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o
thf:n. the area of the new planar piece so formed is the same as that of the
original planar piece. A similar sliding of the plane sections of a given solid
yields another solid having the same volume s the original one. These results
give the so-called Cavalieri's principle: (1) If two planar pieces are included
l{etn'ecn a pair of parallel lines, and if the 1wo segments cut by them on any
line parallel to the including lines are equal in length, then the areas of the
planar pleces are equal; (2) if two solids are included between a pair of' par-
allel planes, and if the two sections cut by them on any plane parallel 0 the
including ;{[anes are equal in area, then the volumes of the solids are equal.
Cavalieri’s principle constitutes a valuable tool in the computation of areas

an_d \'.olunlcs and can easily be rigorously established. As an illustration of the
principle, consider the following application leading to the formula for the
volume of a sphere. In Figure 86 we have a hcmispht;rc of radius r on the left,
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Figure 86

and on the right a cylinder of radius » and altitude » with a cone removed
whose base is the upper base of the cylinder and whose vertex is the center of
the low.cr base of the cylinder. The hemisphere and the gouged-out cylinder
are resting on a common plane. We now cut both solids by a plane parallel to
tf.xe base plane and at distance / from it. This plane cuts the one solid in a
circular section and the other in an annular, or ring-shaped, section. By
clementary geometry, we casily show that each of the two sections has an area
equal to a(r* — h*), It follows, by Cavalieri’s principle, that the two solids
have equal volumes. Therefore the volume ¥ of a sphere is given by

V = 2(volume of cylinder — volume of cone)

= 3

=2 (.1,4_ & ): )
3 3

; Tl:ne assumption and consistent use of Cavalieri's principle simplifies the
derivation of many formulas encountered in a high school course in solid
geometry. This procedure has been adopted by a number of textbook writers
and has been advocated on pedagogical grounds.

Ca.valicri's conception of indivisibles stimulated considerable discussion,
and serious criticisms were leveled by some students of the subject, particularly
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by the Swiss Paul Guldin, Cavalieri recast his treatment in the vain hope of
meeting these objections. The French mathematician Roberval ably handled
the method and claimed to be an independent inventor of the conception. The
method of indivisibles, or some process very similar to it, was effectively used
by Torricelli, Fermat, Pascal, Saint-Vincent, Barrow, and others. In the course
of the work of these men results were reached which are equivalent to the
integration of expressions like x", sin 4, sin®6, and # sin 4.

11-7 THE BEGINNING OF DIFFERENTIATION

Differentiation may be said to have originated in the problem of drawing
tangents to curves and in finding maximum and minimum values of functions.
Although such considerations go back to the ancient Greeks, it seems fair
to assert that the first really marked anticipation of the method of differentia-
tion stems from ideas set forth by Fermat in 1629.

Kepler had observed that the increment of a function becomes vanish-
ingly small in the neighborhood of an ordinary maximum or minimum value,
Fermat translated this fact into a process for determining such a maximum
or minimum, The method will be considered in brief, If f(x) has an ordinary
maximum or minimum at x, and if e is very small, then the value of j(x — &)
is almost equal to that of f(x). Therefore, we tentatively set f(x — e) = f(x)
and then make the equality correct by letting e assume the value zero. The
roots of the resulting equation then give those values of x for which j(x) is a
maximum or a minimum.

Let us illustrate the above procedure by considering Fermat's first example
—to divide a quantity into two parts such that their product is a maximum,
Fermat used Viéte's notation, where constants are designated by upper case
consonants and variables by upper case vowels. Following the notation to this
extent, let B be the given quantity and denote the sought parts by A and
B — A. Forming

(4 —E) [B—(4 —E)]
and equating it to A(B — A) we have
A(B—A)=(A—E)(B—A+E)
or A
2AE — BE —E* =0,
After dividing by E, one obtains
2A —-B—E=0.

Now setting £ = 0 we obtain 24 = B, and thus find the required division.
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Although the logic of Fermat's exposition leaves much to be desired, it
is seen that his method is equivalent to setting

lim flx+h) — f(x) ”

hean h

0,

that is, to setting the derivative of f(x) equal to zero. This is the customary
method for finding ordinary maxima and minima of a function f(x), and
is sometimes referred to in our clementary textbooks as Fermat's method.
Fermat, however, did not know that the vanishing of the derivative of f(x)
is only a necessary, but not a sufficient, condition for an ordinary maximum
or minimum. Also, Fermat's method does not distinguish between a maxi-
mum and a minimum value,

