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HILBERT'S TENTH PROBLEM IS UNSOLVABLE
MARTIN DAVIS, Courant [nst:tute of Mathematical Science

When 2 long outstanding problem is finally solved, every mathematician would
like to share in the pleasure of discovery by following for himself what has been
done. But 1o often he is stymied by the abstruseness of so much of contemporary
mathematics. The recent negative solution to Hilbert’s tenth problem given by
Matiyasevic (cf. [23]. [24]) is a happy counterexample. In this article, 8 complete
account of this solution is given; the only knowledge a reader needs to follow the
argument is a little number theory: specifically basic information about divisibility
of positive mntegers and linear congruences. (The material in Chapter 1 and the
first three sections of Chapter 2 of [25] more than suffices,)

Hilbert's tenth problem is to give a computing algorithm which will tell of a
given polynomial Diophantine cquation with integer coefficients whether or not it
hasasolutioninintegers. Matiyasevi¢ proved that there is no such algorithm.

Hilbert's tenth problem is the tenth in the famous list which Hilbert gave in his
1900 address before the International Congress of Mathematicians (cf. [18]). The
way in which the problem has been resolved is very much in the spirit of Hilbert’s
address in which he spoke of the conviction among mathematicians ““that every
definite mathematical problem must necessarily be susceptible of a precise settlement,
either in the form of an actual answer to the question asked, or by the proof of the
impossibility of its solution ..." (italics added). Concerning such impossibility proofs
Hilbert commented :

““Sometimes it happens that we seek the solution under unsatisfied hypotheses
Or in an inappropriate sense and are therefore unable to reach our goal. Then the
task arises of proving the impossibility of solving the problem under the given
hypotheses and in the sense required. Such impossibility proofs were already given
by the ancients, in showing, e.g., that the hypotenuse of an isosceles right triangle
has an irrational ratio to its leg. In modern mathematics the question of the impos-
sibility of certain solutions has played a key role, so that we have acquired the
knowledge that such old and difficult problems as to prove the parallel axiom, to
square the circle, or to solve equations of the fifth degree in radicals have no solution
in the originally intended sense, but nevertheless have been solved in a precise and
completely satisfactory way.”

Martin Davis received his Princeton Ph. D. under Alonzo Church. He has held positions at Univ.
of [llinois, IAS, Unrv. of Calif.-Davis, Ohio State Univ., Rensselace Poly, Yeshiva Univ, and New
York Univ., and he spent a kave at Westfield College, London. He has done research in various
aspects of the foundations of mathematics, and is the authoe of Computability and Unsolvability
(McGraw-Hill, 1958), The Undecidable (editor, Raven Press, 1965), Lectures on Modern Mathematics
(Gordon and Breach, 1967), and First Coursze in Funcrional Analysis (Gordon and Breach, 1967),
Editor.
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234 MARTIN DAVIS [March

Matiyasevit’s negative solution of Hilbert's tenth problem is of just this character.
It is nota solution in Hilbert's “originally intended sense’ but rather a *“‘precise and
complctely satisfactory™ proof that no such solution is possible, The methods needed
to make it possible to prove the non-existence of algorithms had not been developed
in 1900. These methods are part of the theory of recursive (or computable) functions,
developed by logicians much later ([6] is an exposition of recursive function theory).
In this article no previous knowledge of recursive function theory is assumed. The
little that is needed is developed in the article itself,

What will be proved in the body of this article s that no algorithm exists for
testing a polynomial with integer coefficients to determine whether or not 1t has
positive integer solutions (Hilbert inquired about arbitrary integer solutions). But
then it will follow at once that there can be no algorithm for integer solutions
either. For one could test the equation

P(xla"'-x.) - 0
for possession of positive solutions {x,---,x,» by testing
P(1 4-pf+qf+ r,2+s,2.~-.l +pf+q3+r3 fsf) =0

for possession of integer solutions {Py,dy, 712515 s Pas@ns Fes Sa - 1 RIS is because (by
a well-known theorem of Lagrange) every non-negative integer is the sum of four
squares. (Just this once the stated prerequisite is exceeded! Cf. [17], p. 302.) In the
body of this article, only positive integers will be dealt with—except when the
contrary is explicitly stated.

When Matiyasevié announced his beautifel and ingenious solution in January
1970, it had been known for a decade that the unsolvability of Hilbert’s tenth problem
would follow if one could construct a Diophantine equation whose solutions were
such that one of its components grew roughly exponentially with another of its
components. (In §, this is explained more preciscly.) Matiyasevi€ showed how the
Fibonacci numbers could be used to construct such an equation. In this article the
historical development of the subject will not be followed ; the aim has rather been to
give as smooth and straightforward an account of the main results as seems currently
feasible. A brief appendix gives the history.,

1. Diophantine Sets. In this article the usual problem of Diophantine equations
will be inverted, Instead of being given an equation and sccking its solutions, onc
will begin with the set of ““solutions’” and seek a corresponding Diophantine equation.
More precisely:

DeNMON. A sct S of ordered n-tuples of positive integers is called Diophantine
if there is a polynomial P(x,, «**,X,, ¥1, """, ¥a), Where m = 0, with integer coefficients
such that a given .n-tuple {x,,---, x> belongs to S if and only if there exist positive
integers y,, -+, ¥n for which
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-haracter. P(X1, -, X0 P1s = Pa) = 0.
ecise and
s needed Borrowing from logic the symbols ““2* for “there exists™ and “*es” for ““if and
eveloped ’ onlyif”, the relation between the set S and the polynomial P can be written succinctly
unctions, as: .
1 thOl')'). <Xl, "'-xl> "SQ(J F1s'% V) [P(xh X Ve e = 0]-
1ed. The ) or equivalently:
xists for S={Xn XD By, v LP(xy, 4, X0y ¥yu e, p) = O]},
ot it has Note that P may (and in non-trivial cases always will) have negative coefficients.
ns). .But A The word *polynomial™ should always be so construed in the article except where
olutions ’ the contrary is explicitly stated. Also all numbers in this article are positive integers
unless the contrary is stated.
The main question which will be discussed (and settled) in this article is:
3 Which sets are Diophantine? A vague paraphrase of the eventual answer is: an y
* set which could possibly be Diophantine is Diophantine. What does the phrase
“which could possibly be Diophantine™ mean? And how is all this related to Hilbert’s
tenth problem? These quite reasonable questions will only be answered much later.
use (by In the meantime, the task will be developing techniques for showing that various sets
of four ‘. are mdeed Diophantine.
) In the A few very simple examples:
ven the (1) the numbers which are not powers of 2:
F] xeSe(3p,2)[x = p2z + 1)),
anuary ;
roblem (11) the composite numbers:
S one *€S=@y2) [x=(y+ D+ 1),
‘- of its
ow the ¢ (i11) the ordering relation on the positive integers: that is the sets {{xo]|x <),
cle the ¢ 0y x =y} B
cen to X<y(3z)(x+2z=y),
rrently . XSEyo@)(x+z-1=y),
) (1v) the divisibility relation; that is {(x,y)] xl y}:
jations
s, one x] yes(32) (xz = y).
o ) Examples (i) and (ii) suggest, as other sets (o consider, the set of powers of 2 and
| of primes respectively, As we shall eventually see, these sets are Diophantine: but the
antine proof is not at all easy.
clents Another example:
ssitive g (v) the set W of (x,y,z) for which x| y and x < z: Here
x| ye>(3u) (y =xu) and x < z<o(3p) (z = x + o).
. -
L
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Hence,
Xy, zde Wee(Ju,0) [(y — xu)? +(z — x —5)? = 0].

Note that the technique just used 1s perfectly general. So, in defining a Diophantine
sel one may usc a simultaneous system P, =0, P, =0,.-. P, =0 of polynomial
equations since this system can be replaced by the equivalent single equation:

P} + P4 +Pl=0.

By a “‘function’” a positive integer valued function of one or more positive integer
arguments will always be understood.

Dermvimion. A function f of n arguments is called Diophantine if
{ X |y = f(x1,o %)}

is a Diophantine set, (i.e,, f is Diophantine if its ““graph'’ is Diophantine).
Another question that will be answered here is: which functions are Diophantine?
An important Diophantine function is associated with the triengular numbers,
that is numbers of the form:

T(n)-“ l +2+... -n = n.(.n_.;-_.lj.._

Since T(n) is an imcreasing function, for each positive integer =, there is a unique
n z 0 such that

Tn)<z2Z2T(n+1)=TH)+n+1.

