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Integration on R® 637
5. STOKES' THEOREM (First generalization of Green's Theorem)

We recall that Green’s Theorem cxpicsses a relation between a double
integral over a plane region and a line integral taken round its plane
boundary. There are two ways to gencralise this in B2 One of these oxten-
sions, known as Stokes”™ Theorem. relates a surface integral tuken over a
surface to a line integral taken around the boundary curve of the surface.
This generalisation is duc to an English mathematician., George Gabriel
Stokes (1819-1903).

A second generalisation arises when the double integral is replaced by
a triple interal, and the line integral by a surface integral. This general-
isation is named Gauss’s Theorem and will be taken up later.

Stokes’ Theorem  If S is a smooth oriented surface bounded by a curve
C oriented in the same sense, and f, 8. h are three functionswhich along with
their first order partial derivatives are continuous in « three dimensional
dornain containing S, then

jc (fdx + gdy + hds) =”s [(af_a_g) dy.ds
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Let the oriented surface be represented as
X=X v), ¥=pu,v), z=2zu, ¥), (u,vE D

where D is an oriented surface in ur-planc. Alse, let its boundary be an
oriented curve I represented by

ueut), vewt), age<b
The proof of the theorem involves the following steps:

1. The linc integral along C is expressed as an ordinary mtegral,

2. The ordinary integral is expressed as @ line integral ajong I,

3. The linc integral along I is then expressed, by Green's Theorem,
as double integral over D, and finally

4. The double integral along D is expressed as a surface integral
over S.

Now
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Writing down similar expressions for the other terms of the integrand
and rearranging, the double integral on the right hand side of ( 1) becomes

L1620+ G 80) e (- ) 2] o

_ [ (2h ag LYY (gg g{)
--[js(a—y—‘j}) dydz + (éz'-g) d:z X -+ ax—ay dxdy (2)
Hence the proof.
Also by the definition of surface integrai, relation (2) is cquivalent to

i _(f [ _ 2 Z-)
-(c(lfde.aay+hdz)-”s[“ay»— ET_;)°°5°‘+ e cos B

+ (i-f, - g) cos -y] ds 3)

where cos «, cosB, cosy are the direction cosines of the normal at any
point to the surface,

Note I (Vectorial SJormulation). Let
r=ix+jy+ks

be the position vector of any point on the sarface S, and

1
J
Fix, y, 2) = iP(x, y, 2) + JO(x, 3. 2) + kR(x, ¥ 3) i
be a vector function defined on S. i
Let n dencte the unit normal at any point of the surface under consi-
deration, s0 that J
N -icosatjcosB L kcosy 2
am (2-22) e c
curl Frp o > oz cosc+(az ~3g) cosB

0_ar)
+(5x— cos ¥




" the integrand
 of (1) becomes
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and

F-dv=Pdx+ Qdyv+Rd:
so that by (3) Stokes” theorem can be writien as

jc Fudr= !L curl F-n dS§

2. If the surface S is a piece of a plane paraliel to the xy-plane
then dz =0 and we get Green's Theorem as special case of Stokes’
Theorem.

S.1  Deductions from Stokes’ Theorem

Stokes’ theorem has various applications in mathematical analysis. Here we
are going to establish only one such deduction: the conditions for a line
integral to be independent of the path of integration, These conditions, in
fact, generalise the results obtained from Green's theorem (§ 4.1 Ch. 17)
concerning the question of path mdependence of an integral over a plane
curve, With that view, we introduce the following concept.

Definition. A three-dimensional domain ¥ 15 said to be simply connected
if, for any closed contour belonging to ¥ there exists 2 surface, with the
contour as its boundary, entircly lying in ¥,

A sphere (ball), the whole space, the domain lying between two con-
centric spheres are exampies of a simply connected space. An example of a
domain which is not simply connected (referred to as  multiply connected)
is & ball with a cylindrical tunnel passing through it.

Now we proceed 1c establish the following result anzlogous to § 4.1,
Chapter 17.

THEOREM 2. Jf three Junctions fix, y, z), £(x. y, ), and hix, y, ), defined in
a bounded closed simply connected domain V, are continuous along with thelr
first order partial derivatives in the domain, then the Jollowing  four assump-
tions are equivalent 1o cacli other.

I. The line integral ( fax 4 gdy + hdz teken along any closed contour

Iying inside V is cqual 10 =ero.

