mpua:e expressions for Fig) from —x to o L:r:lnteg;‘atmg
B e ;: Nl:; t'a fox;l the limiting condition in pure o'ulv[lo:' :’::f.i;)n
o 'ustyto ing that pue cutflow becomes impossible wl e
B ) zero av the walls, and therefore b w 0, en £7{)
b= 0. Then from (74),

f-_é'_"‘ = —B—a; hence, from (76},
M i
. @ v [ e AE
&= o Y oSN F a0l
: =2 v,'.'% ! . ot
%a | =000 (52

A-.This result mnay also be written

o (3-_?-7: 51{{% '5'5—'}}.
A conld be ded : [ 1=\ 34a,
A : uced directly from (7
A = K(¥*) and v from (70),

(83)

since in the eritical conditions
mt = 310 g
s I | R

For large val 3K

. I Qa nes (:fa, ant <+ V3 K(}) = 3211, The eritica) flux is
| = 2} (=02 misn®mg) 4@ = sl B [ b
¥ § =z | o dx
0 (84), Henee :

: Q__ 1
" v = Ji=amy P 1—-R)K),
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where E(k2) is the second complete elliptic integral; for large values of
12 ~ }—3a?, and therefore
Qv ~ (/3) 12{E(})—}K(})} = 2:034al.

In pure inflow, ag the Reynolds number, —b, becomes larger, the
tendency for the flow to become uniform, except for boundary layers
near the walls, is easily shown analytically from (80). Since x is given
and 2 ig Jarge, we see from {80) that K must be large; hence, &~ 1.
But, when k=1 the function sni becomes tanh¢, and ¢ =15,
a == —0—23b~ —2b; therefore,

= b3 tanhs[(— 16} (a—0)+B)— 2},
where = tanh-1/(}) = 1'140. Thus F is approximately equal to b
exocept in the boundary layer of thickness proportional to (—b)~. We
see then that in this case the boundary-layer assumptions are borne
out, and in fact (35) is exactly the solution which is obtained by solving
the approximate boundary-layer equations (see Section V. 17).
Millsaps and Pohlhausen (1653) also obtain the temperature distribu-
tions in these flows for the case when the walls are maintained at
congtant temperature; for the details, reference s

paper. "
Hamel (1017} discussed the flow between non-parallel plase walls us

a special case of flow in which the streamlines are equiangular gpirals,
which he showed to be the only possible form if, for a two-dimensionsl
motion, they are to coincide with the streamlines of a potentinl flow
without the actual motion itself being jirrotational, When the more
general spiral motion takes place between solid wallg, the results ar
similar to those obtained above. Hamel's results have formed 1he
starting-point for a number of resenrches by other authors (Olsson and
Faxen 1927, Oseen 19274); & general review of this work is given by
Rosenblatt (1933).

(85)

hould be made to their

18. Round jets

In axisymmetric flow there is an analogue of the plane flow described
in the previous section. But it is not flow through a cone, as might
have been expected; it is found to be the flow in a vound jet. The
veason for this becomes clear if we consider the dimensional quantitics

involved, For flow through a cone the v

IA 71, so that with », both a fundamental length and a fundamental 3

time can be formed. Hence there is no reason why the dependenc®
velocities, ete., on r and 6 should take a simple form. But if, inst

rolume flux has dimensions "5

I 18 NAVIER- 5
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~ of a source of » ot
B ete of tm:f?ra;[thi' origin, we consider a source of momentum
IR oo of radiu: rt;e appropriate component of momentmr:
» ‘ . Ives a parameter 3 p w ;
- -2 q : 2 er & p whose i
. dre IAT-2. Since v has dimensions 271, flows in :'hioh i d m“:;lsmns
M p and y are

“the enly gi
i the only given parameters take a gimple form as in Section 17, hecause
. :

Si the problem has no fundamental length or time. Clearly the applic
-, . l a-

tion of these flows is to jets, although more accurately we may say that

- they describe the flow resultiy
Lo P . l f ¢ " : .
~ force of magnitude M at the mfgi:’“ the continuous application of a