Hence each z 15 uniguely representable as:

z=T(n)+y;, y=n+l,
or equivalently, uniquely representable as:

z=T(x+y=2)+y.
In this case, one writes x = L{z), y = R(z); also one sets

Plx,)=T(x +y—-2)+y -1
Note that L(z), R(z) and P(x, y) are Diophantine functions since
z=Pxy) s 2u=xX+y=2)(x+y=1)+2y

L(z) = @N[2k=(x+y=2)(x+y=1)+2y]
Riz) <= ()[2r=(x+y—-2)(x+y—-1)+2y]

X

B

The function P(x; y) maps the set of ordered pairs of positive integers onc-one
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onto the set of positive integers. And, for cach z, the ordered pair which is mapped into
z by P(x, y)is (L(z), R(z)). (**P"" 1s for “*pair™, "L for “’left™, and “R** for ““right".)
Note also that L(z) = z, R(z) = z. To summarize:

Tueorem 1.1 (Pairing Function Theorem’). There are Diophantine functions
Pix,y), L(z), R(z) such that

(1) for all x, y, L(P(x,¥)) = x, R(P(x, y)) = ¥, and

(2) for all z, P(I{z),R(z)) = =, I{2) = =, R(z) =z

Another useful Diophantine function is related to the Chinese Remainder Theorem,
stated below:

DemNiTioN. The numbers my, ---, m,, are calied an admissible sequence of moduli
if i # j implies that m; and m; arc relatively prime.

Tueorem 1.2 (Chinese Remainder Theorem). Let ay,--,ay be any positive
integers and let m, ---,my be an admissible sequence of moduli. Then there is an x
such rhat:

X = a, mod m,

x = a, mod nty

X = ay mod my.

The Chinese remainder theorem is proved for example in [25], p. 33. (That x can
be assumed positive is not ordinarily stated. But since the product of the moduli
added to a solution gives another solution, this is obvious.)

Now let the function S(i,u) be defined as follows:

S(i,u) = w,
where w is the unique positive integer for which:
w= L{u) mod 1+ iR(u)
ws 1+t R(u).
Here w is simply the least positive remainder when L{u) is divided by 1 + i R(x).

Tueorem 1.3 (Sequence Number Theorem). There is a Diophantine function
S(i, u) such that

(1) S(i,u) = u, and

(2) for each sequence ay, ---,ay, there is a number u such that

S(i,u)=a; for 1 Si=N.

Proof. The first task is to show that S(i.») as defined just above, isa Diophantine
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function. The claim is that w = S(i,u) if and only if the following system of ¢quations
has a solution:

I

W= (x+y-2(x+y=1)+2

x=w+z(l +1iy)
l+iy=weo-1.

This is because (by the discussion leading to the Pairing Function Theorem), the
first equation is equivalent to:

x = L{x) and y = R(u),

Then (using a technique already noted) one needs only sum the squares of the three
equations to sec that S(i,u) is Diophantine.

Now S(i,u) = L{u) < u. So finally, let a,,---,ay be given numbers, Choose Yo
be some number greater than each of @y, -,ay and divisible by cach of 1,2, -.- N,
Then the numbers 1 + y, 1 + 2y,-+,1 + Ny are an admissible sequence of moduli,
(For, if d| 1 +iy and d|I +y, i <}, then d[[J(1 +iy) = i(1 +jy)], ie., d)j—i
so that d = N; but this is impossible unless d = | because d| y.) This being the case,
the Chinese Remainder Theorem can be applied to obtain a number x such that

X = a, mod |4y
x = a; mod | +2y
x = ay mod 1 + Ny.
Let u = P(x, y), so that x = L(u) and y = R(u). Then, for i = 1,2,---, N
a;=[(u) mod 1+ iR(u)

and a; < y = R(u) < | + iR(u). But then by definition, a; = S(i,u).
A striking characterization of Diophantine sets of positive integers (cf, [26]) is
given by:

THEOREM 1.4. A set S of positive integers is Diophantine if and only if there
isa polynomial P such that S is precisely the set of positive integers in the rungeof P.

Proof. If §is related to P(x,,---,x, ) as in the theorem then

XESe(3x,, - xy) [x = Plxy. - xq) ]

Conversely, let
xeS<={3ix,, -, x.) [Q(A‘.I.."'..’C..) = 0].

Let P(x,x,,+-,x.) = x[1 = Q*(x.x,. o, Xu)]. Then, if x= 8, choose Xy, ", X, Such
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that Q(x,x,,+--,x.) = 0. Then P(x.Xy,*.X.) = x; 50 x i< in the range of P, On the
other hand, if z = P(x, x,, -, x ). 2 > 0, then Q(x, x,, ---, x.) must vanish (otherwise
1-Q*<0)sothat z=x and x¢S.

2. Twenty-four easy lemmas. The first major task isto prove that the exponential
function h(n, k) = n* is Diophantine. This is the hardest thing we shall have to do.
The proof is in §3. In this section we develop the methods we shall need, using the
so-called Pell equation:

where

x*—dy*=1, x,yz0,
} *)

d=a®—], a>1.

Although this is & famous equation with a considerable literature,? a self-contained
treatment is given. Note the obvious solutions to ):

LEMMA 2.1. There are no integers x , y, positive, negative, or zero, which satisfy
(*) for which 1 < x + )'\.»"d 3% \,"‘d-

Proof. Let x,y satisfy (*). Since
= (a+d)a~Jd) = (x + y/d)(x - W,

the incquality implies (taking negative reciprocals) — I < —x +y/d< —a+ ﬂ
Adding the inequalities: 0 < 2y /d < 2 Vd,ie, 0<y <1, a contradiction,

Leswa 2.2, Let x,y and x’', ¥ be integers, positive, negative, or zero which
satisfy (*). Let

L V.’H =(x + }‘\-"d) (x" + y* \.':i).
Then, x*, ¥ satisfies (*).

Proof. Taking conjugates: x" — y"\ﬂi =(x—-yJd)(x' =y Ja). Multiplying
gives:

(Y = d(yY = (x* — dy?) ((x')* — d(y)) = 1.
DerRNmoN. x,(a), y.(a) are defined for n =0, a > 1, by setting
x(a) + y(a)\/d = (a + Ja)r.

Where the context permits, the dependence on a is not explicitly shown, writing
Xy Ver

Lemma 230 x,, v, satisfy (*).
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240 5 MARTIN DAVIS [March
Proof. This follows at once by induction using Lemma 2.2,

LemMmA 2.4, Let x,y be a non-negative solution of (*). Then for some n,x = x,,

Y= Va

Proof. To begin with x + y./d 1. On the other hand the sequence (a + Jdr
increases (o infinity. Hence for some n = 0,

@+ Jdysx+ yWd<(a+ Jart.
If there is equality, the result is proved; so supposc otherwisc:
Xo+ Yo fd < x + yfd < (x, + Yold) (a + Jd).

Since (x, + y,/d) (x, ~ Yey/d) = 1, the number x, — y,./d is positive. Hence,
I <(x+pJd) (x,~ y, Jd) <a+ fd. But this contradicts Lemmas 2.1 and 2.2.
The defining relation:

o+ Yorfd = (a + Ja)
is a formal analogue of the familiar formula:
(cosu) + (sinu) \."'Tl‘= €*=(cosl +(sinl) /= 1),

with x, playing the role of cos, y, playing the role of sin and d playing the role of — 1.
Thus, the familiar trigonometric identities have analogues in which — 1 is replaced
by d at appropriate places. For example the Pell equation iself

xI=dyl=1

is just the analogue of the Pythagorcan identity. Next analogues of the familiar
addition formulas are obtained.

LEMMA 2.5, X, ., = XX, + dy, v, and y, ., = x 5. + X Ve

Proof.
Xuint Vmearfd = (@ + Jdyt*
= Gt YD 5, 4 1,
= (%%, + dYeyu) + (X V0 + Xup,) /4.
Hence,

X. x - xnxn + d)'.)'-.

Yutn ™ Xp¥m + XV,
Similarly, (Xu_, + Yu-o/d) (x, + ¥, @) = X + yu /3. So
Sm-n* Vo-an/d = (X + Vu Ja) (x, = », Ja),
and one proceeds.as above.
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LEMMA 2.6, ¥poy =0 Yo £ Xg, 0nd Xy oy = ax, t dy,,

Proof, Taken =1 in Lemma 2.5.
The familiar notation (x, y) 18 used 10 symbolize the g.c.d. of x and y.

