A ’SOURCE BOOK IN MATIIEMATICS, 1200-1800

> ]
| (s

EDITED BY D. J. STRUIK

X \AV
. %
( H/k\

| PR Y

PRINCETON UNIVERSITY PRESS, PRINCETON, NEW JERSEY



BARROW. FUNDAMENTAL THEOREM OF THE CALCULUS

that [ is e
3x3x5x5-L

VIE

less than \g—7— = e T

14 BARROW. THE FUNDAMENTAL THEOREM O I THE CALCULUS

The so-called inverse-tangent problem consisted in finding the curve, given a law concerning

the behavior of the tangent. An carly example was the search for loxodromes on the sphere,

which are curves intersecting the meridians at a given angle; this problem was originated by

Pedro Nuiiez and Simon Stevin in the sixteenth century. A later example of importance

was contained in a letter to Descartes written by Florimond De Beaune in 1639, which led
to the search for the curve of constant subtangent; see Descartes, Ocuvres, ed. C. Adam and
P. Tannery, Correspondance, 11 (Paris, 1898), 510-519, and Selection V.1. The next step
was the recognition that finding quadratures and solving inverse-tangent problems were
identical propositions—in other words, the discovery that the integral calenlus is the inverse
of the differential caleulus, Torricelli came to this understanding in his ease of generalized
paraholas and hyperbolas, satisfying the equation x dy = ky di; see E. Bortolotti, Archeion
12 (1930), 60-64, James Gregory (1638-1675), the great Seottish mathematician who died
50 young, seems to have been the first to see the proposition in its generality, though still in
a geometric manner, This was in his (eometriae pars universalis (Padua, 1668); sce Jumes
Gregory tercentenary memorial volume, ed. 11 W. Turnbull (London, 1938), where Gregory’s
work can be enjoyed in an English paraphrase. See also M. Dehbn and E. D, Hellinger,
% Certain mathematical achievements of James Gregory,” American Mathematical Monthly
50 (1943), 149 163. We then find the fundamental theorem in the Lectiones geomelricae
{London, 1670} by Tsaac Barrow (1630-1677), in his day a famous theologian and from
1662 to 1670 professor of mathematics at Cambridge, where he was the first to oceupy the
Lueasian chair. His most famous diseiple was lsaac Newion, who suceeeded him in his chair.
See P. C. Osmond, Tsaac Barrow: his life and times { Society for Promoting Christian K nowl-
edge, London, 1044).

The Lectiones geometricac present, in 13 lectures, a curions collection of theorems, mostly
concerned with the finding of tangents, areas, and lengths of ares. Barrow himself says in the
preface that he did not find the presentation very satisfactory, but instead of editing his
Jeetures he chose rather to send them forth *'in Nuture's garb,” just as they were born. His
starting point is motion, and his carly method of finding tangents is thus kinematic. He
then begins to use indivisibles, but with some caution, and at the end he arrives at the
method of differentiation, as used by Fermat, and at that of the characteristic (or dif
ferential) triengle (dz, dy, ds). The method is thoroughly geometrical, and this makes it not
easy to recognize the importance of Barrow’s results. On the (partial) translation by

. y 2x 2 x4 x4 x...(2n)(2n)
12 W, . N X ax4x o HISEREPS
Wo now write = lim s——=2=3 T (@0 — NEA + 1)
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54 | IV ANALYSIS BEFORE NEWTON AND LEIBNIZ

J. M. Child, The geometrical lectures of Isaac Barrow (Open Court, Chicago, London, 1916)
we base certain sections of Lectures X and XI which contain theorems equivalent to
ds® = da® + dy? (rectification) and (rt[d.z).[; ydz =y (the fundamental theorem). The
notation is lightly modernized; see footnote 11.