4

b

¥ From dimensional consi i
3 i % 'onsiderations, th . i ;
{1 ~ using spherical polar coondinates, by © flow quantities must be given,
?.:, b' == ‘:ﬂﬂ' !,‘, - )’_61(7")
5 TR
£y S0 ¢
& =, #Pts)
o yt ! (86)

where vy = cosfand }, G, P
B v O, £ are funetions N ]
_existence of such a solution of the eqn e,

7 (lI;(;uccd by the transformation metho

The equation of continuity js satisfied hy taking
Fin) = —f (), flo)
A(1—=93)’

f 4
¥ = wfiy). Then the momentum

' {The
ations of motion may also he
d deseribed at the end of Section

Gln) = —

(87)

b i Sed il

: Aeorros.lmmling to the stream function
equations (33} give

- '{{ .—|:] - )I'.'ij}’

1”: —.—“{.' -‘{: ] x
d’)lf!.l—:;;‘j‘"%f :

) S i 9
i'[l-—-t.ﬁz)-" —'!fl' (S%)
= A=) 4 B0, ey, (30)

Where ¢yand ¢, are arbi

- ; are avbitrary constants of integration, E ion (8
dtegrated immediately to give SRR Equaio (6) ok

2 - »

S 21— g S(n), (60)
TCayt i i
uation for fora :;J‘ ! :m € 'bemg & third constant of integration
i e % firs ?btamed by Slezkin (1034) and the solucior;
; round jet {equation (93) below) was discussed by

B0 X(7) = ¢, 32

1.
!
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Landau (1044a), Yatseyev (1030) has ginee obtained the general solu.
tion of (90) and Squire (1051) has given a detailed discussion of the
yound jet. Squire also obtains the temperature field for a heated jet,
and makes further applications (Squire 1952, 1055) of the general
golution. Morgan (1956) notes that these golutions can be interpreted
as flows inside cones, if the condition of zero slip or the condition of
zero normal velocity is relaxed. But the interpretation as jet flows js
the fundamental one,

Before discussing the applications to jet flows, we may note in ad-
vance that £(y) = K(1—x)* is the only choice of X(y) which does not
lead to singularities of the flow quantities on the axis, p = 1. For, if
v is finite at 5 = 1, f(1) must he zero; hence, if ¥, is also finite at
5 =1, with f'(1} = —4, say, we must have f~ A{1—xy) But (M)
then shows that () ~ K(1—x)% therefore, since X(x) is & guadratic
it must be egual to K{1—x)%

Equation {90) is of the Riccati type and can be
second-order linear equation by the substitution

transformed into a

f=—2(1=5)"g. (01)

Then g satisfies a form of the hypergeometric equation, ut in the
gpecial case X(x) = A (1—y)* its solutions are simply

g = (1) A= {12 (1K)} (02)

For the round jet. () = 0, that is, K = 0, and the general 2olution
) 7 ge

for f becomes 31 —n?)
e = , -

' "3
Q—l=n
where ¢ is an arbitrary constant, It is found after some calculation
that the rate of transfer of the 2 component of momentumn (including
the contributions of pressures and viscous stresses) across @ sphere of
raclius v is given by
M 32(14-a)

= (M)
2zl 3a(2+a)

+8(1+a)— (1 +aplog[ 7))

and we see that large values of the parameter M p* correspond t0
small values of «. The streamlines of the flow are shown in Fig. I 9
for the case a = 10-2, M m? = 3,282, Squire (1951) has also shown

that the appropriate solution of (31) for a heated jet i3

\3r
Serpl, v \a—1 —:_;) A

where @ is the Prandtl number and ¢ is the strength of the heat source

T—T, =

153

! 1
H] 4 o 3 7

Fra. TI1. p. Stecamlines of rowxl jot: a w 1077 M/a? = 3,252,

— e ) A | Il 1 2 I ' 1

l:m. I11. 10, Temperature contours of heated round jet: @ = 1078, 0 w 072,
(Fa-+ 1)@Smpl v w10, Tho numbers on the curves indicate values of T'— 7.