Fermat also devised a general procedure for finding the tangent at a
point of a curve whose Cartesian equation is given. His idea is to find the
subtangent for the point, that is, the segment on the x-axis between the foot
of the ordinate drawn to the point of contact and the intersection of the tangent
line with the x-axis. The method employs the idea of a tangent as the limiting
position of a secant when two of its points of intersection with the curve tend
to fall together. Using modern notation the method is as follows. Let the
equation of the curve (see Figure 87) be f(x,y) =0, and let us seek the

L f(x,y) =0
EY) A
¥
a e
7
Figure 87

subtangent a of the curve for the point (x,y). By similar triangles we easily
find the coordinates of a near point on the tangent to be [x 4 ¢, (1 + e/a)].
This point is tentatively treated as if it were also on the curve, giving us

e e S

The equality is-then made correct by letting ¢ assume the value zero, We
then solve the resulting equation for the subtangent a in terms of the co-
ordinates x and y of the point of contact. This, of course, is equivalent to
setting

g
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a general formula that appeared later in the work of Sluze. Fermat, in this
way, found tangents to the ellipse, cycloid, cissoid, conchoid, quadratrix,
and folium of Descartes. Let us illustrate the method by finding the sub-
tangent at a general point on the folium of Descartes:

x4+ y3 = nxy.
Here we have
e\? e
(x+ey+ylt+—) —ma+e(14—)=0
a a

or

3y? nxy 3yt my
el 3 4 —— — —ny)+e* [3x + —— — —

a a a* a

3
+ €e* (l +—-) = 0.

ot

Now, dividing by e and then setting ¢ = 0, we find

3y? — nxy
a=— ——

3x2 — ny

11-8 WALLIS AND BARROW

Isaac Newton's immediate predecessors in England were John Wallis and
Isaac Barrow.

John Wallis, who was born in 1616, was one of the ablest and most
original mathematicians of his day. He was a voluminous and erudite writer
in a number of ficlds and is said to be one of the first to devise a system for
teaching deaf-mutes. In 1649, he was appointed Savilian professor of geom-
etry at Oxford, a position which he held for 54 years until his death in 1703,
His work in analysis did much to prepare the way for his great contemporary,
[saac Newton.

Wallis was one of the first to discuss conics as curves of second degree
rather than as sections of a cone. In 1656 appeared his Arithmetica infinitorum
(dedicated to Oughtred), a book which. in spite of some logical blemishes,
remained a standard treatise for many years. In this book, the methods of
Descartes and Cavalieri are systematized and extended and a number of
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remarkable results are induced from particular cases. Thus the formula
which we would now write as

- |
J _1"" d_r — —
o |
m -1

where m is a positive integer, is claimed to hold even when 1 is fractional
or negative but different from —1. Wallis was the first to explain with any
completeness the significance of zero, negative, and fractional exponents, and
he introduced our present symbol (%) for infinity.

Wallis endeavored to determine by finding an expression for the area,
a/4. of a quadrant of the circle x* + y* = 1. This is equivalent to evaluating

»}
j, (1 — x?)¥ dx, which Wallis was unable to do directly since he was not
acquainted with the general binomial theorem. He accordingly evaluated

f‘ (1 —x%)"dx, .f' (1 =2 dx, ’, (1 —x*)*dx. and so forth, obtaining
the sequence 1, 2/3, 8,15, 16/35, . .. ., He then considered the problem of
finding the law which for n =0, 1, 2, 3, . . . would yield the above se-
quence. It was the interpolated value of this law for s = 1/2 that Wallis
was seeking. By a long and complicated process, he finally arrived at his
infinite product expression for /2 given in Section 4-8, Mathematicians of
his day frequently resorted to interpolation processes in order to calculate
quantities that they could not evaluate directly.

Wallis accomplished other things in mathematics. He was the mathe-
matician who came nearest to solving Pascal's challenge questions on the
cycloid (see Section 9-9). It can be argued fairly that he obtained an equiv-

alent of the formula
[ (dy) 294
7 [ R S ]d.\'
dx

John Wallis
Library of Congress
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for the length of an element of arc of a curve. His De algebra tractatus; his-
toricus & practicus, written in 1673 but published in English in 1685 and in
Latin in 1693, is considered as the first serious attempt at a history of mathe-
matics in England. It is in this work that we find the first recorded effort to
give a graphical interpretation of the complex roots of a real quadratic equa-
tion. Wallis edited parts of the works of a number of the great Greek mathe-
maticians and wrote on a wide variety of physical subjects. He was one of the
founders of the Royal Society and for years he assisted the government as a
cryptologist,

Whereas Wallis’ chief contributions to the development of the calculus
lay in the theory of integration, Isaac Barrow’s most important contributions
were perhaps those connected with the theory of differentiation.