LECTURE X

1. Leb AEC [Fig. 1] be any curve whatever, and 4 FT another curve so related
to it that, if any straight line E# is drawn parallel to a straight line given in

T

N

TN

position (which cuts AEG in E and 4 F[ in F), EF is always equal to the arc AE
of the curve 4E@, messured from 4; also let the straight line ET touch the
curve AEG at E, and let ET be equal to the are AE; join T'F; then T'F
the curve A K1,

<«

touches

The proof follows.

2. Moreover, if the straight line EF always bears the same ratio to the arc
AM, in just the same way FT can be shown to touch the curve AFIY .

3. Let ACK [Fig. 2] be any curve, D a fixed point, and AL F another curve
such that, if any straight line DEF is drawn through D, the intercept EF is
ahways equal to the arc AE; and let the straight line ET touch the curve AGE:
make T'E cqual to the arc AE; let TKF be a curve such that, if any straight

! Thig in one of the many theoroms by which Barrow passes from the knowlodge of the
tangent of ono curve to that of nnother by means of mothods which originndly ace based on
motion (KK is moving parallel to itaoll), but eventually caa be interproted purely geo-
metrically. If Bix, y) and the y-uxis are in tho BF direction, then K/ =y + g (8 = arc AK),
and F(z, y -+ s). Honco the slope of FT is

1 + &in g dy ds _ds
Tomey et Mcemptn i emy

de [Ty
hence .73 = J 14 (d_‘:’) - Horo we have taken g = ten ¢, honee the X.axisis | 4 F.
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line DHK is drawn through D, cutting the curve TKF in K and the straight
line TE in H, HK = H'T; then let FS he drawn to touch TK I at If; F'S will

touch the curve AIF also.?®

4, Moreover, if the straight line EF always hears the same ratio to the arc
AE, the tangent to it can casily be found from the above and Leot. VI I, §8.

A number of similar theorems follow, and applications to some special curves (from a
straight line to a hyperbols, from a circle to a quadratix). Then Barrow says: “T add one
or two theorems, which it will be seen are of great gencrality, and not lightly to be passed
over.” Here they are:

11. Let ZGE [Fig. 3] be any curve of which the axis is ") and let there be
perpendicular ordinates to this axis (VZ, P@, DE) continually inereasing from
the initial ordinate ¥ Z; also let VIF bea line such that, if any straight line EDF
is drawn perpendicular to ¥ D, cutting the curves in the points £, ¥, and VD in
D, the rectangle contained by DF and a given length R ix cqual to the inter-
cepted space VDEZ; also let DE: DF = R: DT, and join [T and F]. Then TF
will touch the curve VI F.# For, if any point [ is taken in the line VI F (first on
the side of F towards V), and if through it [( is drawn parallel to ¥Z, and 1 E is
parallel to ¥ D, cutting the given lines as shown in the figure; then LF:LK =
DF:DT = DE:R,or R x LF = LK x DE.

2 "This is similar to Art 1, but now in polar form.
® If tho curve ZGE is given by v = f(z) and carve AIF by z = g(x), thon Rz = ﬁ) y dz,
and y:z = R: DT.Tho theorem that DT is tangent to the curve AL P gives y: s = R :‘r—[-:.

dx d . S i 3
hencoy » R—ory = —J'r y dz. This thorofore s, in geomaotrical form, the fandamoental
g " i ded 0

theorom of the caleulus. Figure 4 gives tho toxt in facsimile.
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266 | IV ANALYSIS BEFORE NEWTON AND LEIBNIZ

Fig. 3

~N

But, from the stated nature of the lines DF, LK, we have R x LF =
ares  PDEG. therefore LK x DE = area PDEG < DI’ x DE; hence
LK « DP < LI.

Again, if the point I is taken on the other =ide of F, and the same construction
is made as before, plainly it can be easily shown that LK > DP > LI.

From which it is quite clear that the whole of the line TK F lies within or
below the curve VIFL.

Other things remaining the same, if the ordinates, VZ, PQ, DE, continually
decrease, the same conclusion is attained by similar argument; only one dis-
tinction occurs, namely, in this case, contrary to the other, the curve VIF is
concave Lo the axis V.,

Corollary. It should be noted that DE x DT = R x DF = area VDEZ.