. The unit of length can be chosen arbitrarvily in Figs, 111, 9, III. 10,
III. 11, but then the unit of temperature in Fig. IIL. 10 is fixed
¥ the requirement that (20411 87pC, v, which has the dimensions of

L l}%:h multiplied by temperature, should have the value 10 in these
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For =mall values of 2 the jet becomes concentrated near the axis ang
jts velocity increases, In this case, j o~ 2(14y) except near the axis
n = 1. Thus away from the axis, that is outside the jet, there is a radis]
velooity v, = — 2y which provides the fluid {with volume flux S=)
which is entrained by the jet. Near % = 1, that is, in the jet, we may
approximate J by 2l

= ey
From (), 2/a ~ 30 '(16zp43); henoe,
iy 0 3k,
f= 14} €= 3(—: P
This is precizely the solution obtained by Schlichting (1933a) directly
from the approximate boundsry-layer equations (see Section VIII. 17),

As a second application Squire (1952) uses {91), (02} with K =£ 0, to
deseribe a jet emerging from a small hole in a plane wall. However,
the boundary conditions v, = ¥4 = 0 at the wall are not both satisfied:
only the normal velocity component ¥ vanishes there. If K is =
equal to —(40*+1), A = 1 Likin (9"), and the solution for fis

52 I' op. V= cot[b log{1+ ]\
Aol ( e b -+ cot{blog(1-+)] |°
Sinee vy == 0 for y = 0, we

(04)

(07)

where ¢ is a second arbitrary constant.
require f(0) = 0, which leads to
1=2c = 0. (05)
With this value for ¢,
__ (14-4b%){1—x)
= 2% cot[blog(1+-y)]—=1"
Narrow high-speed jetz corvespond to small values of the dencminstor
in (00), and thus to values of b near to the root of
2 cotfblog 2] = 1.
The significant root it d = 18937, and it is found that as b approaches
thiz value, M s — 20, The streamlines of the flow in the case b = 1-35,
Mjp? = 3-8 108, are shown in Fig. 1IL 11,

Finally, we may note that the theoretical results for the round laminar
jet agree well with the experimental results for the turldent jet, For
the turbulent jet » must be interpreted as an eddy viscosity, and the
agreement of the results suggests that in this flow it is a good approxima-
tion to assume that the eddy viscosity is constant, Using a dimensional
avgument again, we can see that there is no variation of eddy viscosity
in the longitudinal direction, since A4, the only quantity of the same

1)
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. ~ dimensions, is constant along the jet. But the eddy viscosity may vary
~ with ¢ across the jet, and, indeed, experiments indicate some decrease
near the boundary of the jet. Detailed comparison between theory and
experlmcllt i3 to be found in Hinze and van der Hegge Zijnen (1949),
~ The value of @ is chosen in order to give the observed rate of spread

R =% 6 T T T T T T
B R
b e y |

2.

1

| 1 | : 1 1 : | ]
0 1 2 4 4 o [ T s a 10

6 = 1'88,

' ,4-&{;

R

W
HE
5

-

i

SR
23
-

Fic, IIL E). Stucamlines of jer emerging from Jiolo in wall:
Migp? = 385107,

of the jet and M iz equated to the thrnst of the jet; a value of v can
then be deduced. In applying the results, the origin in the theoretical
solution js taken at a gnitable distance upstream from the orifice of the
jet. The calenlated and experimental velocity distributions are com-
pared and found to be in good agreement,

19, Stagnation peint flows
(2} Two-dimensional flow
Yor an ideal fluid the flow against an infinite flat plate in the plane