Lesma 2.7, (x,,0.) = 1.
Proof. If d! x, and dl ¥y then d|v x2—dyl ie.,d| L
Lemma 2.8, y,| yoe-

Proof. This is obvious when k = 1. Proceeding by induction, using the addition
formula (Lemma 2.5),

Yeme1) = XxVem + Xanda-
By the induction hypothesis .| Yuu Hence, y,| Fuwe -
LEMma 2.9, y,] y, if and only i)"nlt.
Proof. Lemma 2.8 gives the implication in onc direction. For the converse
SUPPOSC ¥,| ¥, but n f 1. So onc can write ¢ = ng +r, 0 < r < n, Then,
Ve ™ X Vaq T X0y

Since (by Lemma 2.8) y, | yoq it follows that y, | xe .y, BUt (y,,X) = 1. (If d| y,,
d| X, then by Lemma 2.8 d| y,, which, by Lemma 2.7, implies d = 1.) Hence y,| ..
But, since » < n, we have y, < y, (c.g., by Lemma 2.6). This is 2 contradiction,

Lema 2.10. y,. =k x¥"1y, mod (y,)>.
Proof.
X+ Vut VII'.d = (a + \‘.'a)nl

(xn t Y. V'r.dr

L o1
= X )x: v = et
j=0 \ J

Your = :‘-. ("\:.)x.'j.‘.:d(j-l)l'x'

L
J=1 \ J
Jodd

But all terms of this expansion for which j = 1 are =0 mod (ra)>-
Lemma 2,11, yf [y,,n.
Proof. Set k = y_in Lemma 2.10,

Lesma 2,12, If \z.[ Vi, then )‘.J'-
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Proof. By Lemma 2.9, n|r. Set t = nk. Using Lemma 2.10, )7 |k <\7'y,, ie.,
Ye| kx; ™. But by Lemma 2.7, (¥vesXe) = 1. So, y,[ k and hence 3, |1,

LEMMA 2.13. x,., =2ax, —x,_, and y,,, = 28y, = Yot
Proof. By Lemma 2.6,
Xpy1 =ax, +dy,, Yat: =ay, + x,,
Xy -] T @x, ~ d)'n .vn-l ol ] (P 'tn'
So, Xp4y + X,y =2ax,, y.,, + Ya-1 =2ay,.

These second order difference equations, together with the initial values x, =1,
X; =4, yo =0, y, =1, determine the values of all the X.» ¥a- Various propertics of
these sequences are easily established by checking them for n = 0, 1 and using these
difference equations to show that the property for n + | can be inferred from its
holding for n and n ~ 1. Some simple (but important) examples follow:

Lesma 2,14, y. = nmod g — 1.

Proof. For n = 0,1 equality holds. Proceeding inductively, using a = 1, mod
a—1:

Yas1 ™= 28y, = Yo,y
= 2n—(n—=1) mod a -1,
LeMMa 215, If a = b mod c, then for all n,
X(@)=x.(b), y(a)my(b) mod e.
Proof. Again for n =0, 1 the congruence is an cquality, Proceeding by induction:
Yesrla) = 2ay(a) =y, (a)
= 2by,(b) ~ y,. (b) mod ¢
= Vusslb).

LemMma 2.16. When n is even v, is cven and when n is odd y, is odd,

Proof. y,., =2ay,—y,_, =y, , mod 2. So when n is even, ¥, = v, = 0 mod 2,
and when # is odd, y, =y, =1 mod 2,

LEsma 2.17. x, (@) = y(a){e ~ y) = y" mod 2ay — yi=-.

Proof. x4 — yola = y) = 1and x, — ¥i(@ = y) =y, so the result holds for n = 0
and 1. Using Lemma 2.13 and proceeding by induction:

Xet1 — Veu l(a o _V] = 2“[,"1 s _l'.(u " .)')] g [xu-l = Yp- I(a — _l')]

= 2gy" — y*~!

.
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= y"~'(2ay~1)
=yt
= yrtt
Lemya 2.18. Foralin, yo41 = Yo 2.
\ Proof. By Lemma 2.6, y,.; > ¥,. Since y, = 0 = 0, 1t follows by induction that
¥ = n for all n,
LemMMa 2,19, For all n, x,,,(a) > x (@) = a®;, x.(a) = (22).
Proof. By Lemmas 2.6 and 2.13 a x,(a) £ x,;,(a) £ (2a)x,(a). The result follows
J by induction.
Next some periodicity properties of the sequence x, are obtained.
LemMa 220, x,,.;= —x; mod x,.
! Proof. By the addition formulas (Lemma 2.5)
Xiesj = XeXaajt d¥adass
= dy,(y.x; *+ x,y,) modx,
) = dylx; mod x,
- (x2- 1)x;
) = =-x; mod x,.
Lemma 221 x4, ., = X; mod x,.
Proof. By Lemma 2.20
Xgns; = — Xzauy =X; mod Xx,.
3 Lemma 2.22. Let x,=x; mod x,, i£j<2n, n>0. Then i=j, unless a =2,
n=1,i=0and j=2.
) Proof. First suppose x, is odd and let ¢ =(x,—1)/2. Then the numbers
-g, =g+, —q+2,-,—1,0,1,.-.,g =1, q are a complete set of mutually
incongruent residues modulo x,. Now by Lemma 2.19,
1 =xp<X) < < Xpey.
b. Using Lemma 2.6,x, , = X,/a = $x,:50x,_, = g.Alsoby Lemma 2.20, the numbers
Xnt1eXas2y X 2010 %20
i are congruent modulo x, respectively to:
— Xpge1s ™ Xpg=2""" — Xg. —%p=—1,
’ .

r 4y
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Thus the numbers x,, K1y X2, 700, Xp, are mutually incongruent modulo x,. This gives
the result.

Next suppose x,, is even and let @ = x,[2. In this case, it is the numbers
s q+ lv —‘I+2."', Fe 1.0-1."'-0— l'q

which are a complete set of mutually incongruent residues modulo x,.(For, ~g=g4
mod x,.) As above, x,_, = g. So the result will follow as above, unless Xpoy =g
=x,/2, so that x,,, = — g mod Xay in which case i=np — I, j=n+1 would
contradict our result. But, by Lemma 2.6,

X =0UXp—y +dy,_,,

so that x, = 2x, _, implics a = 2 and Va1 =0,i¢., n = 1. So the result can fail only
fora=2 n=1 and i=0,j=2

LeMMA 223, Let x;=x, mod X, 7>0,0<isn 0=j<4n, then either
J=iorje=4n—i

Proof. First suppose j = 2n. Then by Lemma 2.22, j =i unless the exceptional
case occurs. Since i > 0, this can only happen if j = 0. But then

Otherwise, let j > 2n and set J=4n—jso 0< j<2n By Lemma 221, x;=x;
= x; mod x,. Agam j = i unless the cxceptional case of Lemma 2.22 oceurs, But this
last is out of the question because i, i=0,

Lemma 2.24. l/O-:i,S_nand.x,-:x_.mod X, then j = + i mod 4y,
Proof. Write j —4nq + j, 0= J=<4n. By Lemma 2.21,
X =x;=x, mod x,,
By Lemma 223 i = Jjori=4n— j So,j= j= +i mod 4n.
3. The exponential function. Consider the system of Diophantine equations:

(1) x = (@ =1 =]
(1 W o— (@ =1nt=1
(1) $? - (- =]
(IV) v = py?

(V) b = 1+4py=u+qu
(VI) . 5 = Xx+cu

(VID ! = k+4(d-1)y

-
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{ VIII) y = k+e-L

Then it is possible to prove:

IHEOREM 3.1. For given a, x, k, a > 1, the system I-VIIl has a solution in the
remaining arquments y, u, v,5,1, b, r,p, g, c.d, eifand only if x = x,(a).

Proof. Firstlet there be given a solution of I-VIIL. By V, b > a > 1. Then I, 11,
I imply (by Lemma 2.4) that there are i, j, # > 0 such that

x=xia), y=yla), u=x4a), v=yla), s=x(b), t=y,b).
By IV, yZesothati = n Vand VI yicld the congruences
b=ao mod x.(a); x,b)=x(a) mod x,(a)
and by Lemma 2.15 one gets also

xi{b)=x{a) mod x.[a).
Thus,
xja) = x;(a) mod x,(a).

By Lemma 2.24,
(1) j=4i mod 4n.

Next, equation 1V yields

(r@)? | yala).
so that by Lemma 2.12,
yda)| »
and (1) yields:
(2) j=+i mod 4yfa).