12. From the preceding we can deduce the following theorem.

Let ZG'E, VIE be any two lines so related that, if any straight line EDF is
apphied to a common axis VD, the square on DF is always equal to twice the
space VDEZ; also take DQ, along VD produced, equal to DE, and join ¥Q;
then FQ is perpendicular to the curve VIF.?

T will also add the following kindred theorems.

13. Let AGEZ be any curve [Fig. 5], and ) a certain fixed point such that
the radii, DA, X!, DE, dravn from D, decrease continually from the initial
rading DA; then let DKE be another curve intersecting the first in F and such
that, if any straight line DK@ is drawn through 1), cutting the curve AEZ in ¢
and the curve DKE in K, the rectangle contained by DK and a given length R
is equal to the area A DG; also let DT be drawn perpendicular to DE, so that
DT = 2R; join TE. Then T'E touches the curve DKE.

Moreover, if any point, K say, is taken in the enrve DKE, and through it DKG
is drawn, and DG: DK = R:P; then, if DT is taken equal to 2P and TG is
joined, and also K& is drawn parallel to ¢7'; KS will touch the curve DKE,

4 This shows how to construct the normal to the figure of Art, 11, Arts. 13 and 14 show
how the argument runs in terms of what wo would call polar coordinatos.
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Esicr X
Hujufmodi plura quardam cogitaram hic inferere ; verim haec ex-
iftimo fufheere fubindicando modo, juxcs quem, crra Calonls melefti-
ams, ewrvaram cangenies exquirere licet, wnaque conftrultiones de-
menftrare, Subpcam tamen unum aut alterum non afpernanda; ut vi-
dawr-J besremara pzrquam generaliz.

XL SichincaquxpamZ GE, cojus axis VD, ad quam impri-
mis applicatx perpendiculares (VZ, PGy DE) 4b intio VZ con-
tinwe vrennque crefcant ; ficitem hinea VI F talis, vt duitd quiceng;
reéta EDFad V Dperpendiculari (quac ewrvar fecer pundts B b,
ipam VD in D) ficlemper rectangudum ex D F, & deiignata qui-
dam R aquale fpario refpeliee carerceprs VO EZ ;. fiar autem DE.
DEF::R.DT; & connetatur recta TF; hxc curvam V 1F
cantinger. y

Sumatar cnim io linea V' I F pundtum quodpram | (illud primo fu-
pra pun&um F, verfus inwisin V) & per hoc ducanturrecte 16 ad
VZ, 2¢ K Lad V D parallel= (\B:.r lincas expoliras fecent, ut vides)
efquerun LF.LK:: (DF.DT::) DEJR; adedque L Fx
R=LKxDE. Eftaurem {expraflitara linearum iftarum narura)

L F x Rxqule fpstio PDEG; ergo LKxDE=PDEG =5
DPxDE. UndecALK-2DP; vellLK~a Ll *

Rurfiss accipiatar quodvis pundtem 1, infra panctom ) réliquag;
Fane, uit pritts ;. fimilzque jam planc dikurfu condiabit fore L K x D
=PDEGDPxDE, indejamerit LK~ DP, vet L1, E
quibus liquido pazet toram reftam T K F Kintra (feuextra) curvam
V 1 E | aaiftere. i :

1ifdemn quoad cxtera pofitis, fi srdinreVZ, PG, 'D E, &¢. con-
tinué decrefcant, eadem conclalio fimili yatiocinio ¢olligetor 5 uni-
curo obvenic Dferimen, quod in heccafo  (contra quam in prigre)
lipca V [ F concavas fiss 2xi V D obverzat, *

“Coral, Notezer RIE x D Taxguari fpatioV D E Z.