Isaac Barrow was born in Lendon in 1630. A story is told that in his
early scheol days he was so troublesome that his father was heard to pray
that should God decide to take one of his children he could best spare Isaac.
Barrow completed his education at Cambridge and won renown as one of
the best Greek scholars of his day. He was a man of high academic caliber,
achieving recognition in mathematics, physics, astronomy, and theology.
Entertaining stories are told of his physical strength, bravery, ready wit, and
scrupulous censcientiousness. He was the first to occupy the Lucasian chair
at Cambridge, from which he magnanimously resigned in 1669 in favor
of his great pupil, Tsaac Newton, whose remarkable abilitics he was one
of the first to recognize and acknowledge. He died in Cambridge in 1677.

Barrow’s most important mathematical work is his Lectiones opticae
et geometricae, which appeared in the year he resigned his chair at Cam-
bridge. The preface of the treatisc acknowledges indebtedness to Newton
for some of the material of the book, probably the parts dealing with optics,
Itis in this book that we find a very near approach to the modern process
of differentiation, utilizing the so-called differential triangle which we find
in our present-day textbooks. Let it be required to find the tangent at a
point P on the given curve represented in Figure 88, Let Q be a neighboring
point on the curve. Then triangles PTM and POR are very nearly similar
to one another, and, Barrow argued, as the little triangle becomes indefinitely
small, we have

RP  MP
QR ~ ™'

Let us set OR = e and RP = a. Then if the coordinates of P are x and y,
those of Q are x — e and y — 4. Substituting these values into the equa-
tion of the curve and neglecting squares and higher powers of both e and a,
we find the ratio a/e. We then have

OR e
OT =0OM — TM = OM — MP| —— =x—-y\—)
RP a

and the tangent line is determined. Barrow applied this method of constructing

o
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he did, in 1675, publish an edition (with commentary) of the first four books
of Apollonius® Conic Sections and of the extant works of Archimedes and
Theodosius.
At this stage of the development of differential and integral caleulus many
+ integrations had been performed, many cubatures, quadratures, and rectifica-
tions effected. a process of differentiation had been evolved and tangents to
many curves constructed, the idea of limits had been conceived, and the
fundamental theorem recognized. What more remained to be done? There still
remained the creation of a general symbolism with a systematic set of formal
¢ < analytical rules, and also a consistent and rigorous redevelopment of the
fundamentals of the subject. It is precisely the first of these, the creation of a
suitable and workable calculus, that was furnished by Newton and Leibniz,
working independently of each other. The redevelopment of the fundamental
concepts on an acceptably rigorous basis had to outwait the period of energetic
ol /7 o X applicu.tion or: the subject, and was the wo'r!\' gr‘ the great French analyst
/ : g Augustin-Louis Cauchy (1789-1857) and his nineteenth-century successors.

Y

Figure 88

: o . . -9 yV ]
tangents to the curves: (a) x*(x* - y*) =riy* (the kappa curve), (b) 1 NEWTON

APk ¥ =13 (a special Lamé curve), (c) ¥ -+ y* — ry e foli '

D"“"’}”t’-" but C'IUCS la galande b Ba(rf)sxs() )( ']‘) : (_ ey At lo(f,“m :l [saac Newton was born in Woolsthorpe on Christmas Day, 1642 (old style).

. < € by b sy B — X v/ 2r i : 5 K : : s Fr
quadratrix), (¢) y — rf _,.,,) \ ¢ ‘ 4 ‘,) t?n x/er (the the year in which Galileo died. His father, who died before lsaac was born.
apply thn'mé[hod"toqcuwan(g';' ;;cga‘:‘gllg‘fl':; curve). As an illustration, let us was a farmer, and it was at first planned that the son also should devote his

¢ ¢ (b). Here we hav 4 % > S

: life to farming, The youngster, however, showed great skill and delight in
(x —e)p 4 (y — a)) =13, devising clever mechanical models and in conducting experiments, Thus, he
Fox made a toy gristmill that ground wheat to flour, with a mouse serving as
motive power, and a wooden clock that worked by water. The result was that
*% — 3x% 4 3xe? — ¢t 4 g3 3y!a - 3ya® — ot = 5, his schooling was extended, and, when 18, he was allowed (o enter Trinity

Neglecting the square and higher powers of ¢ and a, and using the fact that
X b y3 =13, this reduces to

' 3% 4+ 3y%a =0,
from which we obtain

x2

e
The ratio a/e is, of course, our modern dy/dx, and Barrow's questionable
procedure can easily be made rigorous by the use of the theory of limits.