By equation V

b=1 mod 4y/(a),
so by Lemma 2.14,
(3) yiiby=j mod dyla).
By equation VII,
(4) vib)=k mod 4y(a).
Combining (2), (3), (4),

(5) k= +i mod 4dy/(a).
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Equation VIII yields Fis
k £ yila) o
and by Lemma 2,18, Pro
13 yla 2
=27 J' :U} Y
Since the numbers N
2y 41, —2p 42,---, LO,1,---, 2y 1X
form a complete set of mutually incongruent residues modulo 4y = 4yfa), these X
inequalitics show that (5) implies & =1, Hence X1
X = X,(a) = x;(a). X1
Conversely, let x= x,(a). Set y = y,(a) so that | holds. Let m = 2k yy(a) and let Theo
4 = Xu(@), v = yu(a). Then 11 is satisfied. By Lemmas 2.9 and 2.11 »* | v. Hence one
can choose r satisfying 1V. Morcover by Lemma 2.16, » is even so that v is odd. By L
Lemma 2.7, (u,v) = 1. Hence (u,0 4y) = 1. (If pis a prime divisor of v and of 4y, then ing «
P|y because u is odd, and hence p|v since y[r.) So by the Chinese Remainder
Theorem (Theorem 1.2), one can find b, such that L
a > )
by=1 mod 4y Lem:
bo=a mod u.
Since by, + 4juy will also satisfy these congruences, b, p. g satisfying V can be found. , X1 y
I 15 satisfied by setting s = x,(b), 1 = ¥u(b). Since b >a, s =x,(b) > x(a) = x.
By Lemma 2.15 (using V), £ = x mod «. So ¢ can be chosen to satisfy V1. By Lemma
2.18,t= k and by Lemma 2.14, 1 = &k mod b — | and hence using V, 1 = k mod 4y, By »
So d can be chosen to satisfy VII. By Lemma 2,18 again, y = k, so VIII can be
satisfied by setting e =y — k + 1. !
CoroLLary 3.2, The function .
gz k) = x(z + 1) :
is Diophantine, :
4 : yaeas Nov
Proof. Adjoin to the system I-VIII:
(A) am=z |,
By the theorem, the system (A), I-V1II has a solution if and only if x = x,(a) = g{z. k). } Sine
Thus a Diophantine definition of g can be obtained in the usuzl way by summing ,
the squares of 9 polynomials. nun
Now at last it is possible to prove: . 2.1
THeoREM 3.3, The exponential function hin, k) = n* is Diophantine.
;
T T —
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First, a simple inequality:

LemMa 3.4. If a >y, then 2ay — y* = 1> 35,

Proof. Set g(y) =2ay — y* —1. Then (since a22) g(1)=2a =22 a. For
lsy<a g'(y)=2a~2y>0.S0 g(y)Zafor | Sy<a Then for a>y =y,
2ay -y  —lza=> .

Now, adjoin to equations I-VIII:

1X (x = y(@ = n)—m)* =(f— 1)*(2an - n* - 1)?
X m+ g =2an—n®—|

XI w=n+h=k+1{

XII a* —(wt - 1)(w—-1)22=1.

Theorem 3.3 then follows at once from;

LemMma 3.5. m = n* if and only if equations 1-XI1 have a solution in the remain-
ing arguments.

Proof. Suppose I-XII hold. By XI, w > 1. Hence (w — 1)z > 0 and so by XII
@ > 1. So Theorem 3.1 applics and it follows that x = x,(a), ¥ = y,(a). By IX and
Lemma 2.17,

m=n* mod 2an —n*-1.
XI vields
Kyn < w.
By X1 (using Lemma 2.4), for some j, @ = x/{w), (w — 1)z = yi{w). By Lemma 2.14,
J=0mod w—1
so that f 2w — 1. So by Lemma 2,19,

1o at

a=w'
Now by X, m < 2an—n? = I, and by Lemma 3.4,

nt < 2an—n?—1.

Since m and »' arc congruent and both less than the modulus, they must be equal.

Converscly, suppose that m = n*. Solutions must be found for I-XT1. Choose any
number w such that w > n and w > k. Set a = x,,_,(w) s0 that a > 1. By Lemma
2.14,

Vu-1(w)=0 mod w—1.
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So one can write
Yo1(W) = z{w — 1);
thus X1 s satisfied. XT can be satisfied by setting
=w—n l=w=F,
As before, a > n* so that again by Lemma 3.4,
m=n*<2an - n? - |

and X can be satisfied. Setting x = x(a), y = yla), Lemma 2.17 permits one 1o
define f such that

Xx—y@—n)—m=%(f-1)2an - n*~1,
S0 that IX is satisfied. Finally, I-VIIT can be satisfied by Theorem 3.1,

4. The language of Diophantine predicates, Now that it has been proved that the
exponential funciion is Diophantine, many other functions and sets can be handled,
As an example, let

R, o,w) =™
The claim is that b 1s a Diophantine function. For:
Y=u"(3 Dy =& >z = o),

where “&" is the logician’s symbol for “‘and”, Using Theorem 3.3, there is a
polynomial P such that:

y=we(3r, . r)[Py, U 2,7y, o 1) = 0],

7= o e (s, ,5,) [Pz, 0, w,5,, -5y =0]
Then,

y=u" (32,0, 08,00, 8,) (P(y,u,2,ry, o 1)

+ P, vy 8y, 0--,5,) = 0].

Now this procedure is perfectly general: Expressions which are already known
to yield Diophantme sets may be combined frecly using the logical operations of
“&™ and “(3)": the resulting expression will again define a Diophantine set. (Such
CXpressions are sometimes called Diophantine predicates.) In this “language"” it js
also permissible 1o use the logician's **\v* for “or", since:

Gry, i) [Py = 0]y (35, --,5,) [Py = 0]
o(arl_-..’,-..sh...’s") [plpz . 0].

-
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Three important Diophantine functions are given by:
IHEOREM 4.1. The following functions are Diophantine:
) ‘'n
| () =
(1 £(n k) ( ‘)
(2) gin)=n'
¥
(3) hia,b,y) = || (a+ bk).
k=1

In proving this theorem the familiar notation [z], where « is a real number, will
be used to mean the unique integer such that

[z] Sa <[] + 1.

Levma 41, ForO<k Sn u>2"

[(Q +1)' '] = Zi ( "' )u 4

Proof.
(v + D'u* = i ‘"r)u""—S+R
T AL,
where
) u. ‘n yo l_'l.n P,
.S=._)_4(‘_’uk R = ).(l,,u“.

i=0

Then S is an integer and

Il
=
]
f
—
s ]

So,
SSu+1Put<cS+1

which gives the result.
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Lemsa 4.2, ForO0<k =nu=> 2"
e n
[{u +1) _ﬂu]::( & ) mod u.,
Proof. In Lemma 4.1 all terms of the sum for which i > & are divisible by u.
LemMa 4.3, fin k) = ( : ’ is Diophantine.

Proof. Since

(1)s 5 (7)=r<n

=20

Lemma 4.2 determines (}) as the unique positive integer congruent 1o
[(u + 1)*j«*] modulo « and < u. Thus,

z =(:)¢(3u.v.w)(!=-2"&u >p

&we=[u+1Vu]&2=w mod u&z <u).

To see that () 1s Diophantine, it then suffices to note that each of the above
cxpressions separated by “* & are Diophantine predicates; ¢ =2is of course Diophan-
tine by Theorem 3. The inequality u > v is of course Diophantine since u > p <>
(3x)(x = v + x). Also,

z=wmod u & z<u<=(3x,y) (w=2z +ix— Nu&u =z 4 y).

Finally
we=[(u + l)“..'u‘]

<
(A, p0(t=u+]l &Ex=r&y—-u'&w sxfly<w+ ),
and wEx/y<w+lsewy S x<(w+ 1)y
Lemma 4.4, If r > (2x)**! then

s [ (i )]

Proof. Let r > (2x)**L. Then,

r,,(r" _ rx!
X rir— 1) (r—x+1)

GRS
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) 1
< xl —
X
-3
' ‘.
g Now,
Ie by u. .
1 X < 3%
_— =]+ = +(- ) + -
fsiz :\ r r)
.

Stk et o)

X
<l — e £ e
1gruent (o
5
2x
—_ l__,
:
And,
2x\* v =Y 2mnt
- f+=) =2 (01
<< ). r FEr A W L
the above —_— 2x i ( X )
. <.
 Diophan. roje=s \J|
C U > <> -
2x
< | $—-2F
=
So,
; 2
r".f‘ r) < x!+ X .10
X r
2&-! X4t
< X!+ —
=
< x!+ 1.

Lesma 4.5, n! is a Diophantine function.
Proof. m = n! <

(Ar,s,t,u,0) [s=2x+ 1 &t=x+ 1 &r =5
-
&u=r&y =(n )&mvSu < (m + Do}.
Lemma 4.6, Let bg = a mod M. Then,

1 (a+bk)= b’_v.'(q yrig

k=1 'SR

) mod M.
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Proof.