[ s ]

XIL Exindd deducitur hoc Thworems : Sint dux Tnex quevis

Z GE, VK tarcle, w ad.communem ipfirom axem V D ap-

‘plicatd quivisse@i EDF, fit fempee quadranm ex D E zquale du-

plofpeiaV D EZ femator autern D Q= D E, & comofant FQ
hac curvae V K F perpendicularis erit. - ;

: €oncipratur caim lineaV 1 F, per F tranfiens, ralis qualem mox
wugimus (cujusfiiicet 3d V D applicate fe babeans o (ata VDEZ;
boc oft nt quadrara ex -applicatis a curya V K B in pracfeate hypothefi )

5 ) neamyue




Now, the above theorem is true, and can be proved in a similar way, even if
the radii drawn from D, D4, DG, DE, are cqual (in which case the curve AGEZ
s a cirele and the curve DEE is the Spiral of Archimedes}, or if they continually
increase from A,

14. From this we may casily deduce the following theorem.

Lot AGE, DKE [Fig. 6] be two curves so related that, if straight lines DA, DG
are drawn from some fixed point D in the curve DKE (of which the latter cuts
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the curve DKE in K), the square on DK is cqual to four times the arca A DG
then, if DH is drawn perpendicular to DG, and DK : DO = DG : DIT; and I{K
is joined; then I{K is perpendicular to the carve DK E,

We have now finished in some fashion the first part, ns we declared, of our
subject. Supplementary to this we add, in the form of appendices, a method for
finding tangents by ecaleulation frequently used by us. Although I hardly know,
after so many well-known and well-worn methods of the kind above, whether
there is any advantage in doing 0. Yet 1 do 20 on the advice of @ friend;® and
all the more willingly, because it seems to be more profitable and general than
those which T have discussed.

Let AP, PM be two straight lines given in position | Fig. 7] of which P cuts
& given curve in M, and let MT he supposed to touch the curve at M, and to
cut tha straight line at 7',

M

!

!
KT o

In order to find the length of the atraight line P7', I set off an indefinitely
small arc, M N, of the curve; then I draw NQ, N R parallel to M P, AP; T call
MP =m, PT =t, MR = a, NR = ¢, and other straight lines, determined by
the special nature of the curve, useful for the matter in hand, I also designate by
name; also I compare M R, NR (and through them, M 7, PT) with one another
by means of an equation obtained by caleulation; meantime observing the fol-
lowing rules.®

Rule 1. In the calculation, I omit all terms containing a power of @ or ¢, or
products of these (for these terms have no value).”

Rule 2. After the equation has been formed, I reject all terins consisting of
letters denoting known or determined guantities or terms which do not contain
@ or e (for these terms, brought over to one side of the equation, will always be
equal to zero).

Rule 3. 1 substitute m (or M P) for a, and ¢ (or P7) for e. Henee at length the
quantity of PT is found.

Moreover, if any indefinitely small arc of the curve enters the caleulation, an
indefinitely small part of the tangent, or of any straight line equivalent to it (on

® This friond probably is Nowton, to whom Barrow refors by name in the preface, saying
that Newton has helpod him in propasing the hook, adding somo things from his own work.

% This introduces tho “churactoristic triangle™ (NI, RAM, N ALY or (dz, dy, ds), on tho
advies, it seorns, of Newton. )

7 T'his noglocting of torms of highor order rominds us of Format {Seloctions 1V 7, 8) and
also of Nowton's fhuxion theory (Selection V.7).
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acoount of the indefinitely small size of the arc) is substituted for the arc. But
these points will be made clearer hy the following examples,

Barrow gives five examples of this method of the characteristic triangle. Two of them
are the folium of Descartes #® + »* w axy (written by Barrow AP cub + PJM cub =
AX x AP x P3; he calls the curve La Galande) and the quadratrix; the others are the
curves 2 + y* = a7 = a tan §,and y = a tanz. The result of the differentiation of
¥ = atanxis shown to be (in our notation, of course), dyjdz = a soc? z.

The next lecture deals with integration.