In spite of tenuous evidence pointing elsewhere, Barrow is generally
credited as the first to realize in full generality that differentiation and inte-
gration are inverse operations. This capital discovery is the so-called funda- ‘
mental theorem of the calculus and appears to be stated and proved in
Barrow’s Lectiones. Isaac Newton

Although Barrow devoted most of the latter part of his life to theology, David Smith Collection
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Collegc. Cambridge. It was not until this stage in his schooling that his atten-
tion came to be directed to mathematics. by a book on astrology picked u
at .zhe Stourbridge Fair. As a conscqucncc‘he first read Euclid’s Flementf
which he found too obvious, and then Descartes’ La géométrie \‘vhicﬁ h(;
found”s‘omewhu[ difficult. He also read Oughtred's Clavis, werks' of Kepler
;md. Viete, and the Arithmetica infinitorum bbv Wallis. From reading m"glc
matics, }}c turned to creating it, and early in 1665, when he was 23 )Tcarskold'
h:e Was In possession of the generalized binomial theorem and had crea(eci
his method of fluxions, as he called what today is known as differential cal-
culus, That year, and part of the next, the university closed because of ;hc
rampant bu‘-oonic plague, and Newton lived at home. During this period, he
d.fveloPcd his calculus to the peint where he could find the tangent and ra&ius
of curvature at an arbitrary point of a curve. He also became interested in
various physical questions, performed his first experiments in optics, and
formul':xted the basic principles of his theory of gravitation, .

. Nf}'ﬂt@ﬂ returned to Cambridge in 1667 and for two years occupied him-
self chiefly with optical researches. In 1669, Barrow rcs’igncd the Lucasian
pro{esscrship in favor of Newton, and the latter began his 18 years of. ;u;i-
versity lec:'uring. His first lectures, which were on optics, were later com-
municated In & paper to the Royal Society and aroused considerable interest
and dlzscussmn. His theory of colors and certain deductions from his optical
cxperzme:ms were vehemently attacked by some scientists. Newton found
the ensuing argument so distasteful that he vowed never to publish anything
On science again. His tremendous dislike of controversy, which seems tg
have borderc.d on the pathological, had an important bearing on the histor
of mal!‘nemalxcs. for the result was that almost all of his findings rem'lincg
unptfblzslhed until many years after their discovery. This postphoncme;u of
pu‘bh.cauon l.utcr led 1o the undignified dispute with Leibniz concernin
priority pf discovery of the calculus, It was owing to this controvers tha%
the English mathematicians, backing Isaac Newton as their leader, cut{hem-
selves off from continental developments, and mathematical progress in
Englaf'ld was detrimentally retarded for practically a hundred years, .

Newton continued his work in optics, and in 1675 communicated his
wprk on thf: emission, or corpuscular, theory of light to the Royal Society
His reputation 'and his ingenious handling of the theory led to its genemi
adoption, and it was not until many years later that the wave theory was
shown to be a better hypothesis for research. Newton's university lectures
from- 167? to 1683 were devoted to algebra and the theory of equations, It
Wwas in this period, in 1679, that he verified his law of gravitation® by us.ing
& new measurement of the earth’s radius in conjunction with a study of the

P il A " :
dirccm..—\n.) two particles in the universe attract one another with a force which is

¥ proportional 1o the product of their masses and inversely proportional to the
Square of the distance between them. g

Y

¢

NEWTON 333

motion of the moon. He also established the compatibility of his law of
gravitation with Kepler's laws of planctary motion, on the assumption that
the sun and the planets may be regarded as heavy particles. But these im-
portant findings were not communicated to anyone until five years later, in

" 1684, when Halley visited Newton at Cambridge to discuss the law of force

that causes the planets to move in elliptical orbits about the sun. With
his interest in celestial mechanics rearoused in this way, Newton proceeded
to work out many of the propositions later to become fundamental in the
first book of his Principia. When Halley, somewhat later, saw Newton's manu-
seript he realized its tremendous importance, and secured the author’s
promise to send the results to the Royal Society. This Newton did, and
at about the same time he finally solved a problem that had been bothering
him for some years, namely that a spherical body whose density at any
point depends only on its distance from the center of the sphere attracts
an external particle as if its whole mass were concentrated at the center.
This theorem completed his justification of Kepler's laws of planetary mo-
tion, for the slight departure of the sun and the planets from true sphericity
is here negligible. Newton now worked in earnest on his theory and by a
gigantic intellectual effort wrote the first book of the Principia by the
summer of 1685. A year later the second book was completed and a third
begun. Jealous accusations by Hooke, and the resulting unpleasantness of the
matter to Newton, almost led to the abandonment of the third beok, but
Halley finally persuaded Newton to finish the task. The complete treatise,
entitled Philosophiae naruralis privicipia mathematica, was published, at
Halley's expense, in the middle of 1687 and immediately made an enormous
impression throughout Europe.