#=0is given by W= —l (100}

® = l,
_pplics to the flow in the neighbourhood of the stagnation point,
== 2 =« 0, where » and z are small compared to the radins of curvature .
. the nose of the body, When viscosity iz included, it must still be
fue that « is proportional to z, for small > and elf 2, Thus, for small 2,

f '_'_ » We may take # == xF(z); the equation of continuity then gives
P0: = —P'(z). However, it is found that the solution of this form is

%t and in the case of the flat plate it applies for all .
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Introducing non-dimensional variables, we take
o=k, w=—0RYED, L=sEWL (o
These satisfy the momentum equations (12) if
Po=P _ \tad+ huf (§)+Hhnf®, (102
P
and the function fis a solution of
"+ —ft4+1=0. (103)
The boundary conditions for f are
(0} = f1(0) = 0, J{w) =1, (104)

and the appropriate solution has been caleulated mu.uerically {l:lie-menz
1911, Howarth 1934). The values of f, £, f" are given later in Table
Foa

\'\;"‘hen the viscosity is small, we see that the disturbance to the
‘pain stream’ (100} is limited to & boundary layer whose tlh.ickneaa is
proportional to /(v k1. The boundary Jayer is of con.'sfanl th.lckncss 0
that the thinning of the layer due to the accelerating main strean,
w = ke, is just sufficient to balance the thickening due to ?.he fhﬂ'usxon
of shear. Moreover, we wmay notice that the exact solution is also.n
solution of the approximate houndary-layer equations, For —p=*&pir
takes the value &% which it has in the main stream amndl &u ex? los 0
throughout: as will be seen in detail in Chapter V, these are preciscly
the approximations which are made in the boundary-layer theory.

(5) Axisymmetvic flow . | '
The analogous solution for axisymmetric flow against a fat plate
(Homann 19560) is obtained by taking (in cylindrical polar conrdinates)
g, = krf(g)  to= =200, L=alk v {105)
The equation for f differs from (103) only in that the term (" has 8
factor 2, and the boundary conditions ave the same as (104). l’l:. 'I'i
gometimes convenient to modify (105) slightly and take v, = e (8):
o, = —(2hP(), § = 22k This slternative form will be used it
(;lmptm V and VIIL Values of the functions f, f’, f* using these
modified variables are given in Table V. 3,
ic) Three-dimensional flow . -
The flow at a general three-dimensional stagnation point also' yie 7
an exact solution of the equations of motion: details are given in Secti
VIIL. 21.

= [ILL 20
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20, Flow due to rotating disks

The solution given by the substitutions (105} may be generalized by
including & rotation of the fluid about the axis with angular velocity
depending on z. Tt is convenient to take the velocity components as

=Ko, n=0nml), 5= —2AKNQ),
{ =K, (100)

where K and {2 are constants having dimension 71, When the ex-
pressions are substituted in the momentum equations (49), it is found
that the pressure is given by

(P—Pollp = K- K(f+H]"),
where A is an arbitrary congtant, and the functions f and g satisfy
JR=20 " g QKR ~f~ = —A,

2Af'e—f)=¢".

(107)

(108}
(100}

Kérmdn {1021} first pointed out the existence of a solution of the
form (106), and he considered its application to the fow produced by
the rotation of an infinite plane disk, For this problem we take X = Q
where Q is the angular velocity of the disk. Assuming that the disk
lies in the plane 2 = 0, the appropriate boundary conditionz on fand g

£ S0y = f'(0) = 0, (110)
S0,

in addition, since the pressure approaches a constant value at infinity,
A== 0, These conditions determine the solution uniquely =0 that the
value of ¥, at infinity cannot be arbitravily imposed: it is determinate
in terms of €1 and v, This is to be expected on physical grounds, for

@0y =1,

g0 az {-=>x (111)

. in the absence of a radial pressure gradient the fluid near the disk
- moves radially ontwards under the influence of centrifugal foree, and
f;"',.lhercfore an axial inflow at infinity is required by continuity,

~ Anapproximate solution to the problem was cbtained by Karmin

for large {, where ¢ = 2f{=); by making a saitable join of these
Slutions at an intermediate value of £, the arbitrary constants in them,
tluding the value of ¢, ave determired. It is found that ¢ = 0-886,