- |
2y (T*) = g+ @ty Dtg e

= (bg + yb)ibg + (y —~ D)B) - (bg + b)
= (@a+yb)(a+(y~1)b)(a+b) (mod M),
Lemma 4.7. h(a,b,y) = []Z-, (a + bk) is a Diophantine function.

Proof In Lemma 4.6 choose M =bh(a + by’ + 1. Then, (M,b)=1 and
M >[I, (a + bk). Hence the congruence by = a mod M s solvable for g and then
[L-, (@ + bk) is determined as the unique naumber which is congruent modulo M

1o bly! (q: }') and is also < M. le

.

L4
I = [I (u +b!.‘)-»(i-\rl.p,q.r.t,r.u,n,w..v.)

ko~
{r«a +thy&s=r" &M =bs =1

Ehg=a+ M &u=Plo=y &z <M
&w=g+y&x= (':’&,: +Mp=uv.tj.

Using the previous expressions for the exponential function, for ¢ = y! and for
x = (}), we obtain the result.

The assertion of Theorem 4.1 is contained in Lemmas 4.3, 4.5, and 4.7.

5. Bounded quantifiers. The language of Diophantine predicates permits use of
&, '/, and 3. Other operations used by logicians are:

~  for “not”
(Vx) for “for all x"
= for *“if--., then.--"

However, as will be clear later, the use of any of these other operations can Jead to

expressions which define sets that are not Diophantine. There are also the bounded
existential quantifiers:

AQ(;),):M__." Which means “(3}") (_I'S,x&-"]"

and the bounded universal quantifiers-

“(V¥)<, - which means “M) (y > x\ --- )™,
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It turns out that these operations miy be adjoined to the language of Diophantine
predicates; that is, the sets defined by cxpressions of this extended language will
still be Diophantine, Le.,

Taeorem 3.1, If P is a polynomial,

R = 10X 0 X | (32) 5, (301w ) [P(3, 2 %10+, %0 g0 oe, ) = 07}

and
e S={0xn X0 | (V2) 5,301, 0, V) [Pz, Xy X0 ¥ V) = 0]1,
and then then R and S are Diophantine.
odulo M That R is Diophantine is trivial. Namely,
Xy, X )€ Re=(Jz,py,,3) (2 S y &P =0),
The proof of the other half of the theorem is far more complicated.
Lemma 5.1
(YK} 53y 1y Vo) [P Xy, o Xy ya oy ) = 0]
<
(30) (VK) < 3p s Vo) 2 POS Ky Xy, o X 0y o, ) = 0]

Proof. The right side of the equivalence trivially implies the left side. For the
and for converse, supposc theleftsideis true forgiven y, x;, ---, x,. Thenforeach k = 1,2,y

. k -
there are definite numbers ', -+, y* for which:

P(y’ (.8 Xiso o Xy .V(l‘)’ IR yi‘t)) = 0.

s use of Taking u to be the maximum of the my numbers
(1= Loeami k= 1,2, 0,
it follows that the right side of the equivalence is likewise true.
Lemma 5.2, Ler Q(y,u,xq, -, X,) be a polynomial with the properties:
Ical to “’ QU‘. u..\:,.---.x,,) = u, (2) Q(}',U, xl.'.”"tl] > }’.
ey 3) ksvand y, -, y,<uimply ]P(y,k,x,,~--,.t,._v,,--~,y,,)]5. Qly u, Xy, X,).
saounded
Then,
4 {Vk)g,(a)'h e ym)_'.y[P(y} k)xl o -".")'n Yy .)'-) = 0]
-
\ »
' (3e,0,ay,-,a0) [1 +ct =[] (1 +ke)
: L=
] -
* -
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&t = Q('.}'»u.xh'".x,)!&l +Cl‘ ” (al _.l)
=1

& &1+t ] I (@n—j)
J=1
&P(y.c.x,,---.x.,a,,---,a_)aU mod l+(‘f].

The point of this lemma is that while the right side of the equivalence seems the
more complicated of the two, it ic free of bounded universal quantifiers,

Proof. First the implication in the < direction:

Foreachk = 1,2, ...,y let p, be  prime factor of | + kt. Let y*' be the remainder
when a; is divided by k=12 yi=12, +,m), It will follow that for each

kit
(2) 15 y¥=u
(b) Py Kk, xy, -y x4, -, 80 = 0,

To demonstrate(a), note that p, |14k, 1 4 kt|1 +crand 1+ et I ta =) Le.,
Pe|[Tf=:(a; = j). Since p, is a prime. Pi|a; = j for some j = 1,2, . u. That is

j=a;=y" mod p,.

Since t=Q(y,u,x,, "3 X,)!, (2) implies that every divisor of | + kt must be
> 00, u,x,, -, x,). So p, > Q(y, u, x,, %) and by (1), p, > u. Hence j =y = P
Since y*is the remainder when a; is divided by p,, also ¥ < - So

¥ =j
To demonstrate (b), first note that
l+ct=1+kt=0 mod P
Hence
k+ket=c+ ket mod Pes

ie, k=c mod p,. We have already obrained

¥W=a, mod p,
Thus,
POy kX g, e, Xy, o) 80 = P(y,e\xy - X0ty . a)
= Omodp,.
Finally
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AR)

I ”(}3 kvxl""'xr}l ’ '“’}'.::))I '.l..: QU‘- H,X]."'.X‘) < Pk

his proves (b) and completes the proof of the = implication,
To prove the = implication, Jet

POy, K, xy, oo X P30, oo ¥ = 0,

for cach k = 1,2,..,1, where each y/"'= u. Wesett = Q(y, u, x,, +++, X,)!, and since
Ce seems the (1 +kt) =1 mod r, we can find ¢ such that

b4
L+t =[] (1 + k0.
A=

¢ remainder

hat for cach Now, it is claimed that for 1 S k<1 < y,

(I+k,14l)=1.

For, let p| 1 + kt,p| 1+ lr. Then p|i=k, so p < y. But since Oy, u, xg, -, x) > y

this implics p| 7 which is impossible. Thus the numbers | + k form an admissible

sequence of moduli and the Chinese Remainder Theorem (Theorem 1.2) may be
a; — j). Le.. applied to yield, for each i, 1 =< i = m, a number a; such that

hat is a=y"mod 1 +kt, k=12 p

As above, k = ¢ mod 1 + kt, So
- must be Plvieyxp oo Xe @y, an) = Pl koxy, - x, v o v9) mod 1 + ki,
i Su<p,. - 0.

Since the numbers |+ ki are relatively prime in pairs and each divides
Py, e,x) - x,.as,++,a,) 50 does their product. Ie.,

P(_\'.(‘.X|,"',xu,a|,"',a“) = 0 ",(Kll +et.
Finally,

a, = ymod 1 + ki,

1+ kt|a, — pi¥.
Since | <y <y,
-
1+ ke| [T ta, = 0.
j=1
And again since the | + ki's are relatively prime to one another,

[ ('r[ n (a; — f).

J=1
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Now it is easy to complete the proof of Theorem 5.1 using Lemmas 5.1 and 5.2.

First find a polynomual Q satisfying (1), (2), (3) of Lemma 5.2. This is easy to do:
Write

N
PO KXy Xy Fps V) = Z 8,

r=1

where cach 1, has the form

YR XPXY - X3y e

n

t=|c

for ¢ an integer positive or negative, Set u, = c y* " xPxd . gty T T e and et

~
Oy, X1y x)=u+y + X u,
e

Then (1), (2), and (3) of Lemma 35,2 hold trivially. Thus:
(Vk)gi(ayl’ g yn) [P‘.v‘ k'xl’ ."v"n‘.rlv ".-.vn) I 0]

-~

(Ju, e, t,ay,--,a,) [l +ct= “ (1 4 k)
k=1
&t =Qy,u,xy, - x ) &1 +et| [T (a, ~ )
i=t

&-&1+er| [ (an-i)
i=1

&P(y, e, %), " %@y, --ya.) =0 mod l+-cr]
R

(3"-("_vuly"')un'«bfnglv"'aqn-hly'".h..l)
[c =ltea&e=]] O+kn&f = Qly.ou,x,, -, x,)
k=1

&t=f1&g;~a,-u-1&g,=a,~u—-1&- &g . =a, —u—1

&hy =[] (g, +k) &h, = 1 (a: +k)
A=l et

& - &by =[] (gu+ k) &e|h, &e|h, & - &e|h,

A=1

&l = P(,v.c.x,.---.x,..a..-",a.)&e| l]

and this is Diophantine by Theorem 4.1.
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6. Recursive functions. So far one trick after another has been used to show
(hat various setsare Diophantine. But now very powerful methods are available: 1t
turns out that the expanded version of the language of Diophantine predicates,
permitting the use of bounded quantifiers (sanctioned by Theorem 5.1) together with
the Sequence Number Theorem (Theorem 1.3} enables one to show in quite 4 straight-
forward way that almost any set we please is Diophantinc.