In 1689, Newton represented the university in parliament. In 1692,
he suffered a curious illness which lasted about two years and which involved
some form of mental derangement. Most of his later life was devoted to
chemistry, alchemy, and theology. As a matter of fact, even during the
earlier part of his life, he probably spent about as much time on these pur-
suits as he did on mathematics and natural philosophy. Although his crea-
tive work in mathematics practically ceased, he did not lose his remarkable
powers, for he masterfully sclved numerous challenge problems that were
submitted to him and which were quite beyond the powers of the other
mathematicians in England. In 1696, he was appointed Warden of the
Mint, and in 1699 he was promoted to be Master of the Mint, In 1703, he
was elected president of the Royal Society, a position to which he was an-
nually re-elected until his death, and in 1705 he was knighted. The last
part of his life was made unhappy by the unfortunate controversy with
Leibniz. He died in 1727 when 84 years old, after a lingering and painful
illness, and was buried in Westminster Abbey.

As remarked above, all of Newton's important published works, except
the Principia, appeared years after the author had discovered their con-
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;eftts;l and almost all of them finally appeared only because of pressure from
riends. The dates of these works, in order of publication, are as follows:

Principia, 1687;. Opticks, with two appendices on Cubic Curves and Quad-
rarure and. Recuﬁcauon of Curves by the Use of Infinite Series, 1704; Arith-
z;z.c’nca u-mf'ersalu. 1707; Analysis per Series, Fluxiones, eic., and Methodus
; 1y:er.cmzah:s~. 1711; Lectiones opticae, 1729; and The Method of Fluxions and
IllfUHIL’ Sejr.'cs, translated from Newton’s Latin by J, Colson, 1736. One should
afs(t)hmclgt;on tWo Important letters written in 1676 to H. Oldenburg secretary
of the Royal Society, in which Newton describes ¢ his mat
Y, i escribes some of his mathematics

pebiido s mathematical
. Il.lS in the letters to Oldenburg that Newton describes his carly induc-
tion of the generalized binomial theorem, which he enunciates in the form

(P -+ PO~ "2P""'+ﬂ.4Q; m—nB L m=2n
P 2n e 3n erto

where A represents the first term, namely P* ", B represents the second term
namely (m/n)AQ, C represents the third term, and so forth. The corrccmcss'
under proper restrictions, of the binomial expansion for all complex valucs;
of tllle' cxponent was established over 150 years later by the .\'orweoim; mathe-
matician N, H, Abel (1802-1829). ' :

A more important mathematical discovery made by Newton at about
the same time was his method of fluxions, the cssentialsJ of which he com-
municated to Barrow in 1669. His Method of Fluxions was written in 1671
but was not published until 1736. In this work, Newton considers a cur\'(;
as gencl.'atcd by the continuous motion of a point. Under this conceptien
the al?s‘cxssa and the ordinate of the gencrating point are, in general, changing
quantities. A changing quantity is called a fluent (a flowing qunn,titv) and
its ratc'of change is called the fluxion of the fluent. If a fluent ;uéh as
the .ordmatc of the point generating a curve, be represented by y’ then the
ﬂl{Xl.Oll of 'this fluent is represented by ¥. In modern notation wc' sec that
t!ns is cq_mval.ent to dy/dt, where ¢ represents time. In spite of this introduc-
tion of time nto geometry, the idea of time can be evaded by supposing
.tha.t some quantity, say the abscissa of the moving point, increases constantly.
This co:}s!ant rate of increase of some fluent is called the principal fluxion, and
't;): ﬂﬂuxnfm of any other fluent can be compared with this principal ﬁu;(ion.
L e : ;xu:: of y is denoted. l|>y ¥, and so on for higher ordered fluxions. On
: co etl') ;mfi, the ﬂucnt.or Y is denoted by the symbol y with a small square
wﬁi‘;/]? ]a: ou't"n, or sometimes by vy, Newtfzn' also introduces another concept,
o ¢ calls the moment of a fluent; it is the infinitely small amount by
which a fluent such as x increases in an infinitely small interval of time o.
Thus the moment of the fluent v is given by the product fo. Newton remarks
that We may, In any problem, neglect all terms that are multiplied by the second
or higher power of o, and thus obtain an equation between the coordinates X

NEWTON J33

and y of the generating point of a curve and their fluxions % and y. As an
example he considers the cubic curve x* — ax* 4 axy — y* = 0. Replacing
x by x + %o and y by y -+ yo, we get
x? 4 3x*(X0) + 3x(¥o)* 4 (%o)*
— ax* — 2ax(x0) — a(Xo)*
-+ axy -+ ay(¥o) + a(Xo)(jo) + ax(yo)
(AR }.8 NS 3\-(}0) e 3\(}01- a2 (}0)'1 = 0.