LECTURE XTI

1. If VI [Fig. 8] is a curve whose axis is VD, and HD is an ordinate perpen-
dicular to V.1, and ¢Zy is a line such that, if from any point chosen at random
on the eurve, say I, a straight line P is drawn normal to the curve, and a
straight line £4 7 perpendicular to the axis, 47 is equal to the intercept A P;
then the area V Dy will be equal to half the square on the line DH.

For if the angle H DO is half a right angle, and the straight line V.0 is divided
into an infinite number of cqual parts at A, B, €, avd if through these points

Wl
3 N s \z
YA THE \ \ c _\z
: I A\

5

-4

P —

e P —




ON AND LEIBNIZ

d for the are. But

gle. Two of them
ub + PM cub =
he others are the
lifferentiation of

ordinate perpen.-
hosen at random
he curve, and a
1e intercept A P
Dir,

1€ VD is divided
igh these points

BARROW. FUNDAMENTAL THROREM OF THE CALCULUS 14 | 261

straight lines KAZ, FBZ, GCZ, are drawn parallel to 1 1), meeting the curve in
E, F, @; and if from these points are drawn straight lines EIY, PKY, GLY,
parallel to VD {or HO); and if also B P, FP,GP, HP are normals to the curve,
the lines intersecting as in the figure; then the triangle /L@ is similar to the
triangle PDH (for, on account of the infinite soction, the small are H({ can be
considered as a straight line).

Hence, HL: LG = PD:DH. or HI, x DH = LG »% PD;thatis,

HL x HO = DC x Dy.

By similar reasoning it may be shown that, sinee the triangle GM F is similar
to the triangle PCG, LK x LY = CB x C%: and in the same way,

KI x KY = B4 x BZ, ID x IY = AV x AZ.

Hence it follows that the triangle DHO (which differs in the slightest degree
only from the sum of the rectangles HIL x HO + LK x LY + KI x
KY + ID x IT)is equal to the space Ve (which similarly differs in the
least degree only from the sum of the rectangles O x Dip + OB x C% + BA x
BZ + AV x AZ); that is,

DH22 = area VDyp.

A lengthier indirect argument may be used; but what advantage is there?2

2. With the same data and construction as before. the sum of the rectangles
AZ x AE, BZ % BF,CZ x 00, elc., is equal to one-thind of the cube on the
base DH?

For, since HIL: LG = PD:DH = PD x DII: DH?; therefore HI, % DI
= LG x PD x DH or LH x HO? - DC x D x DH; and, similarly,
LK x LY* =CB x CZ x CG, KI x KY? = BA x BZ x BF, ete.

But thesum HL x HO? + LK x LY? + KI x KY* + ete. = DFP(3; and
the proposition follows at once.

3. By similar reasoning, it follows that

the sum of AZ x AE?, BZ x BF? 07 x CG?, ete. = DHA 4,
the sum of AZ x AE®, BZ x BF*,C% x CG®, ete. = DISJ5;

and so0 on.
4. Hence we may deduce the following important theorems.
Let V Difip be any space of which the axis VD is equally divided [as in Fig, 7);

 If we measure x along VP and ¥ in the direction of BA, thon AP = AZ = y dy/dz and

the theorem states that
0 dy  rw ¥ yi
when I has the coordinates (o, wo). This is & form of chango of indepondont variable from
xtoy.
. [x0 . dy ¥ v
* That is, 2 = dy = Yo,
'ﬁmmfoyd:d; oy‘y 3
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Several more examples are given, concerning the area of a quadrant of a cirele
parabolic seg
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then if we imagine that each of the spaces VA Ze, VBZy, VCZp, ete., is multi-
plied by its own ordinate 4%, BZ, 0Z. ete,, respectively, the sum which is
preduced will be equal to half the square of the space V D, 20

and of a
ment and the volume of a surface of rotation, after which comes the following

10. Again, if VI [Fig. 9] is a curve whose axis is V. and base DH, and DZZ
i8 a curve such that, if any point such as 2 is taken on the curve VH and E7 is
drawn to touch the curve, and a straight line EIZ is drawn parallel to the axis,

then 17 is always equal to A7"; in that case, I say, the space DHO is equal to
the space VIiD.