)
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so that the axial inflow at infinity is
{112

— Q880G
) are shown in Fig. TIL 12 and

Graphs of the functions 24(2), f'(&) 9L
detail in Table 111, 1,

the values of these functions are given in
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{h veloolty componoida in the flow produced by
a rotating disk,
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Fio. 111 12, Functions giving

ice the boundary-layer character of the solution
he functions f. f, g are within a given pereeniaze
for some finite value of { = 2{Q/¥)}; hence,
pt in a boundary layer of thick-
Gootion 19, the exact solution

Again we may not
for small viscosity. T
of their values at infinity
the flow is approximately uniform exce
ness (»/Q)). We may also note that, asin
discussed here also satisfies the boundary-1&
termz neglected in boundary-layer theory are identically zero.

Although the solution applies striet]
used to find an approximate value for th
dizk of radius a, provided that the Beynolds number
The shearing stress at the disk is

I )
P:o f»( d= .):-o

t the moment for both sides of the disk becomes

\

— P(“Qn;'ﬂ. Oy,

so tha
d.

M=-2 . 21.')”]);0 dr= _.”a‘p(rﬂ.’)‘g'(O).
i
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' Tasre IIL 1
The functions f(L), f '.((), and (&) for the flow due to o votating dizk
(sce equations (108)-(111) and Fig. 111, 12)
With the exception of the two starved entries this Table is queted dir;otb'

froms Cochran {1034), The starved entries i
X neoyporate mino
rived by smoothing differences. ot

yer equations ginee the

y to an infinite dizgk it may be
o frictional moment on & finite
a®Qy is large.
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1 about 107, this formnla gives values in close
agreement with experimcntnl results, but for greater values of A, the
flow becomes turbulent and the laminar theary ceases to apply.

v be made in which equations (10s)

Further applications of (106) ma
and {109) have to be solved under different boundary conditions. The

most straightforward of these is to include in the Kiérmédn problem 4
uniform suction through the disk: this has been investigated by Stuart
(1054a). The conditions at infinity (111) remain the same and A = 0,

but in (110) we now have

1001
For values of R less tha

=1 [fO=0 g{0) =1 (114)
whete x is the suction parameter corresponding to the suction velocity
v, = —(Q)lx. Stuart computed the solution by Cochran’s method in

1 & series solution in descending powers

the case a = 1-0, and obtainec
of a. which is vsed when x = 2. For t

made to the paper cited.

Miss D, M, Hannah (1947) considers t
a rotating disk. This i a combination of the Karman problem and

the stagnation point flow described in Section 19, The boundary coti-
ditions at the disk remain as in (110, but at infinity the dow is e

guited to approach the potential flow
‘c’ P l‘r, fo ne

he details reference should e

he problem of forced flow against

(315

In this case K is taken as (k200 and the conditions at infinity

boecone
g—0, 16

where p == Q& From the form of the pressureat infinity, or hy subeti-

tution from (116} in (108). we have

A= —(L+pf)L
and p =o€ correspend to the Homan
and Miss Hannah calenlated the =

Schlichting an
thisz pr-.)hlc«:v.. ar

n oand

The special cases p =0
Kirmin fows, respectively.
for s = 05,1, 2. Unaware of this work,
{(1052) applied Karman's approximate method to
later Tifford and Chu (1952) solved the equati

range of velues of w.
16 two related problems of the flow

Finally, we refer to tl
ing disk with a prescribed rotation of the finid at infinity a

Jution
d Truckenbn it

ons numerically for &

over yotats
nel the l‘o*1
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'-.::tt-;\l':ecllli:':\'otr?tating disks. In the first problem, if the angular velocity

i B m: )»c: 033 ;s 3‘, anld the angular velocity of the fluid as z —> ;