Now, using the fact that x* — ax* 4 axy — y* = 0, dividing the remaining
terms by o, and then rejecting all terms containing the second or higher power
of 0, we find

3x%% — 2ax¥ + ayk + axy — 3y*y = 0.

Newton considers two types of problems. In the first type, we are given a
relation connecting some fluents, and we are asked to find a relation con-
necting these fluents and their fluxions. This is what we did above, and
is, of course, equivalent to differentiation. In the second type, we are given
a relation connecting some fluents and their fluxions, and we are asked to
find a relation connecting the fluents alone. This is the inverse problem
and its equivalent to solving a differential equation. The idea of discarding
terms containing the second and higher powers of o was later justified by
Newton by the use of limit notions. Newton made numerous and remark-
able applications of his method of fluxions. He determined maxima and
minima, tangents to curves, curvature of curves, points of inflection, and
convexity and concavity of curves, and he applied his theory to numercus
quadratures and to the rectification of curves, In the integration of some
differential equations he showed extraordinary ability. In this work is found
a method (a modification of which is now known by Newton’s name) for
approximating the values of the real roots of either an algebraic or a tran-
scendental numerical equation.

The Arithmetica universalis contains the substance of Newton’s lectures
of 1673 to 1683. In it are found many important results in the theory of
cquations, such as the fact that imaginary roots of a real polynomial must
oceur in pairs, rules for finding an upper bound to the roots of a polynomial,
his formulas expressing the sum of the nth powers of the roots of a polyno-
mial in terms of the coefficients of the polynomial, an extension of Descartes’
rule of signs to give limits to the number of imaginary roots of a real polyno-
mial, and many other things. :

Cubic Curves, which appeared as an appendix to the work on Optfics,
investigates the properties of cubic curves by analytic geometry. In his
classification of cubic curves Newton enumerates 72 out of the possible 78
forms which a cubic may assume. Many of his theorems are stated without
proof. The most attractive of these, as well as the most baffling, was his
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assertion that just as all conics can be obtained as central projections of a
circle, so all cubics can be obtained as central projections of the curves

Vi=ax® + bx* 4-cx 4+ d.

This theorem remained a puzzle until a proof was discovered in 1731,

Of course, Newton's greatest work is his Principia, in which there appears
for the first time a complete system of dynamics and a complete mathematical
formulation of the principal terrestrial and celestial phenomena of motion.
[t proved to be the most influential and most admired work in the history of
cience. It is interesting that the theorems, although perhaps discovered by
luxional methods, are all masterfully established by classical Greek gcomclr;r
ided, here and there, with some simple notions of limits. Until the develop'-
nent of the theory of relativity, all physics and astronomy rested on the
issumption, made by Newton in this work. of a privileged frame of reference.
n the Principia are found many results concerning higher plane curves, and
roofs of such attractive geometric theorems as the two followine.

(1) The locus of the centers of all conics tangent to the sides of a quad-
ilateral is the line (Newton's line) through the Tnidpoints of its diagonals,

‘ (2) If a point P moving along a straight line is joined to (wg fixed
oints O and O, and if lines OQ and 0’Q make fixed angles with OP and
Y'P, then the locus of Q is a conic. )

. Newton was never beaten by any of the various challenge problems that
|rf:ulatcd among the mathematicians of his time, In one of these, proposed by
eibniz, he solved the problem of finding the orthogonal trajectories of a
imily of curves. i )

Newton was a skilled experimentalist and a superb analyst. As a math-
natician, he is ranked almost universally as the greatest the world has yet
roduced. His insight into physical problems and his ability to trcat them
nat}fematically has probably never been excelled. One can find many testi-
onials by competent judges as to his greatness, such as the noble tribute paid
¢ Leibniz, who said, “Taking mathematics from the beginning of the world
the time when Newton lived, what he did was much the bet?cr half.” And
ere is the remark by Lagrange to the effect that Newton was the greatest
nius that ever lived, and the most fortunate, for we can find only once a
stem of the universe to be established. His accomplishments were poetically
pressed by Pope in the lines,

Nature and Nature's laws lay hid in night;
God said, ‘Let Newton be," and all was light.

In contrast to these culogics is Newton's own modest estimate of his work:
do not k.now what I may appear to the world; but to myself I seem to have
en only like a boy playing on the seashore, and diverting myself in now and
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then finding a smoother pebble or a prettier shell than ordinary, whilst the
great ocean of truth lay all undiscovered before me.” In generosity to his
predecessors he once explained that if he had seen farther than other men, it
was only because he had stood on the shoulders of giants.