Some examples are in order:

(1) the set P of prime numbers:

xePex>1 &) [yz<xyyzexy=1yz=1]
Another Diophantine definition of the primes is:
xePesx>1&(x-1),x)=1
eox > 1 & Ay s o) [v=x—1&z =yl &(uz - vx)* =1];

but the first definition 1s the more natural one.

From Theorem 1.4 it follows that rhere is a “*prime-representing” polynomial
P, i.c., @ positive integer is prime if and only if it is in the range of P. For an
explicit construction of such a polynomial F, cf. [23a].

(i) the funcrion g(y)=[[l«: (1+k%). Here we use the Sequence Number
Theorem to ““encode’ the sequence g(l), 4(2),-++,g(y) into a single number u, ie.,
so that

S(i,u) = g(i). i=1,2,,.
Thus, z = g(¥)
< (Gu) (SO.u) =2 & (VK)g,[k =1 V(Stk,u) = (1 + k)S(k — Lu))] &z = S(r,u)}
e (3u) {S(1.u) =2 &(Vk)<, [k =1V (3a,b,.c) (a=k~-—1
&b=S(a,u)&e=Sk,u)&e=(1 +E)b)] &z =S(p.u)}.

By now it is clear that the available methods are quite general. They are so
powerful that the question becomes: how can any ““reasonable’™ set or function
escape these methods, ie., not be Diophantine?

The strength of the methods can be tested by considering the class of all compu-
table or recursive functions. These are the functions which can be computed by a
finite program or computing machine having arbitrarily large amounts of time and
memory at its disposal. Many rigorous definitions of this class (all of them equivalent)
are available. One of the simplest is as follows:

The recursive functions® are all those functions obtainable from the mitial
functions
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cx) =1, s{x)=x+1; Ui(x;,-~,x,) = x,, <i<n: (3) For
. . : one of the
S(i,u) (The sequence number function)® (4) Any
iteratively applying the three operations: composition, primitive recursion, and smoc m_‘). s}
minimalization defined below: tiplications

CoMPOSITION yiclds the function

So (1), (2),
h(xl}..."\.u) =j(gl(x|- o vxu)a “'-gn(x;- ] -\'..))

Now il
from the given functions g,,---,¢,, and f(t,, -, 1) Let f b
PRIMITIVE RECURSION yields the function hix,, - x,,z) whick satisfies the
equations:
hi(xyy o e 1) = f(x), . x,) where P, @
. ber th
hixy, -, x,, 0+ 1) = g(1, h{x,. e X 1), Xt X e
. ) fx
rom the given functions f, g.
When n =0, f becomes a constant so that h is obtained directly from g.
MINIMALIZATION yields the function: Since P, @
To obt
h(‘l! F0 xn) = minv[f(xh e Xe V) = y("‘l* "‘..’(,._l’)-] functions s
. ) functions .
from the given functions £, g assuming that f, g arc such that for each x,,--, x, there
is at least one y satisfying the equation f(x,, -, x,. ) = #(x;. -, X, ¥): (i.e.. h must Compo
be everywhere defined). .y are
The main result of this article is: i
Turorim 6.1. A function is Diophantine if and only if it is recursive.
To begin with, consider the following short list of recursive functions: Primii
(1) x + y 1s recursive since
X+ | =s(x),
X+ +1)=5s(x+1)=g(,x +t,x), and £ g
where g(u, v, w) = s(U (1, v, w)). numbers

(2) x - y is recursive since
x-1= U,'(x)
x-(t+=(x-t)+ x=g{t,x"1.x),

where g(u, v, w) = U(u,v,w) + Uy, e, w).
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(3) For each fixed k, the constant function c,(x) = k is recursive, since ¢,(x) is
onc of the initial functions and ¢, (x) = ¢ (x) + ¢(x).

(4) Any polynomial P(x,,---,x,) with positive integer coeflicients i3 recursive,
stnce any such function can be expressed by a finite iteration of additions and mul-
tiplications of variables and ¢(x). E.g.,

253y +3x2? + 5 mea(X) - x- Ny X)) xcz oz 4 egx).

So (1), (2), (3). and composition gives the result.
Now it is easy to sce thal every Diophantine function is recursive:
Let f be Diophantine, and write:

5 =j(\'(t""-‘n)°(§‘h""ln) [P(xl'""xu'y"l"""")

= O(Xg, s Xy Yalis s b))

where P, Q are polynomials with posirive integer coefficients. Then, by the sequence
number theorem:

f(x,. "'.x.) = S(I.min,,[P(x.,---.x,.S(l.u).SQ.u). "'1S(m + lpu))
— Q(x,."'..t.. S(llu)l S(l u)-"" S(m . o l' u))])'

Since P, Q, S(i,u) are recursive, so is f (using composition and minimalization).

To obiain the converse: S(i,u) is known to be Diophantine; the other initial
functions are trivially Diophantine. Hence it suffices to prove that the Diophantine
functions are closed under composition, primitive recursion and minimalization.

Composition: If  h{x,--, %) =f(g,(Xs. . %) . 9%y, -, X)), where f,g,,
-, 4, are Diophantine, then so is A since

yo=h(xy, o X))o (3, oy ) [0 = g%y, X ) & -
&ty = gulXy, - X,) &y = flty, 1))
Primitive Recursion: If
h(xy, o %o 1) = f(X15 -5 Xe)
R(xg, = Xy T+ 1) = @8, h(x . o X0 0D X gy XL,

and f, ¢ are Diophantine, then (using the sequence number theorem to “'code™ the
numbers h(x,, -, X,, 1), h(xy, = X0 20 -+, B(Xy, 22, X, 2):

¥ = h(x, -, X,,2) <>
(3u) {(@v) [v = S(Lw) & v = f(x, -, %,)]
& (V). [(t =2) V (30) (0= S(1 + 1.u)
& v = g(t, S(t.w), x,,---.%,))] & ¥ = S(z,u)}
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so that (using Theorem 5.1) & is Diophantine. Proof.
Minimalization: If
h(xy, -+, x,) = min, [ f(x,, . x,, ) = 9(x,, . X,. ¥)]
where f, g arc Diophantine, then so is h since,
,V = h(xlr“'; Yﬂ)ﬁ
(32)[z =[xy, X V) & Z = 4(Xy, -+, %, )] It is clear
: L Diophant
&(¥e) g, [(1 =) (3u,0) (u = f(x,, -, x,,1) il s
&v=g(xy, -, x,0) &u<vVr<u)] P (31
. g L
7. A universal Diophantine set. An explicit enumeration of all the Diophantine A
sets of positive integers will now be described. Any polynomial with positive integer *)
coeflicients can be built up from | and variables by successive additions and multi plica- -
tions. We fix the alphabet Then In
' right-han
oy Xgo X2, X3, Conwe
of variables and then set up the followmg enumeration of all such polynomials
(using the pawring functions): Then, (*)
P, =1
Pyt = Xy so that .
Pyi = Pup+ Pyy; Since
COnStruc!
Py = Priy * Prysy-

Write P; = P{xy.x,, . x,), where n is large enough so that all variables occurring

in P; are included. (Of course P, will not in general depend on 21l of these variables.) Tueo
Finally, let Prooj

Du = :xol (3.!,,-"..'(.) [Pu,l(xo,x““‘..‘,) - Pn(.)(XO.X|. "‘.I,ﬂ }- Dlophan

Here, Py, and Pg,,, do not actually involve all of the variables Xgy Xy, =00y X, = but
clearly cannot involve any others, (Recall that L(r), R(n) = n.) By the way the se- This is
quence P; has been constructed, it is seen that the sequence of sets:

THre
DD, D, D,.--
includes all Diophantine sets. Morcover:
Taeorem 7.1 (Universality Theorem®). is not r
{{n.x)| xeD,} is Diophantine. Proa
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Proof. Once again using the sequence number theorem, it 1§ claimed that:
xeD,«>(Ju)(S(lu)=1&S2,u)=x
& (V)5 o[ S(3i, ) = S(L{3), u) + S(R(5),u)]
& (Vi) 5, [SGi + 1,u) = S(L(i),u) * S(R(i),u)]
& S(L(n),u) = S(R(n),u);.