B s 2 = K = (Q§+-0L)} in (108) and then équati
¥ x(lOS) and (109) must be solved subject to the bom)xdarv c::clfg:::ms

f(()] =f'{0) == 0, ﬂo) e %"Q,

J'=>0, g->Q,/0 as {-om; (117)

- :’ t‘:;d::};]:"";g}‘g"“ at infinity show that the constart ) in (108)
W lution to this pvollt)l esl:-ﬁ:t).l.w]z:::‘;ﬁt ﬁ(lQ;O).obtahled a numerical
' @mte ca:culatiOn? have been carried out-xl(:y ]‘;ﬂ;ﬁ:\g——_(u? t::;gi 1:0;0
;eecrib::s: ;: :z: g.lve:ll in Schlichting (1955, p. 158), Fetl:i.s (:926;
] obtaing resul t:c;(::a for performing these and similar calculations
BB cnts for the oace : :28: of f't‘lluea-z of Q,/02,. The velocity com-
B (e widooities sleld e lmt;dv given in Table IIT. 2; the oscillation

TasLe IIL 2

The velocity distribution in the rotating fiow over a fixed plane
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= d, say with angular

ne
wo rotating disks stz =0, 2 7 with angul
velI:ci‘t?:sca:en(:fdtQ,, mespec%ively, if we choose Q = K == (3403},
the beundary conditions are
f=fi=0 g=0/0 at {=0,
f=f=0, g=0J0 st [=d@p5
the constant A must be determined in the course of the solution in order

it i t vet been caleulated
to satisfy these conditions, The eolutlon.lma not ) ed
bc::: l:pxal}i,tm\iv:e aspeots of it have been discussed by Batchelor (1951)

and Stewartson (1933).

(118)

IV
FLOW AT SMALL REYNOLDS NUMBER

1. Introduction
Ix Chapter III the \Navier-Stokes equations of flow for a viscous in-
~ compressible fluid v;\ro introduced, and some exact solutions, valid
~ for all Reynolds numbérs, were discussed; none of them, however, deals
- with flow past a finite hody. At present there appear to be no exact
~ solutions of the flow past Yodies of finite size, and, consequently, in order
.'Rifto discuss such flows, it i§ necessary to derive approximate solutions.
- These may be either numdyical solutions of the exact Navier-Stokes
"'equst-ions, or solutions—anslyticnl or numerical—of approximate equa-
tions. Whichever type of solption is involved it 4s first necessary to
gpecily the value of the Reyndlds number R, i some cases precisely,
in others approximately, becaye the charagfer of the flow depends
critically upon it. For extreme valpes of' R e Navier-Stokes equations
; can be replaced by approximate fdyms which are more tractable, For
- large R the exact equations reduce td Edler's equations of inviseid flow,
- oxcept in the comparatively narrow rpfjjons in which transverse velooity
. gradients are Jarge, where they iglluck to Prandtl’s boundary-layer
equations. The study of flows obgving Pindtl’s equations is the main
concern of this book. For smal/ R, by whiwh we shall usually mean R
less than 1, the exact equatjbns are replac by Oseen’s equations,
except in regions near fixed/surfaces, where they reduee to Stokes's
tquations, This chapter is foncerned with flaws dheying either Oseen’s
or Stokes's equations, ns Appropriate,
In passing it may be nfentioned that in the intermegiate range, wheve
R takes values betweeh the very small and the very'large, there are
only a few solutions bf the Navier-Stokes equations, and these are
Bumerical, They dea, chiefly, with flow past a circular cylinder or &
» the cireular eylinder has been investizated by
Hom (1033) for R (Yased on diameter) == 10 and 20, and by Allen and
Sauthwell (1055) for R == 0, 1, 10, 100, and 1,000, {The last two cases,
#the authors observe, are physically unrealistic since the flow becomes
ble in practice when R reaches & critical value of about 40.) Jenson
159) has treated the sphere for X = 5, 10, 20, and 40, Also, in a series
pers, Kawaguti (1056, and references cited therein) has used different
al techniques for both the circular cylinder and the sphere. His
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