* It has been reported that Newton often spent 18 or 19 hours of the 24
in writing, and that he possessed remarkable powers of concentraticn. Amusing
tales, perhaps apocryphal, are told in support of his absent-mindedness when
engaged in thought.

Thus, there is the story which relates that, when giving a dinner to some
friends, Newton left the table for a bottle of wine, and becoming mentally
engaged he forgot his errand, went to his room, donned his surplice, and
ended up in chapel.

On another occasion, Newton's friend Dr. Stukeley called on him for a
chicken dinner, Newton was out for the moment, but the table was already
laid with the cooked fowl in a dish under a cover. Forgetful of his dinner
engagement, Newton overstayed his time, and Dr. Stukeley finally lifted the
cover, removed and ate the chicken, and then replaced the bones in the covered
dish. When Newton later appeared he greeted his friend and sitting down he,
too, lifted the cover, only to discover the remains, “Dear me,” he said, *I had
forgotten that we had already dined.”

And then there was the occasion when, riding home one day from
Grantham, Newton dismounted from his horse to walk the animal up Spitile-
gate Hill just beyond the town. Unknown to Newton, on the way up the hill
the horse slipped away leaving only the empty bridle in his master's hands, a
fact that Newton discovered only when, at the top of the hill, he endeavored
to vault into the saddle.

11-10 LEIBNIZ

Gottfried Wilhelm Leibniz, the great universal genius of the seventeenth
century, and Newton's rival in the invention of the calculus, was born in
Leipzig in 1646 (old style). Having taught himself to read Latin and Greek
when he was a mere child, he had, befere he was 20, mastered the ordinary
textbook knowledge of mathematics, philosophy, theology, and law. At this
young age he began to develop the first ideas of his characteristica generalis,
which involved a universal mathematics that later blossomed into the symbolic
logic of George Bocle (1815-1864), and still later, in 1910, into the great
Principia mathematica of Whitehead and Russell. When, ostensibly because of
his youth, he was refused the degree of doctor of laws at the University of
Leipzig, he moved to Nuremberg. There he wrote a brilliant essay on teaching
law by the historical method and dedicated it to the Elector of Mainz. This
led to his appointment by the Elector to a commission for the recedification
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of some statutes. The rest of Leibniz’ life from this point on was spent in
dlp!omat:c service, first for the Elector of Mainz and then, from about 1676
until his death, for the estate of the Duke of Brunswick at’ Hanover.
In 1672, while in Paris on a diplomatic mission, Leibniz met Huyeens
W}.IO was then residing there, and the young diplomat prevailed upoyng thg
sclentist to give him lessons in mathematics. The following year Leibniz was
sent on a political mission to London, where he made the acquaintance ;f
Oldc.‘nburg and others and where he exhibited his calculating machine (see
Section ?-10) to the Royal Society. Before he left Paris to take up his lucrative
post as librarian for the Duke of Brunswick, Leibniz had already discov(ered
:}l:e fundfzmemal theorem of the calculus, developed much of his notation in
d“lfseri:xll;];;gn.anci worked out a number of the elementary formulas of
Lexb‘ni%‘ appointment in the Hanoverian service gave him leisure time to
pursue his favorite studies, with the result that he left behind him a mountain
of papers on all sorts of subjects. He was a particularly gifted linguist \vinr{in
some tfame as a Sanskrit scholar, and his writings on philosophy hm:c r'mkeg
him high in that field. He entertained various grand projects that cax‘ne. to
nought, such as that of reuniting the Protestant and Catholic churches, and
then later, just the two Protestant sects of his day. In 1682, he anci'Otto
M?nck'c founded a journal called the Acra erteditorum, of which he became
editor-in-chief. Most of his mathematical papers, which were largely written in
the ten-year period from 1682 to 1692, appeared in this journaT The journal
had 4 wide circulation in continental Europe. In 1700 Leibniz foundjed the
Berlin Academy of Science, and endeavored to crcate’similar academies in
Dresden, Vienna, and St. Petersburg, ‘
The.closing seven years of Leibniz' life were embittered by the contro-
versy which others had brought upon him and Newton concerning whether he

Gottfried Wilhelm Leibniz
David Smith Collection
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had discovered the calculus independently of Newton. In 1714, his employer
became the first German King of England, and Leibniz was left, neglected, at
Hanover. It is said that two years later, in 1716, when he died, his funeral
was attended only by his faithful secretary.