It is clear enough that the predicate on the right-hand side of this equivalence is
Diophantine, so it is only necessary to verify the claim:

Let xeD, for given x, n. Then there are numbers f,, -1, such that
Priay (X3 73 00) = Quimy (%5815 ba)- Choose u (by the sequence number theorem)
so that

* SG,u) =PAx,ty,- " 0), S = 1,2,-,3n + 2.

Then in particular S(2,u) = x and S(3i — Lu)=t_y i=23,,n+1l Thus the
right-hand side of the equivalence is true.
Conversely, let the right-hand side hold for given n, x. Set

ty = S(5,u), ty = S(8,u), -+, 1, = S(3n + 2,u).
Then, (*) must be true. Since S(L(n),x) = S(R(n), u), it must be the case that
PU')(x"l' '"-‘u) i PR(IJ{xulh ""‘n)v

so that x« D,.
Since D,, Ds, Dy, -+, gives an cnumeration of all Diophantine sets, it is easy to
construct a set different from all of them and hence non-Diophantine. That is, define:

V=1{n|n¢b,}.
THEOREM 7.2. V is not Diophantine.

Proof. This is a simple application of Cantor’s diagonal method. If V' were
Diophantine, then for some fixed i, ¥ = D;. Does i € ¥? We have:

icV<sieD;: ieV=igD,
This is a contradiction.

Turorem 7.3. The function g(n,x) defined by:
aln,x)=1 if x¢D,,
g(n,x)=2 if xeD,

is not recursive.

Proof. 1f g were recursive then it would be Diophantine (Theorem 6.1), say:
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Y. == g(ﬂ, x)"(a)'h Yo yn) LP(’!. b 39 1% S Tt yn) = OJ-
But then, it would follow that

Vo= {x| (3y1, o yad [P(x,X, 1, ¥y, 50, ¥a) = 0]}

which contradicts Theorem 7.2.
Using Theorem 7.1, write:

XED.Q(azl, = 3.") [P(".x. F T T :l) = 0]'

where P is some definite (though complicated) polynomial. Suppose there were an
algorithm for testing Diophantine equations for possession of positive mlcger
solutions; i.¢., an algorithm for Hilbert's tenth problem! Then for given n, x this
algorithm could be used to test whether or not the equation

P(n,x,z,,---,2,)=0

has a solution, i.c., whether or not xe0,. Thus the algorithm could be used to
compute the function gi(n, x). Since the recursive functions are just those for which a
computing algorithm exists, g would have to be recursive, This would contradict
Theorem 7.3, and this contradiction proves:

Tueorem 7.4, Hilbert's tenth problem is unsolvable!

Naturally this result gives no information about the existence of solutions for
any specific Diophantine equation; it merely guarantees that there is no single
algorithm for testing the class of all Diophantine cquations. Also note that:

xeV o ~(3z),-,2) [P(x,x,2,,--,2,) = 0]
= {(32,,--,2) [P(x,%,2),-,2) = 0] = 1 =0}
o (Vz,,-,2) [P(x,x,2,,,2) >0
VoOP(x,x,z2,,---,2,) < 0]

which shows that if cither ~ or unbounded universal quantifiers (Vz) or implication
(=) are permitted in the language of Diophantine predicates, then non-Diophantine
sets will be produced.

It is natural to associate with each Diophantine set a dimension and a degree;
i.e., the dimension of S is the least n for which a polynomial P exists for which:
(*) S = (x| (3ys, . ¥a) [P(X, 3120+, 3,) =01},
and the degree of S is the least degree of a polynomial P satisfying (*) (permitting n
to be as large as onc likes). Now it is easy 10 see:

Tueorem 7.5. Every Diophantine set has degree = 4,

Proaf. The degree of P satisfying (*) may be reduced by introducing additional
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variables z; satisfying equations of the form

Z; = Y
z; = ¥
;= XN
z; WX

By successive substitutions of the z;’s into P its degree can be brought down to 2.
Hence the equation is equivalent to a system of simultancous equations each of
degree 2. Summing the squares gives an equation of degree 4.

A less trivial (and more surprising) factis:

Tuponem 7.6. There is an integer m such that every Diophantine set has
dimension = m.

Proof. Write
D, = {"JU)’;. oy Vo) [P(X, 1, Y50ty Yeu) =0]},

which is possible by the universality theorem. Then the dimension of D, i1s < m for
all n,
An interesting example is given by the sequence of Diophantine sets:

S., = {X’ (3}'n"'.}'q) [X =(.yl + I,'"(}'l + l)]}'

Here S, is the set of composite numbers; S, 1s the set of “‘g-fold"” composite numbers.
[t is surely surprising that it is possible to give a Diophantine definition of S_ (for
large g) requiring fewer than g parameters (ef. [19]).

How large is m, the number of parameters in the universal Diophantine set?
A direct calculation using the arguments given here would yield a number around 50,
Actually Matiyacevi¢ and Julia Robinson have very recently shown that m = 14
will suffice!

The unsolvability of Hilbert’s tenth problem can be used to obtain & strengthened
form of Gadel's famous incompletencss theorem:

Turorem 7.7. Corresponding to any glven axiomatization of number theory,
there is a Diophantine equation which has no positive integer solutions, but such
that this fact cannot be proved within the given axiomatization.

A rigorous proof would involve a precise definition of “axiomatization of number
theory' which is outside the scope of this article. An informal heuristic argument
follows:

One uses the given axiomatization to systematically generate all of the theorems
(i.e., consequences of the axioms). Among these theorems will be some asserting
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that some Diophantine equation has no solution. Whenever such is encountered it
is placed on a special list called LISTA. Atthe same time a list, LIST B, is made of
Diophantine equations which have solutions. LIST B is constructed by a scarch
procedure, ¢.g., at the nth stage of the search look at the first n Diophantine cquations
(in a suitable list) and test for solutions in which each argument is < n. Thus every
Diophantine equation which has positive integer solutions will eventually be placed in
LIST B. Iflikewise each Diophantine equation with no solutions would eventually
appear in LIST A, then one would have an algorithm for Hilbert’s tenth probiem.
Namely, to test a given equation for possession of a solution simply begin genecrating
LIST A and LIST B until the given equation appears in one list or the other. Since
Hilbert’s tenth problem is unsolvable, some equation with no solution must be
omitted from LIST A. But this is just the assertion of the theorem.

8. Recursively enumerable sets, 11 is now time to settle the question raised at the
beginning: which sets arc Diophantine?

Derinmion. 8.1, A set S of n-tuples of positive integers is called recursively
enumerable if there are recursive functions f(x,%,, -+, %.), (X, X;. -, x,) such that:

§ = (x5, 500 | () [f(x, x5, 04, %,) = (%, Xy, -, %,)] ).
THeEOREM 8.1, A ser § is Diophantine if and only if it is recursively enumerable,

Proof. 1f § is Diophantine there are polynomials P, Q with positive coefficients
such that:

(X;,"'.X,.)r SQ(;}' v"'-}'m) [P(xl."‘.X.,y,,"‘,y.) — Q(xh""xm yl""v.vn)_]
<> (3u) [P(x,, . x,, S(1,u), -, S(m,u)) = Q(x,,---, X,,S(1,1), -, S(m, u))],

s0 that S is recursively enumerable.
Conversely if S is recursively enumerable there are recursive functions
F(x, x4, 00, x,), g(x,x,,-,x,) such that

(xl.---\x,)FS e (3!) U(x'xl'“.-xn) — g(xyxh"'rxn)]
= (3x,2) [z = f(x.x,,.x,) &2 = g(x,x,---, x,)].
Thus by Theorem 6,1, S is Diophantine.

9. Historical appendix. The present exposition has ignored the chronological
order in which the ideas were developed. The first contribution was by Godel in
his celebrated 1931 paper [16]. The main pomt of Gadel's investigation was the
existence of undecidable statements in formal systems. The undecidable statements
Gidel obtained involved recursive functions, and in order to exhibit the simple
number-theoretic character of these statements, Godel used the Chinese remainder
theorem to reduce them to “arithmetic'” form. The technique used is just what is
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used here in proving Theorem 1.3 (the sequence number theorem) and Theorem 6.1
(in the direction: every recursive function is Diophantine). However without the
techniques for dealing with bounded universal quantifiers as discussed in this paper,
the best result yielded by Gdel’s methods is that every recursive function (and
indeed every recursively enumerable set) ¢an be defined by a Diophantine cquation
preceded by a finite number of existential and bounded universal quantifiers®. In my
doctoral dissertation (cf. [5], [6]), | showed that all but onc of the bounded universal
quantifiers could be eliminated, so that every recursively enumerable sct S could be
defined as

S = Jlx' (3.‘.) (VRJ’I‘Byl' "'-.ru) [P(k.x..}\}'u "':}") =0J}.