This extremely useful theorem is due to that most learned man, Gregory of
Aberdeen: we will add some deductions from it e AR

T

v

Fig. 9

1° That is,

2

¥o (% dy 0o e ] 3y? |
L -’“iy,lo”&"”",[,, by dy--g—i(—-)'

Art. 5 shows that

rvo yi2 gy = 1
, ¥y = 3in.
¥ When 1) ia takon as origing DI =z, DA = g, then AT = 17 = xdy[de, and if wo

wrile Fi(z,, 0), V{0, o), then
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Barrow goes on to give more examples and Art. 19 arrives again at the fundamental
theorem, now in the form converse to that given in Lecture X, Art, 11:1f the curve AM B is
given by z = f(z), and the curve KZL by y = [,(x), zde/dz:z = R:y, then J ydx =
RI dz, or } ydz = Rz,

We list here some of Barrow’s notations which we have modified: 4 [ B, A is greater
than B; A7 | B, A is less than B; A.B::C. D, A:B = (:D; Aq, the square of 4, for
instance, in Lecture X, Art. 13, square on (7 is written Dilg; Ac or A cub, the ecube of 4;
DHqq the fourth power of DIf, We have kepi his symbol of multiplication, 4 x B,

We end with a word of caution. Despite the fact that, in order to understand these
seventeenth-century mathematicians, we are inclined to translate their reasoning into the
notation and language with which we are familiar, we must constantly be aware that our
point of view is not equivalent to theirs. They saw geometric theorems in the sense of
Euclid, where we see operations and caleulating processes. At the same time, just because
these mathematicians applied their geometrie notions in an attempt to transeend the statie
character of classical mathematics, their geometrie thought has a richness that may easily
escape observation in the modern transeription. If we were to rewrite Euclid in the notation
of analytic geometry we would obtain a body of knowledge with & charscter different from
that of Euclid and, despite all the advantages that the algebraic computations would bring,
we would ]Qs_c‘somc of the more subtle and esthetic qualities of Euclid.

15 HUYGENS. EVOLUTES AND INVOLUTES

The search for religble clocks, a necessity for scientific navigation and geography as well as
for theoretical astrgnomy, led Christiaan Huygens (1629-1695), a Dutch patrician and a
founding member o
pendulum clock (the Nea of which seems to have already oceurred to Galilei)., Huygens
deseribed this invention Yo the Horologium oscillatoriwm (Paris, 16T reprinted, with French
translation, in Qeuvres complétes de Christiaan Iluygens, X VLM, 68-368). This book, in its
five parts, contains a numbyy of important discoveries i echanica and mathematics, so
that, with the books of Cavalikri and Wallis (see Selections IV.5, 6, 13), it is a landmark on
the path that led to the inventidp of the caleulus,

After deseribing his pendulum clgek in Part L/Huygens deals in Part TT with “The fall of
heavy bodies and their cycloidal mgvements” Here we find a theory of the cycloid and,
weavy point moving on a cycloid in a field of

the French Academy of Sciences (1666), to the invention of the

based on it, the following theorem o
gravity:

Proposition XXV, ith a vertical axis whose vertex is below,
the times of desce
point of the cury,
of the vertical

seraicireumfi

On a cycloid
in which a mobildpoint, starting from rest at an arbitrary
, reaches the lowest polpt, are all equal, and have to the times
1l along the total axis of the eyeloid a ratio equal to that of the
enee of a circle to that of the dameter [in our terms, as = :2].

In other words, fhe eycloid is a tautochrone, From this ihgorem Huygens obtains the
tautochronie pendylum, which has a period independent of 1taNlit-ndn. This property of

-y
e eaa v