Leibniz’ search for his characteristica generalis led to plans for a theory
of mathematical logic and a symbolic method with formal rules that would
obviate the necessity of thinking. Although this dream has only today reached
a noticeable stage of realization, Leibniz had. in current terminology, stated
the principal properties of logical addition, multiplication, and negation, had
considered the null class and class inclusion, and had noted the similarity
between some properties of the inclusion of classes and the implication of
propositions (see Problem Study 11-10).

Leibniz invented his calculus sometime between 1673 and 1676. It was
on October 29, 1675, that he first used the modern integral sign. as a long
letter § derived from the first letter of the Latin word swmma (sum), to indi-
cate the sum of Cavalieri’s indivisibles. A few weeks later he was writing dil-

ferentials and derivatives as we do today, as well as integrals like _] vdy and

J y dx. His first published paper on differential calculus did not appear until
1684. In this paper he introduces dv as an arbitrary finite interval and then
defines dy by the proportion

dy : dx =y : subtangent.

Many of the elementary rules for differentiation, which a student learns carly
in one of our college courses in the calculus, were derived by Leibniz. The rule
for finding the nth derivative of the product of two functions (see Problem
Study 11-6) is still referred to as Leibniz” rule.

Leibniz had a remarkable feeling for mathematical form and was very
sensitive to the potentialities of a well-devised symbolism. His notation in the
calculus proved to be very fortunate, and is unquestionably more convenient
and flexible than the fluxional notation of Newton. The English mathemati-
cians, though, clung long to the notation of their leader. It was as late as the
nineteenth century that there was formed, at Cambridge, the Analytical
Society, as it was named by one of its founders, Charles Babbage (see Section
9-10), for the purpose of advocating “the principles of pure d-ism as opposed
to the doz-age of the university.” It should be recalled that the rationalistic
philosophy deism was in vogue among many of the intelligentsia of the time.

The theory of determinants is usually said to have originated with Leibniz,
in 1693, when he considered these forms with reference to systems of simul-
tancous linear equations, although a similar consideration had been made ten
years earlier in Japan by Seki Kowa. The generalization of the binomial
theorem into the multinomial theorem, which concerns itself with the expansion
of

(a+b+...4+n,
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is due to Leibniz. He also did much in laying the foundation of the theory of

envelopes, and he defined the osculating circle and showed its importance
the study of curves. 3
: We shall not enter here into a discussion of the unfortunate Newton-
Leibniz controversy, The universal opinion today is that each discovered the
calFulys independently of the other. While Newton's discovery was made first
Leibniz was the earlier in publishing results. If Leibniz was not as penetratiiu’
a mathematician as Newton, he was perhaps z broader one, and while inferio%
to his English rival as an analyst and mathematical physicist, he probably had
a keener mathematical imagination and a superior instinct for mathematical
forrp. The controversy, which was brought upon the two principals by zmchti-
nations of other parties, led to a long British neglect of European 'dc\';]o -
ments, much to the detriment of English mathematics. P
For some time after Newton and Leibniz. the foundations of the caleulus
remained obscure and little heeded, for it was the remarkable applicability of
the subject that attracted the early researchers. By 1700, most of our under-
graduate college calculus had been founded. along with sections of more
adelllccd fields, such as the calculus of variations. The first textbook of the
subject appeared in 1696, written by the Marquis de I'Hospital (1661-1704)
when, under an odd agreement, he published the lectures of his tcnchcr!
Johz.znn Bernoulli. In this book is found the so-called PHospital's rule foni
finding the limiting value of a fraction whose numerator and -Jc:mmimtor tend
simultancously to zero. \

Marquis de I'Hospital
David Smith Collection
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Problem Studies

11-1 The Method of Exhaustion

(a) Assuming the so-called axiom of Archimedes: If we are given two magni-
tudes of the same kind, then we can find a multiple of the smaller which
exceeds the larger, establish the basic proposition of the method of exhaustion:
If from any magnitude there be subtracted a part not less than its half, jrom the
remainder another part not less than its half, and so on, there will at length
remain a magniude less than any preassigned magnitude of the same kind.
(The axiom of Archimedes is implied in the fourth definition of Book V of
Euclid’s Elements, and the basic proposition of the method of exhaustion is
found as Proposition 1 of Book X of the Elements.)

(b) Show, with the aid of the basic proposition of the method of exhaustion,
that the difference in area between a circle and a circumscribed regular polygon

can be made as small as desired,

11-2  The Method of Equilibrium

Figure 89 represents a parabolic segment having AC as chord. CF is tangent
to the parabola at C and AF is parallel to the axis of the parabola. OPM is also
parallel to the axis of the parabola. K is the midpoint of FA and HK = KC.
Take K as a fulcrum, place OP with its center at H, and leave OM where it is.
Using the geometrical fact that OM/OP = AC/AO show, by Archimedes’

Figure 89