This representation became known as the Davis normal form. (Later R. M. Robinson
[31], [32] showed that in this normal form onc could take m = 4. More recently
Matiyacevit has shown that one can even take m = 2. It 1s known that one cannot
always have m — 0; whether one can always get m = 1 is open.)

Independent of my work and at about the same time, Julia Robinson began her
study [27] of Diophantine sets. Her investigations centered about the question:
Is the exponential function Diophantine? The main result was that a certan hypoth-
esis implied that the exponential function was Diophantine. The hypothesis, which
became known as the Julia Robinson hypothesis, has played a key role in work on
Hilbert's tenth problem. Its statement is simply:

There exists a Diophantine ser ) such that:

(1) Cu,vycD implies v < u".

(2) For each k, there is {u,v) € D such that v > u*.

The hypothesis remained an open question for about 2 decades. (Actually the set

D = {(u.r)[ p=x(2) & u >3}

satisfies (1) and (2) by Lemma 2.19 and is Diophantine by Corollary 3.2, so the truth
of Julia Robinson’s hypothesis follows at once from the results in this article.)
Julia Robinson’s proof that this hypothesis implies that the exponential function 1s
Diophantine used the Pell equation. And, the proof that the exponential function is
indeed Diophantine given here is closely related to @ more recent proof [28] by
her of this same implication.

In [27], Julia Robinson studied also sets and functions which were exponential
Diophantine (or existentially definable n terms of cxponentiation) that is which
possess definitions of the form:

(Hu,.---,u,., Uy, U, Wn."'-""..) [P(xh'"’xn*“l' oy “m”l-'"’”vwl-"'rwn) =0

&u, =0, & - &u, = v)"].

In particular, the functions() and n! were shown by her to be cxponential




266 MARTIN DAVIS [March

Diophantine. This is really what is shown in proving (1) and (2) of Theorem 4.1.
The present proof of (2) is just hers: the proof of (1) given here is a simplified var-
mnt of that in [27]. (It is due independently 10 Julia Robinson and Matiyasevic.)

The idea of using the Chinese remainder theorem to code the effect of a bounded

universal quantifier first occurred in the work of myself and Putnam [7]. In [8], we
refined our methods and were able to show, beginning with the Davis normal form,
that IF there are arbitrarily long arithmetic progressions consisting entirely of
primes (still an open question), then cvery recursively enumerahle set is exponential
Diophantine. In our proof we needed 1o establish that hia,b,y)=[1Z.; (a + bk) is
exponential Diophantine, which we did extending Julia Robinson’s methods. (The
proof given here of (3) of Theorem 4.1 is a much simplified argument found much
later by Julia Robinson -¢f. [29].) Julia Robinson then showed first how to eliminate
the hypothesis about primes in arithmetic progression, and then how 1o greatly
simplify the proof along the lines of Lemma 5.2 of this article. Thus we obtamned the
theorem of [9] that every recursively enumerable set is exponential Diophantine.

Attention was pow focused on the Julia Robinson hypothesis since it was plain
that it would imply that Hilbert's teath problem was unsolvable,

Many interesting propositions were found to imply the Julia Robinson hypoth-
esis.”. However the hypothesis seemed implausible to many, especially because 1t
was realized that an immediate and surprising consequence would be the existence of
an absolute upper bound for the dimensions of Diophantine sets (cf. Theorem 7.6).
Thus in his review [19] Kreisel said concerning the results of [9]: ... itislikely the
present result is not closely connected with Hilbert's tenth problem. Also it is not
altogether plausible that all (ordinary) Diophantine problems are uniformly reducible
to those in a fixed number of variables of fixed degree... "’

The Julia Robinson hypothesis was finally proved by Martiyasevi¢ [23], [24].
Specifically he showed that if we define

d] “’azhlv unvl_un+“n'l
so that a, is the nth Fibonacci number, then the function a;, ts diophantine. Then
since, for n = 3, as is easily seen by induction,
'S.n '
= L
(,4’ S EGE
the ser
D={ ury|o=0,&u=2

satisfies the Julia Robinson hypothesis. Subsequently, direct diophantine definitions
of the exponential function were given by a number of investigators, several of
them using the Pell equation as in this article (cf. [3].[4]. [14], [18a]). The treatment
in §2, 3 is based on Matiyasevi&'s methods, although the details are Julia Robinson’s,
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corem 4 . . X - -
plified ._'l’ In particular, it was Matiyasevi¢ who taught us how to use results like Lemmas 2,11,
i asc:f_r' 2.12, and 2.22 of the present exposition. (Matiyasevi himself used analogous results
= l:o nd.:g for the Fibonacci numbers.)
Y [;] B It was soon noticed (by S. Kochen) that by a simple inductive argument the use
sl Lk of the Davis normal form could now be entirely avoided, as has been done in the
'nlirel“)rm[: present exposition,
‘mmi : igl Let #(P)be the number of solutions of the Diophantine equation P = (0. Thus
a + bk) is 0 < #(P) 5 N,. Hilbert's tenth problem secks an algorithm for deciding of a given
i ; Th P whether or not #(P)=0. But therc are many related questions: Is there an
o n(md(: algorithm for testing whether #(P) =N,, or #(P) = 1, or #(P) is even? I was able
clitniiat to show easily (beginning with the unsolvability of Hilbert’s tenth problem) that all
. of these problems are unsolvable. In factif
[0 greatly
ained the A = {01,23,--N,}
ntine,
vas plain and B< A, B # (5, B # A, then one can readily show that there is no algorithm for
determining whether or not #(P) ¢ B (cf. [15]).
1 hypoth- The fact that no general algorithm such as Hilbert demanded will be forthcoming
ecause it adds to the interest of algorithms for dealing with special classes of Diophantine
stence of equations. Alan Baker and his coworkers [1]. [2] have in recent years made con-
rem 7.6). siderable progress in this direction.
ikely the
1t 1S not
Notes
educible
1. Thess pairing functions (but of course not their being Diophanting) were wsed by Cantor in
3] his proaf of the countability of the rational numbers. J. Roberts and D. Siefkes cach corrected an
. [24]. ereor in the definition of thesa functions. They, as well as W. Emerson, M. Hauwsaer, Y. Matiyasevic,
and Julia Robinson made belpful suggestions.
2. Forexample. of. [25]. pp. 175-180. MatiyaseviC used instead the equations x* —xy — y2 = 1,
w:—muy + v =1,
3, The recursive functions are usually defined on the noanegative INTEZCTS. This creates a minor
e, Then but annoying technical problea in comparing the present definition with one in the literature (eg..
cf. [6], p. 41; also Theorem 4.2 on p, $1). Thus one can simply note that f(x;,--+, x,) is recursive in
the present sense if and only if firy + 1ty + D—11H8 recursive in (e usual sense. From the
point of view of the intuitive “computability™ of the functions involved this doesn't matter at all;
one is siruply in the pasition of using the positive integers as a “code” for the nonnegative integers —
using # + | to represent a.
4. Inclusion of § (i, ) in this list is redundant. That is, § (i, ¥) can b2 obtained using our three
operations from the remiining initial functions.
S. The methad of proof is Julia Robinson’s, [28], [30]. If one were permitted to use the eaumera-
NI tion theorem in recursive function theory ([6), p. 67. Theorem 1.4), the Universality Theorem would
nitions follow at once [rom Theorem 6.1.
cral of 6. Actually the result which Gédel stated (as opposed to what can bz obtained at once by use of
atment his technigues) was somewhat weaker, Indeed, the very definition of the class of recursive functions
nson’s and the pereeption of their significance came several years later in the work of Gbdel, Church, and

Turinz. In particular ths sugeastion that recursivensss was 2 precise equivalent of the 1atuitive
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notion of being computable by an explicil algorithm was made independently by Church and by
Turing. And of course il is this identification which is essential in regarding the technical results
discussed in this account as constituting a negative solution of Hilbert's tenth problem. (For further
discussion and references, cf, [6].)

7. For example, T showed (T13]) that the Julia Robinson hypothesis would follow from the pon-
existence of noatrivial solutions of the equation

9 T - x4 TyIR -2

The methods used readily show that the same conclusion follows if the equation has only finitely
many solutions, Qudnovskii [4] claims to have proved that 2% is diophantine (and hence the Julis
Robinson hypothesis) using this equation. Apparently there is a passibility that some of Cudnovskii's
work may have been done independently of Mativasevi& — but T have not baen able 10 obtsin definite
information about this,
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