2. The line Intesral I S dx + g dy + b d is independent of the path
AR

of integration connecting two arbitrary points A and B,

3. The expression Sdx g dy - hd= is the total differential of a sinele
valued function defined in V.

L\
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a_
4. The conditions
_ h_sgar gz b £ 5
X YE T iris= ax (x-
are fulfilled at eqch point of the domain . On py
The theorem i Proved according to the scheme 1 223241 becomes
which we followed while proving §4.1Ch. 1

réader with the only hint thae to deduce conditi

a
& smply connected domain. Then the =5
application of Stoke’s theoy €m to the line mtegral along I' shows that
condition 4 implies the relation I Sadx+gdy4 b dz — 0. =a*
r
Example 15, Use Stokes® theorem to fing the line integral =g
I x’y’dx+dy+zdz =
c
where C iy the circle 2 +3=at 0. Note. T:hc
Now, by Stokes’ theorem integral is n
oz a.1 (o 82)
2,3 b b . :+______~ -
.L-IJ detdytz dz. ,[fs(ay a:)dyd (az ax) % dx
I. Using St
-+ g.;l -~ ?':_ dx dy
4 J y dx
c
= JL 32%* dx dy 2. Show, usi
where S is the circle a2 2 os in the xy-plane, Changing to polars, j O+
r
= -SJ’ J‘r‘coszo.ﬁu*erdra‘a where I i
- 4 ] 3- Using Stol
38 (= 18z _ __ =
3‘7}'[,.‘:05 0 sin® § 49 — 8 I For g
r
Example 16. Show that where I is
' 4. Apply Stok
JJ'T Y —2)dyd= +(z—x)drde + (* = ¥) dr dy = gy
: |0+
where S is the Poition of the surfage x2 +3 —2ax + g7 = 0,z>0. c
By Stokes' theorem taken along
oriented sur

” (ry Ddvdr4(z- x)d:dx-f(x‘y)dxdy
.5
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where C is the curve
(x—aP+yr=a z-0

On putt; — = @ sin 0. the Koa s =
Sk bccomcgu MEX=a+ acos0 ~a(l + cos 6), y =a sin 0, the line integr
the proof to the
ondition 4, one oI
‘and consider a *]_'IGSIDB( a5m°)+0’(1+0080)'acosljdo
urface existing

mam. Then the %'j' (—-sin‘0+c050+200$’0+oos’3)&

g I' shows that o
-
= a3 Io (2 cos? 8 -4 cos? ) do
=2 s
= | ™ (2 c0* 0 + cos® 6) do +a’] (2 sin? 8—sin? 8) d
<
= wa*®
Note. The method employed to convert a surface integral into a line
integral is not general.
. %) d= dx EXERCISES
1. Using Stokes’ theorem, show that
Icydx-{-zdy-{»-x dz = — Ijs (cosa+cosﬁ+cosY)dS
2. Show, using Stokes' theorem, that i
to polars j(y—j—:)dx FE+x)dy + (x4 ) dz =0 ';
r ik
- 4 whcrc!‘islhccirdex'+}"+"=n'.x+yf»:aO. i
3. Using Stokes’ theorem, prove that i
=at :
8 I yde + zdy + x dr = - 2raty/2 -‘-
r s
whcrc["isthccuwex’{»y"+z’—20x—2ay=0,x+y=20. 1
i 4. Apply Stokes' theorem to transform the integral 1
+ =z d.r+x’-{»:d+x‘ dz
i |0t + e h e h a1 gy

|

taken along a smooth curve € to & certain integral over a smooth
oriented surface with C as its boundar
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5. Verify Stokes* theorem for the integral
[ 2o 4 xay

where C s 3 Square in the z = 0 Planc with sjdes along the lines,

6. Verify Stokes® theorem in cach case
(i) F-z:l"." d\j"i‘yk

S is the part of the Paraboloid z s ] . 4t _ »* for which z = 0,
n-k > Q.

(i) F = p3 + Xy — 2yzk
5 is the hemisphere 32 +1+ =g, = 0 with n.k = 0.

6. THE VOLUME OF A CYLINDRICAL SOLID BY
DOUBLE INTEGRALS

We have shown earfier that the volume of a cylindrical solid can be found
With the help of double integrals.

Let a cylindrical solid be bounded above by a surface T = ¥(x, 3), be-

low by a plane region D (on the xy-plane) and on the sides by lines paralle]
10 z-axis. Its volume ¥ i given by

Ve JJ WX, ¥) dxdy, in cartesian coordinates
o
or

= ” ¥(r cos 8, r sin 8) r dr 49, ipn polar coordinates
D

= ” < Cos v dS, as a surface intcgral
Jls
where S is The surface of the solid.
If the equation of the surface is given in the form
x =08y, =), or Y = ¢z, x)
then the corresponding formulas for calculating the volumes are of the
form

V= ” 0, D dv d= or [I  Xcosa dS
i

4 LR
V—-—”D. (= X) dzdr or ”s ¥ cos B dS

where D, D, zre the domains in the Jz-plane, and =x-plane in which the
given surface is Piejecred.

Note 1. Cleari
surface z = yx

2. The functio
the surface i3 m

3. If the functi
tWo parts. (i) th
where ¢ < 0. o
the volume of th
will be negative ;
lying below the .
difference betwee
values of the two
solid.

4. Volume by ite,

ted geometrically.
-
D
b
-_j St)
where
s
iy J .l
= area
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